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Abstract

Tree ensembles can be well-suited for black-box optimization tasks such as algo-
rithm tuning and neural architecture search, as they achieve good predictive perfor-
mance with little or no manual tuning, naturally handle discrete feature spaces, and
are relatively insensitive to outliers in the training data. Two well-known challenges
in using tree ensembles for black-box optimization are (i) effectively quantifying
model uncertainty for exploration and (ii) optimizing over the piece-wise constant
acquisition function. To address both points simultaneously, we propose using the
kernel interpretation of tree ensembles as a Gaussian Process prior to obtain model
variance estimates, and we develop a compatible optimization formulation for the
acquisition function. The latter further allows us to seamlessly integrate known
constraints to improve sampling efficiency by considering domain-knowledge in
engineering settings and modeling search space symmetries, e.g., hierarchical
relationships in neural architecture search. Our framework performs as well as
state-of-the-art methods for unconstrained black-box optimization over continu-
ous/discrete features and outperforms competing methods for problems combining
mixed-variable feature spaces and known input constraints.

1 Introduction

Many black-box optimization problems contain feature relationships known a priori based on domain
knowledge, such as hierarchies or constraints [51, 68]. For example, hierarchical structures arise
in neural architecture search [21, 72], where hyperparameters such as kernel size are only relevant
if a convolutional layer is selected. Explicit constraints can also arise, e.g., matching kernel size
and stride to input channel size and padding. In many cases, Bayesian optimization can incorporate
known hierarchies and/or constraints, given that a suitable surrogate model is selected. To this end,
Fromont et al. [23] and Nijssen and Fromont [53] impose a variable hierarchy by constraining the
splitting order of decision trees, i.e., certain attributes must be selected before others.

Tree-based models, such as random forests or gradient-boosted trees, remain popular in many appli-
cations, as they inherit the innate ability of simple decision trees to seamlessly handle categorical and
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discrete input spaces. Moreover, they are highly parallelizable and scalable to high-dimensional data.
Despite these modelling advantages, the deployment of tree-based models in Bayesian optimization
has been limited by challenges pertaining to (i) quantifying prediction uncertainty and (ii) optimizing
acquisition functions defined by their discontinuous response surfaces [61]. Early works, e.g., the
popular SMAC algorithm [34], addressed (i) using empirical variance within a tree ensemble and (ii)
via local and/or random search methods. Moreover, recent works [49, 50, 66] propose mixed-integer
formulations for tree ensembles, enabling optimization over their mean functions.

Contributions. Sections 2 and 3 present related work and methods used to derive the approach
proposed in this paper. We present a mixed-integer second-order cone optimization formulation for
tree kernel Gaussian processes in Section 4 and show that that the tree agreement ratio, i.e., the
hyperparameter introduced by the tree ensemble kernel, sufficiently represents the model uncertainty
in Section 5.1. Section 5.2 shows that solving the mixed-integer second-order cone optimization
problem considerably outperforms sampling-based strategies in Bayesian optimization. Our approach
of using tree ensemble kernels as a Gaussian process prior is particularly useful for applications
combining mixed-variable spaces and known input constraints. A Python implementation of the
proposed algorithm is available at: www.github.com/cog-imperial/tree_kernel_gp

2 Related work

Bayesian optimization (BO) solves [22, 27, 61]: x⇤
f 2 arg maxx f(x), where f is an expensive-to-

evaluate black-box function that can be queried at inputs x 2 X to derive the optimal solution x⇤
f .

BO iteratively updates a surrogate model of f and optimizes a corresponding acquisition function that
balances exploitation and exploration. Maximizing the acquisition function produces a new query x⇤

which is evaluated and added to the set of observations. Gaussian processes (GPs) [57] are a common
choice of BO surrogate due to their flexibility, e.g., domain-specific knowledge can be built into the
GP prior via mean and kernel functions, and reliable uncertainty quantification to identify unexplored
search areas. Open-source tools such as BoTorch [2] implement BO with GP surrogates and offer a
wide selection of kernels mainly suited for continuous search spaces. Prior works developed GPs with
modified kernels to integrate discrete features [10, 19, 25, 30, 59] or considered conditional feature
spaces [29, 35, 43, 48]. Nguyen et al. [52] integrate catgorical and category-specific continuous
inputs by formulating the black-box optimization problem as a multi-arm bandit problem for which
each category corresponds to an arm. Similarly, Gopakumar et al. [26] handle mixed-type inputs
using multi-armed bandits. Besides GPs, tree ensemble-based surrogates show excellent performance
for black-box optimization with mixed-variable settings, i.e., with continuous, integer and categorical
variables, and for structured search spaces, e.g., hierarchical and conditional feature spaces [34].

