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Abstract

This work identifies the existence and cause of a type of posterior collapse that
frequently occurs in the Bayesian deep learning practice. For a general linear la-
tent variable model that includes linear variational autoencoders as a special case,
we precisely identify the nature of posterior collapse to be the competition be-
tween the likelihood and the regularization of the mean due to the prior. Our
result suggests that posterior collapse may be related to neural collapse and di-
mensional collapse and could be a subclass of a general problem of learning for
deeper architectures.

1 Introduction

Bayesian approaches to deep learning have attracted much attention because they allow for a more
principled treatment of inference and uncertainty estimation (Mackay, 1992; Neal, 2012; Wang and
Yeung, 2020; Jiang and Ahn, 2020; Zhao et al., 2021; Liu, 2021). One long-standing and unresolved
problem for the Bayesian deep learning practice is the problem of posterior collapse, where the
posterior distribution of the learned latent variables partially or completely collapses with the prior
(Bowman et al., 2015; Huang et al., 2018; Lucas et al., 2019; Razavi et al., 2019; Kingma et al.,
2016; Wang et al., 2021). Up to now, the study of the nature of the cause of the posterior collapse
problem has been limited. There are two main challenges that prevent our understanding of the
problem: (1) posterior collapses mainly occur in deep learning, and the landscape of deep neural
networks is hard to understand in general; (2) the use of approximate loss functions such as the
evidence lower bound (ELBO) complicates the problem.

Consider a problem where one wants to model the data distribution p(x, y) through a latent variable
z. The evidence lower bound (ELBO) loss function reads

Ex,y[−Eq(z∣x) log(p(y∣z))]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ℓrec

+Ex[DKL(q(z∣x)∥p(z))]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ℓKL

, (1)

where q is the approximate distribution, we rely on to approximate the true distribution p. This loss
is more general than the standard ELBO for variational autoencoders (VAE) (Kingma and Welling,
2013). Meanwhile, it can be seen as the simplest type of loss for a conditional VAE (Sohn et al.,
2015), where one aims to model a conditional distribution p(y∣x). The distribution p(z) is the prior
distribution of the latent variable z and is often a low-complexity distribution such as a zero-mean
unit-variance Gaussian. This loss function thus has a clean interpretation as the sum of a predic-
tion accuracy term (the first term ℓrec) that encourages better prediction accuracy and a complexity
term (the second term ℓKL) that encourages a simpler solution. Learning under this loss function
proceeds by balancing the prediction error and the model simplicity. Moreover, learning under this
loss function has also been used as one of the primary theoretical models in neuroscience (Friston,
2009), and its understanding may also help advance theoretical neuroscience. This work provides
an in-depth study of the posterior collapse problem of Eq. (1), when the decoder q(y∣z) and encoder
q(z∣x) are each parametrized by a linear model.
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Specifically, our contributions include:

• we find the global minima of a general linear latent variable model that includes the linear
VAE as a special case under the Objective (1);

• we find the precise condition when posterior collapse occurs, where the global minimum is
the origin;

• we pinpoint the cause of the posterior collapse to be the excessively strong regularization
effect on the mean of the latent variables due to the prior.

To the best of our knowledge, our work is the first to pinpoint the cause of the posterior collapse
problem. This work is organized as follows. The next section discusses the previous literature.
Section 3 describes the theoretical problem setting. Section 4 presents our main technical results
and analyzes them in detail. Section 5 presents numerical examples. The last section concludes this
work and points to the remaining open problems. The Appendix B investigates the effect of the bias
term, Appendix C details the effect of a data-dependent encoder variance, and Appendix D treats
the case of a learnable decoder variance.

2 Related Works

Approximate Bayesian Deep Learning. Bayesian deep learning in general and VAE training, in
particular, rely heavily on approximate methods such as the ELBO objective because the exact
probabilities are intractable. The connection of approximate Bayesian learning and probabilistic
PCA (pPCA) has been extensively studied (Nakajima and Sugiyama, 2010; Nakajima et al., 2013,
2015; Lucas et al., 2019).

