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Abstract

We present a minimax optimal learner for the problem of learning predictors robust
to adversarial examples at test-time. Interestingly, we find that this requires new
algorithmic ideas and approaches to adversarially robust learning. In particular, we
show, in a strong negative sense, the suboptimality of the robust learner proposed
by [21] and a broader family of learners we identify as local learners. Our results
are enabled by adopting a global perspective, specifically, through a key techni-
cal contribution: the global one-inclusion graph, which may be of independent
interest, that generalizes the classical one-inclusion graph due to [17]. Finally, as a
byproduct, we identify a dimension characterizing qualitatively and quantitatively
what classes of predictors H are robustly learnable. This resolves an open problem
due to [21], and closes a (potentially) infinite gap between the established upper
and lower bounds on the sample complexity of adversarially robust learning.

1 Introduction

We study the problem of learning predictors that are robust to adversarial examples at test-time.
Adversarial examples can be thought of as carefully crafted input perturbations that cause predictors
to misclassify. Learning predictors robust to adversarial examples is a major contemporary challenge
in machine learning. There has been a significant interest lately in how deep learning predictors are
not robust to adversarial examples [30, 5, 14] – e.g., to adversarial perturbations of bounded `p-norms–
leading to an ongoing effort to devise methods for learning predictors that are adversarially robust.

The aim of this paper is to put forward a theory precisely characterizing the complexity of robust

learnability. We know from prior work that finite VC dimension is sufficient for robust learnability,
but we also know that its finiteness is not necessary [21]. Furthermore, there is a (potentially)
infinite gap between the established quantitative upper and lower bounds on the sample complexity of
adversarially robust learning [21], and we do not know of any optimal learners for this problem. In
this paper, we address the following fundamental questions:

What classes of predictors H are robustly learnable with respect to an arbitrary perturbation set?

Can we design generic optimal learners for adversarially robust learning?

The problem of characterizing learnability is the most basic question of statistical learning theory. In
classical (non-robust) supervised learning, the fundamental theorem of statistical learning [32, 33,
6, 13] provides a complete understanding of what is learnable: classes H with finite VC dimension,
and how to learn: by the generic learner empirical risk minimization (ERMH). We also know that
ERMH is a near-optimal learner for H with sample complexity that is quantified tightly by the VC
dimension of H.

Problem setup. Given an instance space X and label space Y = {±1}, we consider robustly
learning an arbitrary hypothesis class H ✓ YX with respect to an arbitrary perturbation set U :
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X ! 2X , where U(x) ✓ X represents the set of perturbations that can be chosen by an adversary at
test-time, as measured by the robust risk:

E
(x,y)⇠D

"
sup

z2U(x)
{h(z) 6= y}

#
. (1)

We denote by RE(H,U) the set of distributions D over X ⇥ Y that are robustly realizable: 9h⇤ 2
H,RU (h⇤;D) = 0. A learner A : (X ⇥ Y)⇤ ! YX receives n i.i.d. examples S = {(xi, yi)}ni=1
drawn from some unknown distribution D 2 RE(H,U), and outputs a predictor A(S). The worst-
case expected robust risk of learner A with respect to H and U is defined as:

En(A;H,U) = sup
D2RE(H,U)

E
S⇠Dn

RU (A(S);D). (2)

The minimax expected robust risk of learning H with respect to U is defined as:

En(H,U) = inf
A

En(A;H,U). (3)

For any " 2 (0, 1), the sample complexity of realizable robust "-PAC learning of H with respect to U ,
denoted Mre

" (H,U), is defined as

Mre
" (H,U) = min {n 2 N [ {1} : En(H,U)  "} . (4)

H is robustly PAC learnable realizably with respect to U if 8✏2(0,1), Mre
" (H,U) is finite.

Related work and gaps. [21] showed that any class H with finite VC dimension is robustly PAC
learnable with respect to any perturbation set U ; by establishing that Mre

" (H,U)  Õ( 2
vc(H)

" ), where
vc(H) denotes the VC dimension of H. While this gives a sufficient condition for robust learnability,
they also showed that finite VC dimension is not necessary for robust learnability, indicating a
(potentially) infinite gap between the established upper and lower bounds on the sample complexity.
We next provide simple motivating examples that highlight these gaps in this existing theory, and
suggest that the learner witnessing this upper bound might be very sub-optimal:
Example 1. Consider an infinite domain X , the hypothesis class of all possible predictors H = YX ,
and an all-powerful perturbation set U(x) = X . In this case, the hypothesis minimizing the population
robust risk RU (h;D) would always be the all-positive or the all-negative hypothesis, and so these
are the only two hypotheses we should compete with. And so, even though vc(H) = 1, a single
example suffices to inform the learner of whether to produce the all-positive or all-negative function.
Example 2. A less extreme and more natural example is to take X = R1 (an infinite dimensional
space), and H the set of homogeneous halfspaces in X , and a perturbation set U(x) = {z 2 X :
hx, vi = hz, vi for v 2 V } where V is the set of the first d standard basis vectors. In this example,
an adversary is allowed to arbitrarily corrupt all but d features. Note that vc(H) = 1 but we can
robustly PAC learn H with O(d) samples: simply project samples from X onto the subspace spanned
by V and learn a d-dimensional halfspace.