Black-box optimization tools using tree ensembles, e.g., SMAC [34] and Scikit-Optimize (SKOPT) [31],
are useful for applications such as neural architecture search (NAS) and algorithm tuning. Shahriari
et al. [61] mention challenges in deploying tree ensembles for BO: (i) quantifying uncertainty for
exploration purposes, and (ii) optimizing over the non-differentiable discrete acquisition function
to determine the next query point. SMAC identifies uncertain search space regions using empirical
variables across tree predictions of the random forest and optimizes the acquisition function combining
local and random search. Bergstra et al. [5] proposes the Tree Parzen Estimator (TPE) to handle
categorical variables and conditional structures by modeling individual input dimensions by a kernel
density estimator. However, the TPE approach ignores dependencies between dimensions. For
gradient-boosted tree ensembles, SKOPT derives uncertainty with quantile regression to fit two models
for the 16th and 84th percentile and averages the predictions to estimate the standard deviation. For
random forests, SKOPT uses an uncertainty strategy similar to SMAC. In general, SKOPT relies on
random sampling to optimize the acquisition function.

Mišić [49] proposed a mixed-integer optimization formulation for tree ensemble mean functions
that has been used in several applications [11, 50, 65–67]. Besides improving the solution to an
acquisition function, mixed-integer formulations also allow explicit consideration of input constraints
to incorporate domain knowledge. Some software tools, e.g., BoTorch, support linear equality and
inequality constraints of continuous variables at the acquisition function optimization step, while tree
ensemble-based algorithms do not support input constraints. Papalexopoulos et al. [54] use ReLU
neural networks as surrogate models and deploy a mixed-integer linear formulation to optimize the
acquisition function. The approach relies on random initialization and stochasticity in the model
training to allow for exploration. Daxberger et al. [16] handle mixed-variable search spaces by using
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a Bayesian linear regressor that uses an integer solver to search the discrete subspace. The authors
introduce features capturing the discrete parts of the search space by using a BOCS model [3, 18],
while continuous parts are handled with random Fourier features [56]. Genetic Algorithms (GA) are
another class of algorithms, which deploy evolution-based selection heuristics to maximize black-box
functions [36]. While there is no feasibility guarantee for input constraints, GA implementations like
pymoo [7] support constraint optimization by minimizing constraint violation.

We compare our BO approach, which uses the kernel interpretation of tree ensembles as a Gaussian
process prior, to: SMAC, the random forest and gradient-boosted tree versions of SKOPT, (SKOPT-RF,
and SKOPT-GBRT, respectively) in the Section 5 numerical studies as a baseline for other tree
ensemble-based algorithms. We also compare against the default upper-confidence bound and ex-
pected improvement BO implementations of BoTorch (UCB-MATERN and EI-MATERN, respectively)
and the default GA algorithm of pymoo to include black-box algorithms that partially support con-
strained optimization.

3 Technical background on prior work

3.1 Tree ensemble kernel as a Gaussian process prior

Exploring the search space requires quantifying the uncertainty of the underlying surrogate model.
We use the kernel interpretation of tree ensembles based on random partitions [15, 73]. The tree
kernel captures correlation between two input data points (x,x0) 2 Rn:

kTree(x,x
0) = �

2
0 |T |�1 z(x)|z(x0) (1)