Causes of Posterior Collapse. Earlier touches on the problem tend to attribute the cause of posterior
collapse to the use of approximate methods, namely, to the use of the ELBO (Bowman et al., 2015;
Huang et al., 2018; Razavi et al., 2019). Another line of work attributes the cause to the high
capacity of modern neural networks (Alemi et al., 2018; Ziyin et al., 2022c). However, Lucas et al.
(2019) showed that for a simplified linear model, the ELBO is not the cause of posterior collapse
because the posterior collapse exists even in the exact posterior. It also implies that the posterior
collapse is not due to the high capacity of the models because linear models have a limited capacity.
Lucas et al. (2019) then suggested that making the decoder variance learnable can fix the collapse
problem and that an unlearnable decoder variance is the cause of the posterior collapse. However,
our results show that this is not the case: for both learnable and unlearnable decoder variance, there
exist situations where a collapse happens or does not happen, which implies that the learnability of
the decoder variance does not have a causal relation with posterior collapse, nor is it sufficient to
fix the problem (Section D). In terms of the problem setting, ours is also more general than Lucas
et al. (2019) because our result (1) applies to general latent variable models (one example being the
conditional VAE (Sohn et al., 2015)) and (2) considers the case of β-VAE with a general β when the
decoder variance is learned. An important implication of our work is that posterior collapses can be a
ubiquitous problem for deep-learning-based latent-variable models (not just unique to autoencoding
models) and that they share a common cause. Meanwhile, (Lücke et al., 2020) shows that posterior
collapse can happen due to the tradeoff between the decoding performance and the decoding entropy.
(Shekhovtsov et al., 2022) demonstrated the relationship between model consistency and posterior
collapse and suggested that a proper choice of data processing or architecture may alleviate collapse.

Linear Networks. Deep linear nets have been extensively used to understand the landscape of non-
linear networks. For example, linear regressors are shown to be relevant for understanding the gen-
eralization behavior of modern overparametrized networks (Hastie et al., 2019). Saxe et al. (2013)
used a two-layer linear network to understand the dynamics of learning nonlinear networks. The
linear nets are the same as a linear regression model in terms of expressivity. However, the loss
landscape is highly complicated due to depth. (Kawaguchi, 2016; Hardt and Ma, 2016; Laurent
and Brecht, 2018; Ziyin et al., 2022a). Our work essentially studies the loss landscape of linear
networks. While each encoder and decoder we use consists of a single linear layer, they effectively
constitute a two-layer linear network when trained together.

3 Problem Setting
We consider a general linear latent variable model with input space x ∈ RD0 , latent space z ∈ Rd1 ,
and target space y ∈ Rd2 . In general, y = f(x) is an arbitrary function of x. When the target y
is identical to the input x, it reduces to the standard VAE. The VAE formalism assumes that there

2



is an intermediate “latent variable” z that captures the data generation process. In the main text,
the encoder and decoder are linear transformations without bias terms, and the learnable bias is
treated in Appendix B, which shows that the effect of the bias terms is equivalent to centering both
the input and target to be zero-mean (x → x − E[x], y → y − E[y]). Incorporating the bias terms
thus does not affect the main results. Specifically, the encoder is defined as z = W ⊺x + ϵ, where
ϵ ∼ N (0,Σ) is the noise distribution introduced by the reparameterization trick where the variance
matrix Σ = diag(σ2

1 , ..., σ
2
d1
) is assumed to be diagonal and independent from x. The decoder

parametrizes the distribution p(y∣z) = N (Uz, η2decI), where the variance η2decI is to be isotropic and
input-independent. In alignment with the standard practice, we also assume the prior distribution of
latent variable p(z) = N (0, η2encI) is an isotropic normal distribution, and the encoding variances
matrix Σ is learned from the data distribution while η2dec is not learnable. Lastly, we weigh the KL
term by a coefficient β, which is a common practice in VAE training (Higgins et al., 2016). Hence,
the objective of such a linear model reads,1

LVAE(U,W,Σ) (2)

= Ex[−Eq(z∣x) log(p(y∣z)) + βDKL(q(z∣x)∥p(z;η2enc))] (3)

= 1

2η2dec
Ex,ϵ [∥U(W ⊺x + ϵ) − y∥22 + β

η2dec
η2enc
∥W ⊺x∥2] +

d1

∑
i=1

β

2
( σ2

i

η2enc
− 1 − log σ2

i

η2enc
) (4)