Our contributions. In fact, even more strongly, we show in Theorem 1 that there are problem
instances (H,U) that are not robustly learnable by the learner proposed by [21], but are robustly
learnable with a different generic learner. Beyond this, Theorem 1 actually illustrates, in a strong
negative sense, the suboptimality of any local learner – a family of learners that we identify in this
work – which informally only has access to labeled training examples and perturbations of the training
examples, but otherwise does not know the perturbation set U (defined formally in Definition 1).

In this work, we adopt a global perspective on robust learning. In Section 3, we introduce a novel
graph construction, the global one-inclusion graph, that in essence embodies the complexity of robust

learnability. In Theorem 3, for any class H and perturbation set U , we utilize the global one-inclusion
graph to construct a generic minimax optimal learner GH,U satisfying E2n�1(GH,U ;H,U)  4 ·
En(H,U). Our global one-inclusion graph utilizes the structure of the class H and the perturbation
set U in a global manner by considering all datasets of size n that are robustly realizable, where each
dataset corresponds to a vertex in the graph. Edges in the graph correspond to pairs of datasets that
agree on n� 1 datapoints, disagree on the nth label, and overlap on the nth datapoint according to
their U sets. We arrive at an optimal learner by orienting the edges of this graph to minimize a notion
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of adversarial-out-degree that corresponds to the average leave-one-out robust error. Our learner
avoids the lower bound in Theorem 1 since it is non-local and utilizes the structure of U at test-time.

In Section 5, we introduce a new complexity measure denoted DU (H) (defined in Equation 12) based
on our global one-inclusion graph. We show in Theorem 5 that DU (H) qualitatively characterizes
robust learnability: a class H is robustly learnable with respect to U if and only if DU (H) is
finite. In Theorem 6, we show that DU (H) tightly quantifies the sample complexity of robust
learnability: ⌦(DU (H)

" )  Mre
" (H,U)  Õ(DU (H)

" ). This closes the (potentially) infinite gap
previously established [21].

In Section 6, beyond the realizable setting, we show in Theorem 9 that our complexity measure
DU (H) bounds the sample complexity of agnostic robust learning: Mag

" (H,U)  Õ(DU (H)
"2 ). This

shows that DU (H) tightly (up to log factors) characterizes the sample complexity of agnostic robust
learning, since by definition, Mag

" (H,U) � Mre
" (H,U).

2 Local learners are suboptimal

In this section, we identify a broad family of learners, which we term local learners, and show that
such learners are suboptimal for adversarially robust learning. Informally, local learners only have
access to labeled training examples and perturbations of the training examples, but otherwise do not
know the perturbation set U . More formally,
Definition 1 (Local Learners). For any class H, a local learner AH : (X ⇥ Y ⇥ 2X )⇤ ! YX for H
takes as input a sequence SU = {(xi, yi,U(xi)}mi=1 2 X ⇥ Y ⇥ 2X consisting of labeled training
examples and their corresponding perturbations according to some perturbation set U , and outputs
a predictor f 2 YX . In other words, A has full knowledge of H, but only local knowledge of U
through the training examples.

We note that the robust learner proposed by [21], for example, is a local learner: for a given a class
H and input SU = {(xi, yi,U(xi)}mi=1, their learner outputs a majority-vote over predictors in H,
that are carefully chosen based on the input SU . Moreover, adversarial training methods in practice
[e.g., 20, 35] are also examples of local learners (they only utilize the perturbations on the training
examples). We provably show next that local learners are not optimal. We give a construction where
it is not possible to robustly learn without taking advantage of the information about U at test-time.
Theorem 1. There is an instance space X and a class H, such that for any local learner AH :
(X ⇥ Y ⇥ 2X )⇤ ! YX

and any sample size m 2 N, there exists a perturbation set U for which:

1. AH fails to robustly learn H with respect to U using m samples.

2. There exists a non-local learner GH,U : (X ⇥ Y)⇤ ! YX
which robustly learns H with

respect to U with 0 samples.

This negative result highlights that there are limitations to what can be achieved with local learners.
It also highlights the importance of utilizing the structure of the perturbation set U at test-time, which
has been observed in the context of transductive robust learning where the learner receives a training
set of n labeled examples and a test set of n unlabeled adversarial perturbations, and is asked to label
the test set with few errors [23]. In practice, randomized smoothing [8] is an example of a non-local
method in the sense that at prediction time, it uses the perturbation set to compute predictions.

Proof of Theorem 1. We begin with describing the instance space X and the class H. Pick three
infinite unique sequences (x+

n )n2N, (x�
n )n2N, and (zn)n2N from R2 such that for each n 2 N : x+

n =
(n, 1), x�

n = (n,�1), zn = (n, 0), and let X = [n2N {x+
n , x

�
n , zn}. Consider the class H defined

by

H =
n
hy : y 2 {±1}N

o
, where hy(zn) = yn ^ hy(x

+
n ) = +1 ^ hy(x

�
n ) = �1 (8n 2 N) . (5)

Observe that all classifiers in H are constant on (x+
n )n2N and (x�

n )n2N, but they shatter (zn)n2N. We
will consider a random perturbation set U : X ! 2X that is defined as follows:

8n 2 N :

⇢
U(x+

n ) = {x+
n , zn} and U(x�

n ) = {x�
n } and U(zn) = {x+

n , x
�
n , zn}w.p. 1

2 ,
U(x+

n ) = {x+
n } and U(x�

n ) = {x�
n , zn} and U(zn) = {x+

n , x
�
n , zn} w.p. 1

2 .
(6)
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For any sample size m 2 N, let P be a uniform distribution on
�
(x+

1 ,+1), (x�
1 ,�1), . . . , (x+

3m,+1), (x�
3m,�1)

 
.