To derive the tree kernel, we first train a gradient boosted tree ensemble T on data set X 2 Rm⇥n

with n denoting the dimensionality of the search space and m the size of the data set. Every tree t in
the tree ensemble T maps inputs x 2 Rn onto a leaf l by sequentially evaluating splitting conditions.
Each leaf l defines a subspace xl ⇢ Rn restricted by active splits s 2 splits(t). Two inputs (x,x0)
are fully correlated in tree t if both end up in the leaf subspace xt,l and uncorrelated otherwise. The
Eq. (1) vector z(x) consists of binary elements zt,l indicating if leaf l 2 Lt is active for input x, with
Lt denoting the set of all leaves in tree t. The inner product z(x)|z(x0), normalized by the total
number of trees |T |, gives the ratio of trees in the ensemble for which x and x0 fall into the same
leaf. We modify the kernel by adding a trainable signal variance �

2
0 [42]. Note that the tree ensemble

defining the kernel and the kernel hyperparameters are trained separately. Davies and Ghahramani
[15] prove that the tree kernel is a suitable GP prior. The resulting (non-stationary and supervised)
tree kernel describes a prior over piece-wise constant functions when used in a GP.

3.2 Posterior distribution

We approximate f as a Gaussian process with zero mean and kernel kTree: f(·) ⇠ GP(0, kTree). Since
kTree is a valid Mercer kernel, the mean M(x) and variance V (x) of the GP at x 2 Rn is [57]:

M(x) = Kx,X (KX,X)�1 y (2a)

V (x) = Kx,x �Kx,X (KX,X)�1
K

|
x,X (2b)

The Gram matrix KX,X 2 Rm⇥m has entries describing pairwise correlations computed based on the
kernel function in Eq. (1) . The entries of vector Kx,X 2 Rm contain correlations between the input
x and sampled data points, defined as [kTree(x,x1), kTree(x,x2), . . . , kTree(x,xm)] with vectors xi

referring to rows in data set X. Target values y 2 Rm are the corresponding observations for X.
Eq. (2) describes the noise-free case of the GP mean and variance. To fit a GP based on the tree kernel
function, we usually require a noise term, i.e., a diagonal matrix �

2
yI that is added to KX,X. We

set hyperparameters �2
y and �

2
0 by maximizing the log marginal likelihood. Lee et al. [42] compute

the Eq. (2a) inverse of the Gram matrix KX,X efficiently by exploiting the property that the rank
of KX,X is at most the number of leaves over trees. Fig. 1 visualizes the Eq. (2) M(x), V (x) and
the upper-confidence bound (UCB) [14] response surface. Fig. 1(a) shows that the tree kernel-based
GP mean gives a good piecewise-constant approximation of negative one times the Branin function.
Fig. 1(b) shows that variance peaks reveal areas where data are sparse, reliably identifying uncertainty
in the underlying surrogate model. Finally, Fig. 1(c) shows how an acquisition function such as the
UCB can effectively manage the exploitation-exploration trade-off.
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(a) M(x) (b) V (x) (c) UCB(x)

Figure 1: Tree kernel GP trained on 40 random points of negative one times the Branin function for
the intervals x 2 ([�5.0, 10.0] , [0.0, 15.0])|. Function values increase with the colour brightness
and white contour lines indicate the true functional shape of the negated Branin function.

3.3 Global optimization of tree ensembles

Mišić [49] proposes a mixed-integer linear optimization formulation that ensures that binary variables
zt,l follow the logic of the tree ensemble:

X

l2Lt

zt,l = 1, 8t 2 T , (3a)

X

l2left(s)

zt,l 
X

j2C(s)

⌫V(s),j , 8t 2 T , 8s 2 splits(t), (3b)

X

l2right(s)

zt,l  1�
X

j2C(s)

⌫V(s),j , 8t 2 T , 8s 2 splits(t), (3c)

KiX

j=1

⌫i,j = 1, 8i 2 C, (3d)

⌫i,j  ⌫i,j+1, 8i 2 N , 8j 2 [Ki � 1] , (3e)
⌫i,j 2 {0, 1}, 8i 2 [n] , 8j 2 [Ki] , (3f)
zt,l � 0, 8t 2 T , 8l 2 Lt. (3g)