= 1

2η2dec

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ex∥UW ⊺x − y∥22 +Tr(UΣU⊺) + β η
2
dec

η2enc
Tr(W ⊺AW )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ℓmean

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
d1

∑
i=1

β

2
( σ2

i

η2enc
− 1 − log σ2

i

η2enc
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ℓvar

,

(5)

where A ∶= Ex[xx⊺] is the second moment of the input data. Note that a crucial feature of the KL
term is that it decomposes into two terms, one that regularizes the variance of z (ℓvar) and another
that regularizes the mean of z (ℓmean). We will see that it is precisely the ℓmean term that causes the
posterior collapse. Eq. (5) has ignored the partition function of the decoder because we treat ηdec as
a constant. We study the case of a learnable ηdec in Section D. In comparison to the previous works
(Lucas et al., 2019) that have treated the case of a learnable ηdec, our result is more general because
our result also considers the effect of β and allows for the case d1 ≥ d2. It is also worth commenting
on the difference between this setting and that of the pPCA setting (Nakajima et al., 2015): (1) the
effect of β is included in the VAE loss, (2) the prior of VAE is over the latent variable, whereas
pPCA has it over the model parameters, and (3) the model can be overparametrized (d1 ≥ d0).

Notation. To summarize, we use x, y, and z to denote the input variable, latent variable, and tar-
get variable, respectively. Ex denotes the expectation over the training set. A ∶= Ex[xxT ] is the
second moment matrix of the input x. A is thus positive semidefinite by definition. The eigenvalue
decomposition of A is A = PAΦP

⊺
A, where Φ = diag(ϕ1,⋯, ϕd0) is the diagonal matrix for all

d0 ≤ D0 positive eigenvalues and PA = [p1,⋯, pd0] are matrices by concatenating d0 eigenvectors
pi ∈ RD0 . W and U are learnable linear transformation matrices for the linear encoding and decod-
ing processes. Σ is the learnable diagonal latent variance matrix for encoder with diagonal entries
σi. ηenc is the standard deviation of the prior distribution p(z). ηdec is the standard deviation of
decoded samples. A frequently used quantity is a whitened and rotated x: x̃ ∶= Φ− 1

2P ⊺Ax. Note that
this transformation can be inverted: x = PAΦ

1
2 x̃. We see that Exx̃x̃

⊺ = I . Furthermore, we define
Z ∶= Ex̃[yx̃⊺] = Ex[yx⊺PAΦ

− 1
2 ] ∈ Rd2×d0 . Let Z = FΣZG

⊺ be the singular value decomposition
of Z, where F ∈ Rd2×d2 and G ∈ Rd0×d0 are two orthogonal matrices. ΣZ ∈ Rd2×d0 is a rectan-
gular diagonal matrix with d∗ = min(d0, d2) singular values of Z in the non-increasing order, i.e.,
ζ1 ≥ ζ2 ≥ ⋯ ≥ ζd∗ ≥ 0.

1We note that Ex is the expectation over the training set. Also, we use the subscript ”VAE” because the
model can be seen as a conditional VAE, even though it may be more proper to call it a ”general latent variable
model.”
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4 Main Results

This section discusses the main results, whose proofs are presented in Appendix E. While Σ is often
a learnable parameter, we first assume that the KL term is sufficiently strong such that σ1 = ⋯ =
σd1 ≈ ηenc is close to the prior value. We then compare with the case when it is learnable, and this
comparison reveals that an optimizable σi is not essential to the posterior collapse problem.

4.1 General Result

In this section, we prove two results that will be useful for understanding the nature of the VAE
training objective and will be useful for us to find the global minimum. We first show that the VAE
objective is equivalent to a matrix factorization problem with a special type of regularization.

Proposition 1. Let x̃ ∶= Φ− 1
2P ⊺Ax, Z ∶= Ex̃[yx̃⊺], and

(U∗, V ∗) ∶= argmin
(U,V )

L(U,V ) = argmin
(U,V )

∥UV ⊺ −Z∥2F +Tr(UΣU⊺) + β η
2
dec

η2enc
∥V ∥2F . (6)

Given a fixed Σ, the minimizer of LVAE(U,W,Σ) is (U∗,W ∗), where W ∗ is any solution of
Φ

1
2P ⊺AW = V ∗.