Observe that for any randomized U (according to Equation 6), the distribution P is robustly realizable

with respect to U : 9h 2 H,RU (h;P ) = 0. Let A be an arbitrary local learner (see Definition 1), i.e.,
A has full knowledge of the class H, but only partial knowledge of U through the training samples.
Let S ⇠ Pm be a fixed random set of training examples drawn from P . Then,

E
U
RU (A(SU );P ) = E

U
E

(x,y)⇠P
[9z 2 U(x) : A(SU )(z) 6= y]

� Pr
(x,y)⇠P

[(x, y) /2 S]E
U

E
(x,y)⇠P

[ [9z 2 U(x) : A(SU )(z) 6= y]|(x, y) /2 S]

= Pr
(x,y)⇠P

[(x, y) /2 S] E
(x,y)⇠P

Pr
U
[9z 2 U(x) : A(SU )(z) 6= y]|(x, y) /2 S]

� 1

3
· 1
2
=

1

6
.

By law of total expectation, this implies that there exists a deterministic choice of U such that
ES⇠Pm RU (A(SU );P ) � 1

6 . This establishes that A fails to robustly learn H with respect to U using
m samples.

On the other hand, H is robustly learnable with respect to U with 0 samples by means of our non-local
learner GH,U (see Section 4 and Theorem 3) which utilizes full knowledge of U . In particular, 0
samples are needed, since the graph GU

H will contain no edges by the definition of H (Equation 5)
and U (Equation 6).

3 A global one-inclusion graph

To go beyond the limitations of local learners from Section 2, in this section, we introduce: the global

one-inclusion graph, the main mathematical object which allows us to adopt a global perspective
on robust learning. Our global one-inclusion graph is inspired by the classical one-inclusion graph
introduced by [17], which leads to an algorithm that is near-optimal for (non-robust) PAC learning,
and has also been adapted and used in multi-class learning [26, 11, 7] and for learning partial concept
classes1 [2]. Before introducing our global one-inclusion graph, to ease the readers, we begin first
with describing the construction of the classical one-inclusion graph due to [17] and its use as a
(non-robust) learner, and discuss its limitations for adversarially robust learning.

3.1 Background: classical one-inclusion graphs

For a given class H and a finite dataset X = {x1, . . . , xn} ✓ X , the classical one-inclusion
graph GX,H consists of vertices V = {(h(x1), . . . , h(xn)) : h 2 H} where each vertex v =
(h(x1), . . . , h(xn)) 2 V is a realizable labeling of X , and two vertices u, v 2 V are connected
with an edge if and only if they differ only in the labeling of a single xi 2 X . [17] showed
that the edges in GX,H can be oriented such that each vertex has out-degree at most vc(H).
Now, how can the one-inclusion graph be used as a learner? Given a training set of examples
S = {(x1, y1), . . . , (xn�1, yn�1)} and a test example xn, we construct the one-inclusion graph on
{x1, . . . , xn�1} [ {xn} using the class H and orient it such that maximum out-degree is at most
vc(H). Then, we use the orientation to predict the label of the test point xn. Specifically, if there
exists h, h0 2 H such that 81  i  n� 1 : h(xi) = h0(xi) and h(xn) 6= h0(xn) then we will have
two vertices in the graph v = (h(x1), . . . , h(xn�1), h(xn)) and u = (h(x1), . . . , h(xn�1), h0(xn))
with an edge connecting them (because they differ only in the label of xn), and we predict the label
of xn that this edge is directed towards. Since each vertex has out-degree at most vc(H), this implies
that the average leave-one-out-error (which bounds the expected risk from above) is at most vc(H)

n .

1At a first glance, it might seem that adversarially robust learning can be viewed as a special case of learning
partial concepts classes [2], but we would like to remark that this is not the case. The apparent similarity arises
because it is possible to state the robust realizability assumption in the language of partial concept classes, as in
the example mentioned in [2] on learning linear separators with a margin, but this is just an assumption on the
data-distribution. Specifically, a partial concept class learner is only guaranteed to make few errors on samples
drawn from the distribution [see Definition 2 in 2], and not on their adversarial perturbations: i.e., performance
is still measured under 0-1 loss, not robust risk.
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What breaks in the adversarial learning setting? At test-time, we do not observe an i.i.d. test example
x ⇠ D but rather only an adversarially chosen perturbation z 2 U(x). This completely breaks the
exchangeability analysis of the classical one-inclusion graph, because the training points are i.i.d. but
the perturbation z of the test point x is not. Furthermore, the classical one-inclusion graph is local in
the sense that it depends on the training data and the test point, and as such different perturbations
z, z̃ 2 U(x) could very well lead to different graphs, different orientations, and ultimately different
predictions for z and z̃ which by definition imply that the prediction is not robust on x.