Eq. (3a) guarantees exactly one active leaf l in leaf set Lt for tree t. Eqs. (3b)–(3c) ensure that
binary variables zt,l are only active if all previous split binaries ⌫V(s),j corresponding to continuous
splitting thresholds are active. At any node in a given tree, left(s) and right(s) contain all leaves
following the left and right branches, respectively. The mapping V(s) gives the splitting feature at
node s 2 splits(t) in tree t, with splits(t) defining the set of all splits in tree t. Tree ensembles can
handle continuous, integer and categorical data. Continuous splits s are defined by xV(s)  vV(s),j

conditions, where vV(s),j is the learned splitting threshold. Therefore, C(s) only contains a single
index j representing the threshold vV(s),j . Categorical splits s are characterized by (subsets of)
categories available for feature V(s) and define a splitting condition based on the inclusion of xV(s)

in the category subset at split s. For categorical splits, C(s) includes the category indices comprising
the category subset at split s. Eq. (3d) ensures that only one category is active per categorical
variable i 2 C. Continuous splitting thresholds of all trees in the ensemble are ordered according to
vi,1 < vi,2 < ... < vi,Ki with Ki denoting the index for the last split of continuous feature i 2 N .
To enforce this order, Eq. (3e) ensures that binary variables ⌫i,j , corresponding to the split thresholds
vi,j , are activated sequentially. The model comprising Eqs. (3) has no direct dependency on x and is
fully defined by binary variables indicating which splits and leaves of the tree model active. However,
to allow the user to include extra equality and inequality constraints on the input vector x, we bound
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the continuous variables based on the active splits by adding linking constraints [50]:

xi � v
L
i +

KiX

j=1

(vi,j � vi,j�1) (1� ⌫i,j) , 8i 2 N , (4a)

xi  v
U
i +

KiX

j=1

(vi,j � vi,j+1) ⌫i,j , 8i 2 N , (4b)

xi 2
⇥
v
L
i , v

U
i

⇤
, 8i 2 N , (4c)

xi = {j 2 [Ki] | ⌫i,j = 1}, 8i 2 C, (4d)

For categorical variables, Eq. (4d) maps the indices of active categories onto xi for i 2 C. These
optimization formulations are implemented in open-source software ENTMOOT [66] and OMLT
[11].

4 Tree ensemble kernels for Bayesian optimization

The technical details in Section 3 are insufficient to use the tree ensemble kernel in a Bayesian
optimization framework. While Eqs. 3 and 4 allow optimization over the mean of an associated
acquisition function [49], Bayesian optimization also requires quantifying model uncertainty for
exploration. This section proposes a mixed-integer second-order cone optimization formulation
to capture the standard deviation of a GP with a tree kernel prior. Combining this optimization
formulation with the already-developed mixed-integer formulation of the mean function, we derive
the upper-confidence bound (UCB) of the tree kernel-based GP. The advantage of deriving a mixed-
integer second-order cone optimization formulation of the UCB acquisition function is that we can
globally optimize the acquisition function. Additionally, we can easily incorporate explicit input
constraints that capture domain knowledge and/or known search space relationships.

Our optimization problem, which includes the UCB acquisition function, is:

x⇤
lb,x

⇤
ub,x

⇤
cat 2 arg max

x
µ(x) + �(x), (5a)

h(x) = 0, (5b)
g(x)  0, (5c)

with µ(x) and �(x) denoting the surrogate model’s mean prediction and standard deviation, re-
spectively. Functions h(x) and g(x) are known constraints and handled similarly to [9, 69]. In our
implementation, the constraints can be linear, quadratic, or polynomial. Hyperparameter  � 0
controls the exploitation-exploration trade-off to determine the next black-box function query area.
The solution to Eq. 5a is defined by x⇤

lb and x⇤
ub for non-categorical variables i 2 N , i.e., continuous

and integer features, and x⇤
cat, a set of valid category subsets for categorical variables i 2 C. Two

vectors (x⇤
lb and x⇤

ub) define the non-categorical variables because the trees are piecewise-constant
over intervals and the vectors define the lower and upper bounds of these intervals.

Next, we formalize the mean and variance of the tree kernel-based GP. Eqs. 6 and 2 are equivalent.