Proof sketch. The term ℓvar is irrelevant to finding the optimal U∗ and V ∗ when Σ is fixed. Thus,
the relevant objective can be obtained with the change of variables x̃ = Φ− 1

2P ⊺Ax. ◻

The condition Φ
1
2P ⊺AW = V ∗ shows that when the data is low-rank, each solution (U∗, V ∗) corre-

sponds to a manifold of solutions in the original parameter space. The effective loss L(U,V ) can
be compared with the regularized singular value decomposition problem (Zheng et al., 2018). We
see that the first term is the standard matrix factorization objective, while the second and third are
unique regularization effects due to the VAE structure and the ELBO objective. In addition, the term
Σ in the second is the strength of the regularization for the norm of U , and a crucial difference with
standard regularized matrix factorization is that Σ is also a learnable matrix.

The next proposition finds, for any fixed Σ, the global minima (U∗, V ∗) of Eq. (6). In particular,
the learning is characterized by the learning of the singular values of U and V .
Proposition 2. The optimal solution (U∗, V ∗) of minU,V L(U,V ) is given by

U∗ = FΛP, V ∗ = GΘP, (7)

where F ∈ Rd2×d2 and G ∈ Rd0×d0 are orthogonal matrices derived by the SVD of Z, P is an
arbitrary orthogonal matrix in Rd1×d1 , and Λ ∈ Rd2×d1 and Θ ∈ Rd0×d1 are rectangular diagonal
matrices with the diagonal elements

λi =
¿
ÁÁÀmax(0,

√
βηdec

σiηenc
(ζi −

√
βσiηdec
ηenc

)), θi =
¿
ÁÁÀmax(0, σiηenc√

βηdec
(ζi −

√
βσiηdec
ηenc

)).

(8)

For convention, we let ζi = 0 when i > d∗ =min(d0, d2).

Proof sketch. The optimal V ∗ is a function of U under the zero gradient condition. Thus, the
objective reduces to single-variate with respect to U . The optimal U∗ is constructed by its SVD
U = QΛP , where the optimal Q∗ and Λ∗ can be determined given the SVD of Z, and P is left as a
free orthogonal matrix. V ∗ is determined once U∗ is obtained. ◻
The readers are recommended to examine the form of the solutions closely. There are a few inter-
esting features of the global minimum. One note that the sign of the term ζi −

√
βσiηdec/ηenc is

crucial, and can encourage the parameters U and V to be low-rank. Recall that σi is the eigenvalue
value of ZZT = E[yx̃⊺]E[yx̃⊺]⊺, one can roughly identify ζ2i as the the strength of the alignment
between the input x and the target y. To see this, consider a simplified scenario where the target
y = γMx is a linear function of the input, where γ is the overall strength of the signal and ∣∣M ∣∣ = 1
is a normalized orientation matrix, then

ZZT = γ2M⊺AM, (9)
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which is a positive semidefinite matrix. We see that there are two distinctive sources of contribution
to the magnitude of the eigenvalues of ZZT. Its eigenvalues are large if either the overall strength
γ is large or if the orientation matrix M aligns well with the covariance of the input feature A.
Additionally, in the case of VAE, γM = I , and ZZT = A is nothing but the covariance of input
features, and ζ2i are the eigenvalues of A.

4.2 Linear VAE without Learnable Σ

We first consider the case where σi is a constant that is completely determined by the prior: σi =
ηenc. This allows us to find a simplified form for the global minimum. The proof follows by plugging
σi = ηenc into Proposition 2.