3.2 Our global one-inclusion graph

We now describe the construction of the global one-inclusion graph. For any class H, any perturbation
set U , and any dataset size n 2 N, denote by GU

H = (Vn, En) the global one-inclusion graph. In
words, Vn is the collection of all datasets of size n that can be robustly labeled by class H with respect
to perturbation set U . Formally, each vertex v 2 Vn is represented as a multiset of labeled examples
(x, y) of size n:2

Vn = {{(x1, y1), . . . , (xn, yn)} : (9h 2 H) (8i 2 [n]) (8z 2 U(xi)) , h(z) = yi} . (7)

Two vertices (datasets) u, v 2 Vn are connected by an edge if and only if there is a unique labeled
example (x, y) 2 v that does not appear in u and there is a unique labeled example (x̃, ỹ) 2 u that
does not appear in v satisfying: y 6= ỹ and U(x) \ U(x̃) 6= ;. Formally, u, v 2 Vn are connected
by an edge if and only if their symmetric difference u�v = {(x, y), (x̃, ỹ)} where y 6= ỹ and
U(x)\U(x̃) 6= ;. Furthermore, we will additionally label edges by the perturbation z 2 U(x)\U(x̃)
that witnesses this edge:

En = {({u, v} , z) : u, v 2 Vn ^ u�v = {(x, y), (x̃, ỹ)} ^ y 6= ỹ ^ z 2 U(x) \ U(x̃)} . (8)

For each vertex v 2 Vn, denote by advdeg(v) the adversarial degree of v which is defined as the
number of elements (x, y) 2 v that witness an edge incident on v:

advdeg(v) = |{(x, y) 2 v : 9u 2 Vn, z 2 X s.t. ({v, u} , z) 2 En ^ (x, y) 2 v�u}| . (9)

We want to emphasize that our notion of adversarial degree is different from the standard notion
of degree used in graph theory, and in particular different from the degree notion in the classical
one-inclusion graph used above. Specifically, we do not count all edges incident on a vertex rather
we count the number of datapoints (x, y) in a vertex that witness an edge. This different notion of
degree is more suitable for our purposes and is related to the average leave-one-out robust error.

3.3 From orientations to learners

An orientation O : En ! Vn of the global one-inclusion graph GU
H = (Vn, En) is a mapping that

directs each edge e = ({u, v} , z) 2 En towards a vertex O(e) 2 {u, v}. Given an orientation
O : En ! Vn of the global one-inclusion graph GU

H, the adversarial out-degree of a vertex v 2 V ,
denoted by adv-outdeg(v;O), is defined as the number of elements (x, y) 2 v that witness an
out-going edge incident on v according to orientation O:

adv-outdeg(v;O) =

����

⇢
(x, y) 2 v

����
9u 2 Vn, z 2 X s.t. ({v, u} , z) 2 En ^
(x, y) 2 v�u ^O(({v, u} , z)) = u

����� . (10)

Why are we interested in orientations of the global one-inclusion graph GU
H? We show next that every

orientation of GU
H can be used to construct a learner, and that the expected robust risk of this learner

is bounded from above by the maximum adversarial out-degree of the corresponding orientation. We
will use this observation later in Section 4 to construct an optimal learner.
Lemma 2. For any class H, any perturbation set U , and any n > 1, let GU

H = (Vn, En) be the

global one-inclusion graph. Then, for any orientation O : En ! Vn of GU
H, there exists a learner

AO : (X ⇥ Y)n�1 ! YX
, such that

En�1(AO;H,U)  maxv2Vn adv-outdeg(v;O)

n
.

2Note that we allow a labeled example (x, y) to appear more than once in a vertex v, hence the multiset
representation.
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The proof is deferred to Appendix A. At a high-level, we can use an orientation O of GU
H to make

predictions in the following way: upon receiving training examples S and a (possibly adversarial)
test instance z, we consider all possible natural datapoints (x, y) of which z is a perturbation of x
(i.e., z 2 U(x)) such that S [ {(x, y)} can be labeled robustly using class H with respect to U (note
that these are all vertices in GU

H by definition), and if two different robust labelings of z are possible,
the orientation O determines which label to predict. This is defined explicitly in Algorithm 1.

Algorithm 1: Converting an Orientation O of GU
H to a Learner AO.

Input: Training dataset S = {(x1, y1), . . . , (xn�1, yn�1)} 2 (X ⇥ Y)n�1, test instance
z 2 X , and an orientation O : En ! Vn of GU

H = (En, Vn).
1 Let P+ = {v 2 Vn : 9x 2 X s.t. z 2 U(x) ^ v = {(x1, y1), . . . , (xn�1, yn�1), (x,+1)}}.
2 Let P� = {v 2 Vn : 9x 2 X s.t. z 2 U(x) ^ v = {(x1, y1), . . . , (xn�1, yn�1), (x,�1)}}.
3 If

�
9y2{±1}

� �
9v2Py

� �
8u2P�y

�
: O(({v, u} , z)) = v, then output label y.

4 Otherwise, output +1.

4 A generic minimax optimal learner

We now present an optimal robust learner based on our global one-inclusion graph from Section 3.

For any class H, any perturbation set U , and integer n > 1, let GU
H = (Vn, En) be the global

one-inclusion graph (Equations 7 and 8). Let O⇤ be an orientation that minimizes the maximum
adversarial out-degree of GU

H:

O⇤ 2 argmin
O:En!Vn

max
v2Vn

adv-outdeg(v;O). (11)

Then, let GH,U be the learner implied by orientation O⇤ as described in Algorithm 1.

Theorem 3. For any H, U , any n 2 N, learner GH,U described above satisfies for any learner A:

E2n�1(GH,U ;H,U)  4·En(A;H,U), & equivalently Mre
" (GH,U ;H,U)  2·Mre

"/4(A;H,U)�1.