µ(x) = M(x) = Kx,X (KX,X)�1 y (6a)

�
2(x) = V (x) = Kx,x �Kx,X (KX,X)�1

K
|
x,X (6b)

The Gram matrix KX,X and target vector y are constants in the optimization model, as these quantities
only depend on the data set X. The value Kx,x is directly related to signal variance hyperparameter
�0 since there is full leaf overlap for two identical inputs:

Kx,x = �
2
0 (7)

The vector Kx,X contains the kernel output of x with individual data points xi. We compute
the constant matrix A 2 Rm⇥|L| after the gradient-boosted tree is trained but before solving the
acquisition function. The entries of A are equal to 1 for all active leaves l of data point i and 0
otherwise. Given matrix A, Eqs. (8) capture the kernel output by summing over binary variables zt,l
that are active for data point i.

Kx,X = [kTree(x,x1), kTree(x,x2), . . . , kTree(x,xm)] (8a)
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kTree(x,xi) = �
2
0 |T |�1

X

t2T

X

l2Lt

Ai,lzt,l 8i 2 [m] (8b)

To get an intuition for Eqs. (8), note that the largest possible value for each kTree(x,xi) is �2
0 (if the

corresponding entries of matrix A are all equal to 1, and there is full leaf overlap) and the smallest
possible value for each kTree(x,xi) is 0 (if there is no leaf overlap). In general, values of each element
of vector Kx,X will range between 0 and �

2
0 : higher values in the elements of Kx,X indicate a higher

degree of overlap between the next query location x and data point xi in the set X.

Without considering additional tree model constraints h and g, the resulting acquisition function is a
mixed-integer quadratic optimization problem. The optimization problem is mixed-integer because
of binary variables ⌫ and quadratic because of Eq. (6b). The quadratic Eq. (6b) components are
�
2 and the terms k2Tree(x,xi) arising from the inner product of Kx,X with itself. We only require

one direction of the Eq. (6b) equality () and re-write Eq. (6b) as a second-order cone constraint.
Second-order cone programming [1, 41, 45] optimizes over a linear objective subject to both linear
and second-order cone constraints (here, convex quadratic constraints, but the theory is more general).
More recently, solvers integrate advanced methods solving second-order cone problems in the mixed-
integer setting [4, 20, 46]. Solver Gurobi 9 [28] automatically finds that Eq. (6b) (with  rather than
=) can be represented as a second-order cone and makes the appropriate algorithm modifications,
e.g., as described by [33, 71]. The proposed formulation is also compatible with open-source solver
alternatives including Bonmin [8], MindtPy [6], Pajarito [13], and SHOT [47].

The acquisition function, with Objective 5a and Constraints (3)–(8b), is a mixed-integer second-order
cone program which can be solved with optimization solvers. A valid solution to the proposed model
is a set of active leaves L⇤ and the intersection of all leaf subspaces [x⇤

lb,x
⇤
ub] ,x

⇤
cat.

To derive the next black-box function query point x⇤, we propose some heuristics. The acquisition
function value is constant for x 2 [x⇤

lb,x
⇤
ub] ,x

⇤
cat, i.e., all contained points are equivalent from the

perspective of the tree kernel-GP. For the continuous and integer features, we observe that tree models
tend to learn split thresholds close to training data points. We propose the center of [x⇤

lb,x
⇤
ub] as the

next query point x⇤ for continuous and integer features:

x
⇤
mid,i =

1

2

�
x
⇤
lb,i + x

⇤
ub,i

�
, 8i 2 N . (9)

For integer features with a fractional mid-point between the upper and lower bound, we randomly
select its floor or ceiling. For categorical features, we sample from the subset of available categories:

x
⇤
mid,i = uniform(x⇤

cat), 8i 2 C. (10)

For the unconstrained case, we use x⇤
mid as the next query point x⇤. When additional input constraints

h(x) and/or g(x) are given, we know that at least one point in [x⇤
lb,x

⇤
ub] ,x

⇤
cat is feasible even if the

heuristic x⇤
mid is infeasible. To repair the solution x⇤

mid, we project it onto the feasible space:

x⇤ 2 arg min
x2[x⇤

lb,x
⇤
ub],x⇤

cat

X

i2N

�
x
⇤
mid,i � xi

�2 �
X

i2C

X

j2x⇤
mid,i

⌫i,j (11a)

h(x) = 0, (11b)
g(x)  0. (11c)

Eq. (11) projects x⇤
mid onto the feasible set defined by h(x) and g(x). The time complexity of

solving Eq. 11, and that of solving Eqs. (3)–(6) for the search space [x⇤
lb,x

⇤
ub] ,x

⇤
cat, are both NP-hard.