Theorem 1. Let σi = ηenc for all i. Then, the global minimum has

λi =
¿
ÁÁÀmax(0,

√
βηdec
η2enc

(ζi −
√
βηdec)), θi =

¿
ÁÁÀmax(0, η2enc√

βηdec
(ζi −

√
βηdec)). (10)

There are three interesting observations of the global minimum. First of all, it depends crucially
on the sign of ζi −

√
βηdec for all i. When the sign is negative for some i, the learned model

becomes low-rank. Namely, some of the dimensions collapse with the prior. When the signs are
all negative, we have a complete posterior collapse: both U and V are identically zero, so the
latent variables have a distribution identical to the prior. A complete posterior collapse happens
if and only if maxi ζi −

√
βηdec ≤ 0. A partial posterior collapse happens if there exists i such

that ζ2i −
√
βηdec ≤ 0. These two conditions give the precise conditions of posterior collapse in

this scenario. This implies that having a sufficiently small β will always prevent posterior collapse.
The second observation is that the effect of β is identical to that of ηdec because

√
β and ηdec

always appear together, and so one alternative way to fix posterior collapses is to use a sufficiently
small ηdec. From a Bayesian perspective, the latter method of tuning ηdec is better because ηdec
comes directly from the (assumed) likelihood p(x∣ηdec). In contrast, the β parameter is only an
implementation technique that has obscure meaning in the Bayesian framework. Therefore, using a
small ηdec can be a fix to the problem that is justified by the Bayesian principle. The third observation
is that the condition for posterior collapse is completely independent of the parameter ηenc, which is
the desired variance according to the prior p(z). This means that under a Gaussian assumption, the
prior does not affect the posterior collapse at all.

Lastly, one also notices a potential problem. The eigenvalue of the second layer U increases with√
βηdec, while the first layer decreases with

√
βηdec, and so having a too-small β or ηdec causes

the model to have a very large norm, which can cause a significant problem for both empirical
optimization and generalization. This problem is well-known in the studies about the use of L2

regularization in deep learning: suppose we apply weight decay to two different layers of a ReLU
net, and decrease the weight decay strength of one layer to zero, then the norm of this layer will tend
to infinity, and the norm of the other layer will tend to zero (Mehta et al., 2018). However, in the
next section, we will see that this problem is miraculously solved for VAE when σi is learnable.

4.3 Linear VAE with Learnable Σ

Now, we consider the more general case of a learnable Σ. In practice, Σ is often dependent on
the input x. We make the simplification that Σ is just a data-independent optimizable diagonal
matrix, which is the common assumption in the related works (Lucas et al., 2019). In Section C,
we consider the case when Σ is data-dependent and show that our result remains unchanged. The
following Corollary gives the optimal training objective as a function Σ and is a direct consequence
of proposition 2.

Corollary 1.

min
U,V

L(U,V ) =
d1

∑
i=1

ζ2i − (ζi −
√
βσiηdec
ηenc

)
2

1
ζi>

√

βσiηdec
ηenc

+
d∗

∑
i=d1+1

ζ2i , (11)

where the indicator 1f>0 = 1 when the corresponding inequality condition f > 0 is true, and 1f>0 =
0 otherwise.
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The constant term ∑d∗

i=d1+1 ζ
2
i in Equation (11) only appears when the latent dimension d1 is less

than d∗ = min(d0, d2). This is the common situation for VAE applications. It indicates that the
model learns the large eigenvalues and ignores the small eigenvalues. This means that to find the
optimal σi of Eq. (5), one only has to find the global minimum of a reduced objective:

min
U,W

LVAE(U,W,Σ) =min
U,V

1

2η2dec
L(U,V ) +

d1

∑
i=1

β

2
( σ2

i

η2enc
− 1 − log σ2

i

η2enc
) (12)

= 1

2η2dec

d1

∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ2i − (ζi −
√
βσiηdec
ηenc

)
2

1
ζi>

√

βσiηdec
ηenc

+ βη2dec (
σ2
i

η2enc
− 1 − log σ2

i

η2enc
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=li(σi)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ constant.