Before proceeding to the proof of Theorem 3, we first prove a key Lemma which basically shows that
we can use an arbitrary learner A to orient the edges in the global one-inclusion graph GU

H, and that
the maximum adversarial out-degree of the resultant orientation is upper bounded by the robust error
rate of A.
Lemma 4 (Lowerbound on Error Rate of Learners). Let A : (X ⇥ Y)⇤ ! YX

be any learner, and

n 2 N. Let GU
H = (V2n, E2n) be the global one-inclusion graph as defined in Equation 7 and

Equation 8. Then, there exists an orientation OA : E2n ! V2n of GU
H such that

En(A;H,U) � 1

4

maxv2V2n adv-outdeg(v;OA)
2n

.

Proof. We begin with describing the orientation OA by orienting edges incident on each vertex
v 2 V2n. Consider an arbitrary vertex v = {(x1, y1), . . . , (x2n, y2n)} and let Pv be a uniform
distribution over (x1, y1), . . . , (x2n, y2n). For each 1  t  2n, let

pt(v) = Pr
S⇠Pn

v

[9z 2 U(xt) : A(S)(z) 6= yt|(xt, yt) /2 S] .

For each (xt, yt) 2 v that witnesses an edge, i.e. 9u 2 V2n, z 2 X s.t. ({v, u} , z) 2 E2n and
(xt, yt) 2 v�u, if pt < 1

2 , then orient all edges incident on (xt, yt) inward, otherwise orient them
arbitrarily. Note that this might yield edges that are oriented outwards from both their endpoint
vertices, in which case, we arbitrarily orient such an edge. Observe also that we will not encounter
a situation where edges are oriented inwards towards both their endpoints (which is an invalid
orientation). This is because for any two vertices v, u 2 V2n such that 9z0 2 X where ({u, v} , z0) 2
E2n and v�u = {(xt, yt), (x̃t,�yt)}, we cannot have pt(v) <

1
2 and pt(u) <

1
2 , since

pt(v) � Pr
S⇠Pm

v

[A(S)(z0) 6= yt|(xt, yt) /2 S] and pt(u) � Pr
S⇠Pm

u

[A(S)(z0) 6= �yt|(x̃t,�yt) /2 S] ,
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and Pv conditioned on (xt, yt) /2 S is the same distribution as Pu conditioned on (x̃t,�yt) /2 S.
This concludes describing the orientation OA. We now bound the adversarial out-degree of vertices
v 2 V2n:

adv-outdeg(v;OA) 
2nX

t=1


pt �

1

2

�
 2

2nX

t=1

pt

= 2
2nX

t=1

Pr
S⇠Pn

[9z 2 U(xt) : A(S)(z) 6= yt|(xt, yt) /2 S]

= 2
2nX

t=1

PrS⇠Pn [(9z 2 U(xt) : A(S)(z) 6= yt) ^ (xt, yt) /2 S]

PrS⇠Pn [(xt, yt) /2 S]

 4
2nX

t=1

Pr
S⇠Pn

[(9z 2 U(xt) : A(S)(z) 6= yt) ^ (xt, yt) /2 S]

= 4 E
S⇠Pn

X

(xt,yt)/2S

[9z 2 U(xt) : A(S)(z) 6= yt]

 4 E
S⇠Pn

2nX

t=1

[9z 2 U(xt) : A(S)(z) 6= yt] = 8n E
S⇠Pn

RU (A(S);P )  8nEn(A;H,U).

Since the above holds for any vertex v 2 V2n, by rearranging terms, we get En(A;H,U) �
1
4
maxv2V2n adv-outdeg(v;OA)

2n .

We are now ready to proceed with the proof of Theorem 3.

Proof of Theorem 3. By invoking Lemma 4, we have that for any learner A,

En(A;H,U) � 1

4

maxv2V2n adv-outdeg(v;OA)
2n

.

By Equation 11, an orientation O⇤ has smaller maximum adversarial out-degree, thus

1

4

maxv2V2n adv-outdeg(v;OA)
2n

� 1

4

maxv2V2n adv-outdeg(v;O⇤)

2n
.

By invoking Lemma 2, it follows that our optimal learner GH,U satisfies

1

4

maxv2V2n adv-outdeg(v;O⇤)

2n
� E2n�1(GH,U ;H,U)

4
.

We arrive at the theorem statement by chaining the above inequalities and rearranging terms.

5 A complexity measure and sample complexity bounds

In Section 4, we showed how our global one-inclusion graph yields a near-optimal learner for
adversarially robust learning. We now turn to characterizing adversarially robust learnability.

Across learning theory, many fundamental learning problems can be surprisingly characterized
by means of combinatorial complexity measures. Such characterizations are often quantitatively
insightful in that they provide tight bounds on the number of examples needed for learning, and also
insightful for algorithm design. For example, for standard (non-robust) learning, the VC dimension
characterizes what classes H are PAC learnable [32, 33, 6, 13]. For multi-class learning, there are
characterizations based on the Natarjan and Graph dimensions, and the Daniely-Shalev-Shwartz
(DS) [24, 10, 7]. For learning real-valued functions, the fat-shattering dimension plays a similar role
[1, 18, 29]. The Littlestone dimension characterizes online learnability [19], and the star number
characterizes the label complexity of active learning [16].