However, in preliminary evaluations we found that Gurobi 9 often solves both problems to ✏-global
optimality for moderately-sized tree models in less time compared to random sampling.

Hyperparameters. We train the kernel hyperparameters signal variance �2
0 and noise �2

y by maximiz-
ing the log marginal likelihood. Additional hyperparameters are introduced by the gradient-boosted
tree ensemble trained at every iteration, i.e., maximum tree depth and number of trees, and through
 in the UCB. For the Section 5 numerical studies, we leave  and gradient-boosting hyperparame-
ters constant and only increase maximum tree depth and number of trees for the high-dimensional
CIFAR-NAS benchmark to capture more complicated interactions. The appendix reports specific
values for all hyperparameters.

Limitations. The method suffers from standard BO challenges where the tree kernel may not be
a good prior for the underlying black-box function, e.g., purely continuous feature spaces. More

6



limitations arise from solving an NP-hard problem to global optimality when working with large data
sets in high-dimensional search spaces. For cases where solving the NP-hard problem is too difficult
but BO is still applicable, Gurobi 9 can typically develop good feasible solutions as a heuristic.

5 Numerical studies

This section empirically evaluates the performance of tree kernel-based GPs using a wide variety
of synthetic and real-world benchmark problems. We show (i) the ability of tree kernels to capture
uncertainty of the underlying tree ensemble, (ii) the advantage of using global vs. local strategies for
optimizing the acquisition function and (iii) the proposed algorithm’s superior performance in cases
with constrained search spaces and mixed variable types. LEAF-GP denotes the Section 4 proposed
algorithm, and Section 2 outlines the baseline of methods we compare against. For every run, we
visualize the median and confidence intervals of the first and third quartile based on 20 individual
runs with varying random seeds. Further technical details can be found in the appendix.

5.1 Uncertainty metric

(a) Relative Model Error (b) Prediction Mean

Figure 2: The relative prediction error (Eq. 13) and model prediction mean over the maximum tree
agreement ratio R for benchmark problem Rastrigin (10D). Changing R is equivalent to changing
the maximum kernel covariance. Plot shows the median line and confidence intervals (first and third
quartile) from 20 random seeds. Section 5.1 provides more details.

The tree kernel-based GP uses the leaf overlap measure to quantify correlation between two inputs.
In BO, such measures help identify unexplored areas where correlation to existing training data is
low and we expect inaccurate model predictions. To empirically test the tree kernel’s capability of
identifying uncertainty in the underlying tree ensemble, we change the optimization formulation:

x⇤
lb,x

⇤
ub,x

⇤
cat 2arg max

x,z,⌫
µ(x), (12a)

s.t. Eq. (3), Eq. (4), Eq. (6), Eq. (7), Eq. (8) (12b)

|T |�1
X

t2T

X

l2Lt

Ai,lzt,l  R, 8i 2 [m] (12c)

Eq. (12a) maximizes over the mean prediction of the tree kernel-based GP with Eq. (12c) restricting
the ratio of tree agreement for the black-box query point x⇤ defined as the Eq. (9) center of the
optimal area x⇤

lb,x
⇤
ub,x

⇤
cat. A solution to problem Eq. (12) guarantees a maximum leaf overlap of

R between x⇤ and all available data points X. Limiting the tree agreement ratio corresponds to
constraining the Eq. (1) kernel correlation between the existing dataset and the proposed optimal area
x⇤

lb,x
⇤
ub,x

⇤
cat. Here, we evaluate values of R 2 [0.35, 1.0] with increments of 0.05 and compute the

model error according to:

✏error =

����
µ(x⇤)� ftrue(x⇤)

µ(x⇤)

���� (13)

Fig. 2 shows results for the Rastrigin [63] benchmark. With smaller values of R, the Eq. (12)
optimization problem becomes more restricted, leading to smaller objective values for solution x⇤.
Fig. 2(a) shows that a growing leaf overlap (increasing R) reduces the model error defined in Eq. (13).
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This suggests that the kernel works as intended and that low kernel correlation can reveal search
space areas with high model uncertainty. The appendix provides results for additional benchmarks.