(13)

The optimal σ∗i can thus be obtained by minimizing each li independently: σ∗i = argminσ>0 li(σ).
Proposition 3. The optimal σ∗i of li(σ) is

σ∗i =
⎧⎪⎪⎨⎪⎪⎩

√
βηdec

ζi
ηenc if βη2dec < ζ2i ;

ηenc if βη2dec ≥ ζ2i .
(14)

This proposition gives an explicit expression for σ∗i . On the one hand, we see that there is a threshold
value for β. If β is sufficiently large, σi will be identical to the prior value ηenc, in agreement with
our assumption in the previous section. On the other hand, the learned variance σ∗i is a function of β
if β is below a threshold. We will see that this threshold is the necessary and sufficient condition for
posterior collapse to happen in a learnable Σ setting. Thus, the learned variance being identical to
the prior variance is also a signature of posterior collapse. The following theorem gives the precise
form of the global minimum.
Theorem 2. The global minimum of LVAE(U,W,Σ) is given by

U∗ = FΛP, (15)

W ∗ is the solution of

Φ
1
2P ⊺AW = GΘP, (16)

where F and G are derived by the SVD of Z, P is an arbitrary orthogonal matrix in Rd1×d1 , and
Λ = diag(λ1, ..., λd1) and Θ = diag(θ1, ..., θd1) are diagonal matrices such that

λi =
1

ηenc

√
max (0, ζ2i − βη2dec); (17)

θi

⎧⎪⎪⎨⎪⎪⎩

= ηenc

ζi

√
max (0, ζ2i − βη2dec) when ζ2i > 0;

= 0 otherwise.
(18)

The optimal Σ∗ = diag(σ∗21 , ..., σ∗2d1
) such that

σ∗i =
⎧⎪⎪⎨⎪⎪⎩

√
βηdec

ζi
ηenc βη2dec < ζ2i ,

ηenc βη2dec ≥ ζ
,
i.

(19)

for i ≤min(d0, d2). For i >min(d0, d2), σ∗i = 0.

Proof. The optimal solution U∗,W ∗,Σ∗ are obtained by combining proposition 1, 2, and 3.

Comparing with the solution in section 4.2, one notices two things: (a) the conditions for complete
or partial posterior collapse remain unchanged, which implies that a learnable latent variance is
neither qualitatively nor quantitatively relevant for the posterior collapse problem even though the
functional form of the eigenvalues changed; (b) the magnitude of each of the two layers no longer
scales with

√
βηdec, and so using a small β or η will not directly cause the model to diverge in the
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norm, which suggests using that making Σ learnable can have the unexpected practical advantage of
stabilizing the training.

Additionally, one also notices that βη2dec has the effect of keeping the learned model low-rank by
removing all the eigenvalues of the learned model below it. This can be directly compared with
the effect of using a latent dimension smaller than the input dimension: d1 < d0. In the latter case,
the smallest d1 − d0 singular values are also pruned. There is a difference between the two types
of low-rankness: using a large βη2dec both removes all the singular values below it and shrinks the
remaining ones while using a small latent dimension only removes the smaller singular values with-
out affecting the rest. This is similar to the difference between soft thresholding estimation and hard
thresholding estimation in statistics (Wasserman, 2013). This suggests that partial posterior col-
lapses are not necessarily undesirable because, during a partial posterior collapse, the latent variable
models automatically perform a degree of sparse learning, which is theoretically understood to help
denoising the signal and lead to better generalization (Markovsky, 2012). That being said, complete
posterior collapse should always be avoided.

4.4 Learnable ηdec

Our result can also be extended to the case when ηdec is learnable, which has been suggested by
Lucas et al. (2019) as a remedy for the posterior collapse. To do this, we need to include the partition
function of the decoder, proportional to log η2dec, that has been ignored in Eq. (5). We present the
detailed analysis in Section D. Our analysis shows that even if ηdec is learnable, posterior collapse
can happen for some datasets. In addition to the fact that it is also possible for collapses not to
happen when ηdec is not learned, we conclude that ηdec does not have a causal relation with posterior
collapse. Our analysis also suggests a way to fix posterior collapse for VAE: make ηdec learnable
and set β < d2/d∗. Note that the condition β < d2/d∗ is tight in the sense that if it does not hold,
then there exists a data distribution such that complete collapse can happen. This condition also
highlights that it is important to introduce the β coefficient for VAEs because, for VAE, d2/d∗ = 1,
and this condition translates to β < 1; namely, vanilla VAE cannot avoid complete collapse.

Our result also implies that β has a highly nonlinear effect on learning depending on the architecture.
For example, when the model is underparameterized (d1 < d∗), using a small β does not cause any
problem, whereas for an overparametrized model, a small β causes the decoder variance to converge
towards 0.