[28] showed that in Vapnik’s “General Learning” problem [31], the loss class having finite VC
dimension is sufficient but not, in general, necessary for learnability and asked whether there is
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another dimension that characterizes learnability in this setting. But recently, [4] surprisingly exhibited
a statistical learning problem that can not be characterized with a combinatorial VC-like dimension.
In order to do so, they presented a formal definition of the notion of “dimension” or “complexity
measure” (see Definition 4), that all previously proposed dimensions in statistical learning theory
comply with. This raises the following natural question:

Is there a dimension that characterizes robust learnability, and if so, what is it?!

5.1 A dimension characterizing robust learning

We present next a dimension for adversarially robust learnability, which is inspired by our global
one-inclusion graph described in Section 3.

DU (H) = max

⇢
n 2 N [ {1}

����
9 a finite subgraph G = (V,E) of GU

H = (Vn, En) s.t.
8 orientations O of G, 9v 2 V where adv-outdeg(v;O) � n

3 .

�
.

(12)

In Appendix D, we discuss how our dimension satisfies the formal definition proposed by [4]. We
now show that DU (H) characterizes robust learnability qualitatively and quantitatively.
Theorem 5 (Qualitative Characterization). For any class H and any perturbation set U , H is robustly

PAC learnable with respect to U if and only if DU (H) is finite.

Theorem 6 (Quantitative Characterization). For any class H and any perturbation set U ,

⌦

✓
DU (H)

"

◆
 Mre

",�(H,U)  O

✓
DU (H)

"
log2

DU (H)

"
+

log(1/�)

"

◆
.

Theorem 5 follows immediately from Theorem 6. To prove Theorem 6, we first prove the following
key Lemma which provides upper and lower bounds on the minimax expected robust risk of learning
a class H with respect to a perturbation set U (see Equation 3) as a function of our introduced
dimension DU (H). Theorem 6 follows from an argument to boost the robust risk and the confidence
as appeared in [21]. The proofs are deferred to Appendix B.
Lemma 7. For any class H, any perturbation set U , and any " 2 (0, 1),

1. 8n > DU (H) : En�1(H,U)  1
3 .

2. 82  n  DU (H)
2 : En

"
(H,U) � "

6 .

5.2 Examples

We discuss a few ways of estimating or calculating our proposed dimension DU (H).
Proposition 8. For any class H and perturbation set U :

DU (H)  min
n
Õ(vc(H)vc⇤(H)), Õ(vc(LU

H))
o
,

where vc⇤(H) denotes the dual VC dimension, and vc(LU
H)) denotes the VC dimension of the

robust-loss class LU
H =

n
(x, y) 7! supz2U(x) [h(z 6= y)] : h 2 H

o
.

Proof. Set "0 = 1
3 . We know from Theorem 6 that Mre

"0(H,U) � ⌦(DU (H)). We also know from
[Theorem 4 in 21] that Mre

"0(H,U)  Õ(vc(H)vc⇤(H)). Finally, we know from [Theorem 1 in 9]
that Mre

"0(H,U)  Õ(vc(LU
H)). Combining these together yields that stated bound.

The dual VC dimension satisfies: vc⇤(H) < 2vc(H)+1 [3], and this exponential dependence is tight for
some classes. For many natural classes, however, such as linear predictors and some neural networks
[see Lemma 3.2 in 22], the primal and dual VC dimensions are equal, or at least polynomially related.
Using Proposition 8, we can conclude that for such classes DU (H)  poly(vc(H)), specifically,
for H being linear predictors, DU (H)  Õ(vc2(H)). Furthermore, for H being linear predictors
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and U = `p perturbations, we know that vc(LU
H) = O(vc(H)) [Theorem 2 in 9], and so using

Proposition 8 again, we get a tighter bound for these `p perturbations DU (H)  Õ(vc(H)).

While Proposition 8 is certainly useful for estimating our dimension DU (H), we get vacuous bounds
when the VC dimension vc(H) is infinite. To this end, recall the (H,U) examples in Example 1
and Example 2 mentioned in Section 1, which satisfy vc(H) = 1. We can calculate DU (H) for
these examples differently. In particular, in Example 1, by definition, the global one-inclusion
graph GU

H = (Vn, En) has no edges when n > 1 because U(x) = X and thus DU (H)  1. In
Example 2, we get that DU (H)  Õ(d) since we can robustly learn with O(d) samples, but we can
also calculate DU (H) directly by constructing the global one-inclusion graph GU

H = (Vn, En) for
n > 3d and observing that we can orient GU

H such that the adversarial out-degree is at most d, which
is possible because of the definition of U .

5.3 Conjectures

While we have shown that our proposed dimension DU (H) in Equation 12 characterizes robust
learnability, we believe that there are other equivalent dimensions that are simpler to describe. For
a more appealing dimension, we may take inspiration from recent progress on multi-class learning
[7], where it was shown that the DS dimension due to [11] characterizes multi-class learnability. For
a class H ✓ YX (|Y| > 2), the DS dimension corresponds to the largest n s.t. there exists points
P 2 Xn where the projection of H onto P induces a one-inclusion hyper graph where every vertex
has full-degree. This inspires the full-degree dimension of the global one-inclusion graph:

FDU (H) = max

⇢
n 2 N [ {1}

����
9 a finite subgraph G = (V,E) of GU

H = (Vn, En) s.t. every
vertex has full-degree: 8v 2 V, advdeg(v;E) � n.