5.2 Local vs. global acquisition optimization

(a) Hartmann (6D) (b) Styblinski-Tang (10D)

Figure 3: Black-box optimization progress of LEAF-GP vs. baseline. Plot shows the median line and
confidence intervals (first and third quartile) from 20 random seeds. Section 5.2 provides more details

This section (i) compares LEAF-GP to other state-of-the-art algorithms for common benchmarks and
(ii) shows the advantage of global vs. local strategies for optimizing the acquisition function. We
introduce a variation of the proposed algorithm, LEAF-GP-RND, which optimizes the same acquisition
function as LEAF-GP, but uses random sampling instead of Gurobi 9. Fig. 3 shows results for
Hartmann (6D) [63] and Styblinski-Tang (10D) [63]. We do not expect tree model-based approaches
to perform well since both benchmark functions are continuous. However, the benchmarks show that
all approaches perform similarly for Hartmann (6D) with UCB-MATERN and EI-MATERN improving the
black-box objective at the fastest rate. For Styblinski-Tang (10D), LEAF-GP significantly outperforms
other algorithms. Although LEAF-GP is not specialized to this setting, observe that it performs
roughly equivalently to the state of the art on these continuous, unconstrained optimization problems.

Although sampling-based LEAF-GP-RND and optimization-based LEAF-GP perform similarly on the
smaller Hartmann (6D), LEAF-GP is particularly strong on the higher-dimensional Styblinski-Tang
(10D) benchmark function, and two additional benchmarks in the appendix. Moreover, LEAF-GP-RND
does not support explicit input constraints and performs particularly bad for BO with known con-
straints. For the following constrained benchmarks, we remove LEAF-GP-RND from the comparison.
The appendix has additional details and results.

5.3 Constrained spaces

This section presents numerical benchmarks with known input constraints. The acquisition opti-
mization strategy of LEAF-GP allows explicit consideration of input constraints, i.e., logical and
convex/non-convex n-th degree polynomial equality and inequality constraints for mixed variable
spaces. The UCB-MATERN and EI-MATERN implementations of BoTorch supports only linear equality
and inequality constraints at the acquisition optimization step. The GA pymoo algorithm has an
interface for callable constraint functions which are considered when generating new generations of
candidate points. When a method does not support the specific input constraints, we penalize the
objective:

fpenalty = �
�
max(g(x), 0)2 + h(x)2

�
, (14)

where g(x)  0 and h(x) = 0 are inequality and equality constraints, respectively. This penalty
strategy allows methods that do not support explicit constraints to still produce feasible points given
enough iterations. Eq. (14) introduces the hyperparameter � which weights the penalty, we test values
� 2 {1, 10, 100} and only plot the best run for all methods that rely on constraint penalization. To
initialize every method with feasible points, we draw random samples from a uniform distribution
within the bounds that define the search space and compute the closest feasible point similar to
Eq. (11). For constrained benchmarks, we introduce FEAS-RANDOM which simply projects random
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(a) G1 (13D, 9IC) (b) G3 (5D, 1EC)

(c) G4 (5D, 6IC) (d) Alkylation (7D, 14IC)

Figure 4: Feasible black-box optimization progress of LEAF-GP vs. baseline. Plot shows the median
line and confidence intervals (first and third quartile) from 20 random seeds. Confidence intervals are
neglected for methods that cannot improve the initial training data. Figure subtitles give the function
name and number of: dimensions (D), equality constraints (EC), and inequality constraints (IC).
Section 5.3 provides more details.