4.5 Implications

Our main results have implications for both the problem of posterior collapse and the practice of
latent variable models in general.

The cause of posterior collapse. One important implication is the identification of the cause of the
posterior collapse problem and the potential ways to fix it. Our results suggest that

• a learnable (data-dependent or not) latent variance is not the cause of posterior collapse;
• changing the variance of the prior cannot fix or influence the posterior collapse problem;
• comparing with the results in Lucas et al. (2019), ηdec being learnable or not is causally

related to the posterior collapse problem;
• the values of ηdec and β are crucial for the posterior collapse;
• choosing appropriate β is still needed: a sufficiently small β can avoid posterior collapse.

Note that the effect of a small β (large ηdec) weakens the prior (reconstruction) term, and so the cause
of the posterior collapse must be the competition between the prior term, which regularizes the com-
plexity of the model, and the likelihood term, which encourages accurate recognition/reconstruction.
Our results suggest that one can ignore the effect of the ℓvar term in studying the mechanism of
posterior collapse. Ignoring the ℓvar Eq. 5, one sees that the posterior collapse is caused by the
competition between the likelihood and ℓmean, which is precisely the regularization effect on the
mean of z.

There is an interesting alternative perspective on the nature of the posterior from the viewpoint of
the loss landscape geometry. The following theorem states that the origin (where all parameters are
zero) is either a saddle or the global minimum for this problem. Since we have shown that σi does
not affect the collapse, we simply let σi = ηenc as in Section 4.2.
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Figure 1: Training loss L and σ̄i versus β on synthetic regression dataset. σ̄i is measured by averag-
ing over the training set. The vertical dashed lines show where the theory predicts a partial collapse.
Complete posterior collapse happens at roughly β = 14.
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Figure 2: Training loss and σ̄i versus β for MNIST dataset. The vertical dashed lines show where the
theory predicts a partial collapse. The posterior collapse happens for the MNIST dataset at around
β = 5.

Theorem 3. The Hessian of Eq. 5 at 0 is positive semidefinite if and only if it is the global minimum.

The surprising aspect is that for the latent variable model, there is no intermediate case where the
origin is a local minimum but not global. Therefore, the origin is, in fact, a very special point
in the landscape of a latent variable model, in the sense that a key global property of the landscape
(namely, the global minimum) is determined by the local geometry of the model at the origin. Noting
that our model can be seen as a direct generalization of the Bayesian linear regression to a deeper
architecture, it also becomes reasonable to suspect that the posterior collapse problem is a unique
problem of deep learning because the standard Bayesian linear regression does not suffer posterior
collapse because the origin can never be a local maximum of the posterior (Bishop and Nasrabadi,
2006). Dai et al. (2020) also finds the origin to be a very special point in a general deep nonlinear
VAE structure and that it can be a local minimum under various settings. However, the implication
of our work is broader. The origin is not only a special point for the autoencoding model families but
can actually be a special point for a very broad of model classes (namely, the model class of general
latent variable models). The problem of posterior collapse is thus not limited to autoencoders but
can also be relevant to common regression and classification tasks.

Connection to other types of collapses. Our result suggests that there are some interesting connec-
tions between the posterior collapse phenomenon and the neural collapse phenomenon in supervised
learning (Papyan et al., 2020) and dimensional collapse phenomenon in self-supervised learning
(SSL) (Jing et al., 2021). Ziyin et al. (2022a) and Ziyin and Ueda (2022) shows that the neural
collapse phenomenon for a two-layer model can be understood through the change of the stability
at the origin, which is determined by the competition between the signal strength (E[xy]) of the
data distribution and the regularization strength of weight decay. For SSL, Ziyin et al. (2022b) also
shows that the stability of the origin is important and that it is decided by the competition between
the level of data variation and the data augmentation strength. Our result suggests that the posterior
collapse problem can also be understood through the stability at the origin. This might imply that
there could be some universal cause of all these collapses that have been discovered independently
in different subfields of deep learning, and one important future direction would be to study these
phenomena from a unified perspective.