�
.

This complexity measure avoids orientations, and thus, it is perhaps simpler to verify “FDU (H) � d”
than “DU (H) � d”. Furthermore, when U(x) = {x} 8x 2 X , the full-degree dimension, FDU (H),
corresponds exactly to the VC dimension of H, vc(H).
Conjecture 1. For any class H and perturbation set U , Mre

",�(H,U) = ⇥",� (FDU (H)).

[21] proposed the following combinatorial robust shattering dimension, denoted dimU (H), and
showed that Mre

",�(H,U) � ⌦",�(dimU (H)).
Definition 2 (Robust Shattering Dimension). A sequence z1, . . . , zk 2 X is said to be U-robustly

shattered by H if 9x+
1 , x

�
1 , . . . , x

+
k , x

�
k 2 X s.t. 8i 2 [k], zi 2 U(x+

i ) \ U(x�
i ) and 8y1, . . . , yk 2

{±1} : 9h 2 H such that h(z0) = yi8z0 2 U(xyi
i )81  i  k. The U-robust shattering dimension

dimU (H) is defined as the largest k for which there exist k points U -robustly shattered by H.

In regards to the relationship between the robust shattering dimension dimU (H) and our dimension
DU (H), we conjecture that our dimension can be arbitrarily larger. In other words, we conjecture
that the robust shattering dimension dimU (H) does not characterize robust learnability.
Conjecture 2. 8n 2 N, 9X ,H,U , such that dimU (H) = O(1) but DU (H) � n.

We find this to be analogous to a separation in multi-class learnability, where the Natarajan dimension
was shown to not characterize multi-class learnability [7]. Because in both graphs, the one-inclusion
hyper graph and our global one-inclusion graph, the Natarajan and robust shattering dimensions rep-
resent a “cube” in their corresponding graph, while the DS dimension and our full-degree dimension
represent a “pseudo-cube” in the terminology of [7]. To elaborate, the robust shattering dimension
(Definition 2) gives rise to a “cube” in our global one-inclusion graph, meaning it is a subgraph
isomorphic to the Boolean cube {0, 1}n. Specifically, any z1, . . . , zk that are robustly shattered (as
in Definition 2) can be used to construct a finite subgraph where the vertices are {(xy1

1 ), . . . , (xyn
n )}

for y 2 {±1}. By our definition of degree, these vertices will have full-degree, since every vertex
will have a neighbour (with only a single label flipped). In contrast, the full-degree dimension that
we propose (see Conjecture 1 above) gives any finite subgraph where every vertex has full-degree,
including those not isomorphic to the Boolean cube. Following the terminology in multiclass learning,
we call this a “pseudo-cube”, as it needn’t be isomorphic to the Boolean cube.

Another interesting and perhaps useful direction to explore is the relationship between our proposed
complexity measure DU (H) and the VC dimension. We believe that it is actually possible to orient
the global one-inclusion graph such that the maximum adversarial out-degree is at most O(vc(H)).
Conjecture 3. For any class H and perturbation set U , DU (H)  O(vc(H)).
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6 Agnostic robust learnability

For the agnostic setting, we consider robust learnability with respect to arbitrary distributions D that
are not necessarily robustly realizable, i.e., D /2 RE(H,U) (see Definition 3 in Appendix C). We
can establish an upper bound in the agnostic setting via reduction to the realizable case, following an
argument from [12] and later applied to agnostic robust learning by [21]:
Theorem 9. For any class H and any perturbation set U ,

Mag
",�(H,U) = O

✓
DU (H)

"2
log2

✓
DU (H)

"

◆
+

1

"2
log

✓
1

�

◆◆
.

This is achieved by applying the agnostic-to-realizable reduction to the optimal learner GH,U that we
get from orienting the graph GU

H = (VDU (H)+1, EDU (H)+1). The reduction is stated abstractly in
the following Lemma whose proof is provided in Appendix C.
Lemma 10. For any well-defined realizable learner A, there is an agnostic learner B such that

Mre
" (A;H,U)  Mag

",�(B;H,U)  O

 
Mre

1/3(A;H,U)
"2

log2
 
Mre

1/3(A;H,U)
"

!
+

1

"2
log

✓
1

�

◆!
.

Theorem 9 immediately follows by combining Lemma 10 and Theorem 6.
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Evasion attacks against machine learning at test time. In Joint European conference on machine

learning and knowledge discovery in databases, pages 387–402. Springer, 2013. 1

[6] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability and the Vapnik-
Chervonenkis dimension. Journal of the Association for Computing Machinery, 36(4):929–965,
1989. 1, 5

[7] N. Brukhim, D. Carmon, I. Dinur, S. Moran, and A. Yehudayoff. A characterization of multiclass
learnability. CoRR, abs/2203.01550, 2022. 3, 5, 5.3, 5.3

3The views expressed in this work do not necessarily reflect the position or the policy of the Government and
no official endorsement should be inferred. Approved for public release; distribution is unlimited.