samples onto the set of feasible points that satisfy h(x) and g(x). Fig. 4 plots feasible solutions
to four different continuous benchmark problems, G1, G3, G4 [32], and Alkylation [60]. The G1
benchmark has linear inequality constraints only, which are supported by UCB-MATERN, EI-MATERN
and LEAF-GP. Fig. 4(a) shows LEAF-GP making quick progress at the beginning with UCB-MATERN
catching up towards the end. G3 and G4 have different combinations of nonlinear constraints,
and LEAF-GP significantly outperforms competing methods and random feasible sampling. The
Alkylation benchmark determines optimal operating conditions for a simplified alkylation process
considering complicated nonlinear constraints representing economic, physical and performance
limits. Again, LEAF-GP outperforms other methods, which often struggle to find feasible solutions.
More details regarding the presented benchmark problems are given in the appendix.

5.4 Mixed-variable spaces

We now consider spaces that exhibit mixtures of continuous, integer and categorical variables for
constrained problems. Tree model-based algorithms naturally support categorical variables by
replacing continuous splits with categorical splits. For all methods that do not support categorical
features, we use one-hot encoding. The category with the highest corresponding auxiliary variable
value is chosen for the subsequent query point. On the Pressure Vessel (4D) [12] benchmark, which
comprises two continuous features, two integer features and three inequality constraints, Fig. 5(a)
shows that LEAF-GP outperforms other black-box optimization methods.

The CIFAR-NAS (29D) is a high-dimensional benchmark problem with one continuous, 23 integer
and five categorical variables. It describes properties of different layers and training hyperparameters
for a convolutional neural network (CNN) trained on CIFAR-10 [40]. The problem’s search space
is hierarchical, as different layers, i.e., convolutional and fully-connected layers, can be activated.
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(a) Pressure Vessel (4D, 3IC) (b) CIFAR-NAS (29D)

Figure 5: Feasible black-box optimization comparing LEAF-GP vs. baseline. Plot shows median line
and confidence intervals (first and third quartile) from 20 random seeds. Figure subtitles give the
number of dimensions (D) and inequality constraints (IC). Section 5.4 provides details.

Properties describing a layer are only relevant if the layer is active. For this problem, we introduce
two types of constraints to guide the LEAF-GP: (i) constraints that allow for feasible network designs,
i.e., different values for padding, stride, kernel size and max pooling in earlier layers affects what
kernel size is feasible in following layers and (ii) constraints that ensure that hierarchies are respected.
Towards the former, we include constraints to ensure the output size of every convolutional layer is
positive. In general, tree models are particularly good at capturing hierarchical search space structures.
To enforce hierarchical relationships during the acquisition optimization step, we introduce indicator
constraints that force layer properties to take predefined default values if the layer is inactive. This
ensures that the optimizer avoids leaves that infer splitting conditions from feature properties of
inactive layers, thus effectively reducing the search space. To expedite tests, we train the CNN
on half of the CIFAR-10 training data and optimize for test accuracy. Fig. 5(b) summarizes the
results of this study and shows that tree model-based algorithms generally outperform UCB-MATERN
and EI-MATERN. Utilizing search space constraints, SMAC and LEAF-GP find the neural architectures
with the highest test accuracy with SMAC slightly outperforming LEAF-GP. Since finding feasible
architectures for CIFAR-10 is not particularly challenging, Fig. 9 in the appendix shows a benchmark
for tuning variational autoencoders (VAE) adapted from Daxberger et al. [16], where LEAF-GP
significantly outperforms other algorithms. Finding feasible VAE architectures is more difficult given
the requirement that the latent encoding must be decoded back to original input image size.

6 Conclusion

We present a framework for black-box optimization based on tree kernel Gaussian processes that
simultaneously allows (i) reliable uncertainty quantification of mixed feature spaces and (ii) incorpo-
ration of explicit input constraints. Although these two needs have been considered separately, we
are able to address both simultaneously through the mixed-integer second-order cone formulation of
the acquisition function. The numerical studies show that the proposed strategy performs competi-
tively with state-of-the-art algorithms for unconstrained problems and may significantly outperform
existing methods for constrained benchmarks, especially those with mixed feature spaces. We use
optimization constraints together with the acquisition functions to incorporate domain knowledge
and leverage hierarchical search space structures, e.g., for neural architecture search.
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