Insights for latent variable model practices. While we have primarily focused on discussing the
phenomena of posterior collapse, our results also shed light on latent variable models (including
VAE) in practice when there is no complete posterior collapse. Specifically, our results suggest that
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(a) β = 1, remaining modes = 5 (b) β = 2.75, remaining modes: 4 (c) β = 3, remaining modes: 3

(d) β = 3.5, remaining modes: 2 (e) β = 4, remaining modes: 1 (f) β = 6, remaining modes: 0

Figure 3: MNIST generation under different β. The generated images lose diversity and variation
as β increases. The number of modes left is estimated by the theoretical prediction of thresholds of
each singular value.

• latent variable models perform sparse learning through soft thresholding or hard threshold-
ing or both;

• thus, partial posterior collapse may actually be desirable;
• making the latent variance learnable can help stabilize training and avoid divergence of

model parameters;
• when ηdec is not learned, the effect of increasing β is identical to the effect of decreasing
ηdec;

• when ηdec is learned, one needs to pay special care to choose a suitable β.

5 Numerical Examples

This section empirically examines our theoretical claims for linear models and demonstrates that our
key theoretical insights generalize well to nonlinear models and natural data.

Setting. We illustrate our results on both synthetic data and natural data. For synthetic data, we
sample input data x from multivariate normal distribution N (0,A), and target data y = Mx is ob-
tained by a linear transformation. Specifically, we choose d0 = d2 = 5. As an example of natural
data, we also experiment with the standard MNIST data. Following common practices, we choose
ηdec = ηenc = 1. For non-linear VAE models, we consider two-layer fully connected neural net-
works for the encoder and decoder with both ReLU and Tanh activation functions and with hidden
dimension dh. For synthetic dataset dh = 8, and dh = 2048 for real-world data. In contrast to
our assumption that the variances Σ of encoded z are independent from the input x, we parameter-
ize the variance of each encoded z by a linear transformation or a two-layer neural network, i.e.,
Σ(x) = [Linear/MLP](x). This data-dependent modeling is closer to the common practice, and
the comparison can justify the correctness of our theory. The model is optimized by Adam with a
learning rate of 10−3. The results are reported after the convergence. For MNIST, the learning rate
is 10−4.

Results. Linear models are found to agree precisely with the theoretical results, so we only present
the results in the appendix. We focus on exploring the nonlinear models in the main text. We first
consider a simple regression task with MLP encoder and decoders with the ReLU activation (Fig-
ure 1). Here, we see that the theoretical prediction of loss function LVAE agrees well with empirical
observation. Moreover, the threshold of complete posterior collapse is also perfectly predicted. For
completeness, we also present the case when (1) the activation is Tanh in Appendix A.1. We note
that the results are similar. The observation is similar to the standard MNIST dataset with a nonlinear
encoder and decoder. See Figure 2. For illustration, we also present the generated MNIST images
by non-linear β-VAE trained with different choices of β in Figure 3. The latent dimension is five as
described before. When there are 5 non-collapsed modes, the generated images are both sharp and
contain meaningful variations. As the number of remaining non-collapsed modes reduces to zero,
we see that the generated images become increasingly blurred, and the variation between the data
also diminishes. When the model completely collapses, the model outputs a constant, as the theory
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suggests. Moreover, we note that the values of β are chosen according to the theoretical thresh-
olds for each mode to collapse, i.e, the top-5 ζi are [5.12,3.74,3.25,2.84,2.57]. We see that the
theoretical thresholds provide good predictive power for the behavior of mode collapse qualitatively.

6 Outlook

In this work, we have tackled the problem of posterior collapse from a loss landscape point of view.
Our work also contributes to the fundamental theory of deep learning. The linear VAE architecture
can be seen as a deep linear model with two layers, whose loss landscape is highly nontrivial. In
this perspective, our results advance those results in Ziyin et al. (2022a), where the dimension of
the output space is limited to 1d. The limitation of our work is obvious: our theory only deals with
the landscape, and it is unclear how the dynamics of gradient-based methods could contribute to the
collapse problem. In fact, there is strong evidence that stochastic gradient descent can bias the model
towards low-rank or sparse solutions (Arora et al., 2019; Ziyin et al., 2021), and, in the context of
posterior collapse, these are precisely the collapsed solutions. One important future direction is thus
to study the role of dynamics in influencing posterior collapse.
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