10

https://deepfoundations.ai


[8] J. M. Cohen, E. Rosenfeld, and J. Z. Kolter. Certified adversarial robustness via randomized
smoothing. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International

Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pages 1310–1320. PMLR, 2019. 2

[9] D. Cullina, A. N. Bhagoji, and P. Mittal. Pac-learning in the presence of adversaries. In Advances

in Neural Information Processing Systems 31: Annual Conference on Neural Information

Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada, pages 228–
239, 2018. 5.2

[10] A. Daniely, S. Sabato, S. Ben-David, and S. Shalev-Shwartz. Multiclass learnability and the
ERM principle. Journal of Machine Learning Research, 16:2377–2404, 2015. 5

[11] A. Daniely and S. Shalev-Shwartz. Optimal learners for multiclass problems. In M. Balcan,
V. Feldman, and C. Szepesvári, editors, Proceedings of The 27th Conference on Learning

Theory, COLT 2014, Barcelona, Spain, June 13-15, 2014, volume 35 of JMLR Workshop and

Conference Proceedings, pages 287–316. JMLR.org, 2014. 3, 5.3

[12] O. David, S. Moran, and A. Yehudayoff. Supervised learning through the lens of compression.
In Advances in Neural Information Processing Systems 29, pages 2784–2792, 2016. 6, C

[13] A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant. A general lower bound on the number
of examples needed for learning. Information and Computation, 82(3):247–261, 1989. 1, 5

[14] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In
Y. Bengio and Y. LeCun, editors, 3rd International Conference on Learning Representations,

ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. 1

[15] T. Graepel, R. Herbrich, and J. Shawe-Taylor. PAC-Bayesian compression bounds on the
prediction error of learning algorithms for classification. Machine Learning, 59(1-2):55–76,
2005. C

[16] S. Hanneke and L. Yang. Minimax analysis of active learning. Journal of Machine Learning

Research, 16(12):3487–3602, 2015. 5

[17] D. Haussler, N. Littlestone, and M. K. Warmuth. Predicting \0,1\-functions on randomly drawn
points. Inf. Comput., 115(2):248–292, 1994. (document), 3, 3.1

[18] M. J. Kearns and R. E. Schapire. Efficient distribution-free learning of probabilistic concepts. J.

Comput. Syst. Sci., 48(3):464–497, 1994. 5

[19] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Mach. Learn., 2(4):285–318, 1987. 5

[20] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models
resistant to adversarial attacks. In 6th International Conference on Learning Representations,

ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. 2

[21] O. Montasser, S. Hanneke, and N. Srebro. Vc classes are adversarially robustly learnable, but
only improperly. In A. Beygelzimer and D. Hsu, editors, Proceedings of the Thirty-Second

Conference on Learning Theory, volume 99 of Proceedings of Machine Learning Research,
pages 2512–2530, Phoenix, USA, 25–28 Jun 2019. PMLR. (document), 1, 1, 1, 2, 5.1, 5.2, 5.3,
6, 13, C

[22] O. Montasser, S. Hanneke, and N. Srebro. Reducing adversarially robust learning to non-
robust PAC learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural

Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. 5.2

[23] O. Montasser, S. Hanneke, and N. Srebro. Transductive robust learning guarantees. arXiv

preprint arXiv:2110.10602, 2021. 2

[24] B. K. Natarajan. On learning sets and functions. Machine Learning, 4:67–97, 1989. 5

11



[25] R. Rado. Axiomatic treatment of rank in infinite sets. Canadian Journal of Mathematics,
1(4):337–343, 1949. 11

[26] B. I. P. Rubinstein, P. L. Bartlett, and J. H. Rubinstein. Shifting, one-inclusion mistake bounds
and tight multiclass expected risk bounds. In B. Schölkopf, J. C. Platt, and T. Hofmann, editors,
Advances in Neural Information Processing Systems 19, Proceedings of the Twentieth Annual

Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada,

December 4-7, 2006, pages 1193–1200. MIT Press, 2006. 3

[27] R. E. Schapire and Y. Freund. Boosting. Adaptive Computation and Machine Learning. MIT
Press, Cambridge, MA, 2012. B, C

[28] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Learnability, stability and uniform
convergence. J. Mach. Learn. Res., 11:2635–2670, 2010. 5

[29] H. U. Simon. Bounds on the number of examples needed for learning functions. SIAM J.

Comput., 26(3):751–763, 1997. 5

[30] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus.
Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013. 1

[31] V. Vapnik. Estimation of Dependencies Based on Empirical Data. Springer-Verlag, New York,
1982. 5

[32] V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events
to their probabilities. Theory of Probability and its Applications, 16(2):264–280, 1971. 1, 5

[33] V. Vapnik and A. Chervonenkis. Theory of Pattern Recognition. Nauka, Moscow, 1974. 1, 5

[34] E. S. Wolk. A note on" the comparability graph of a tree". Proceedings of the American

Mathematical Society, 16(1):17–20, 1965. 11

[35] H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I. Jordan. Theoretically principled
trade-off between robustness and accuracy. In Proceedings of the 36th International Conference

on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97
of Proceedings of Machine Learning Research, pages 7472–7482. PMLR, 2019. 2

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [N/A]

12



4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13


	1 Introduction
	2 Local learners are suboptimal
	3 A global one-inclusion graph
	3.1 Background: classical one-inclusion graphs
	3.2 Our global one-inclusion graph
	3.3 From orientations to learners

	4 A generic minimax optimal learner
	5 A complexity measure and sample complexity bounds
	5.1 A dimension characterizing robust learning
	5.2 Examples
	5.3 Conjectures

	6 Agnostic robust learnability
	A Proof of Lemma 2
	B Lemmas and Proofs for Theorem 6
	C Proofs for Section 6
	D Finite Character Property

