Supplemental Material for PhysGNN: A Physics–Driven Graph Neural Network Based Model for Predicting Soft Tissue Deformation in Image–Guided Neurosurgery

Yasmin Salehi, Dennis Giannacopoulos Department of Electrical and Computer Engineering McGill University Montreal, QC, Canada yasmin.salehi@mail.mcgill.ca, dennis.giannacopoulos@mcgill.ca

A Finite Element Volume Mesh

Table 1 provides information on the finite element (FE) volume mesh that was used for generating Datasets 1 and 2.

Attribute	Value
Mesh points	9118
Mesh tetrahedra	55927
Mesh faces	112524
Mesh faces on exterior boundary	1340
Mesh faces on input facets	2992
Mesh edges on input segments	4488
Steiner points inside domain	7618

Table 1: Finite element volume mesh statistics.

B Infrastructure Settings

The FE simulations in our study were carried out on quad-core Intel i7 @ 2.9 GHz CPU, while different PhysGNN models were trained on a Google Colab Pro server with 23GB of RAM and one NVIDIA P-100 GPU with 16 GB of video RAM.

C Additional Results

The table below represents the median of absolute error in the x, y, and z directions denoted as δx , δy , and δz respectively, Euclidean error, and absolute position error.

Dataset	Median Absolute Error (δx) (mm)	Median Absolute Error (δy) (mm)	Median Absolute Error (δz) (mm)	Median Euclidean Error (mm)	Median Absolute Position Error (mm)
Dataset 1 Validation	0.0199	0.0228	0.0221	0.0531	0.0303
Dataset 1 Test	0.0200	0.0227	0.0224	0.0537	0.0303
Dataset 2 Validation	0.0436	0.0537	0.0538	0.1295	0.0656
Dataset 2 Test	0.0426	0.0534	0.0529	0.1285	0.0646

Table 2: Median of the evaluation metrics resulted from the best-performing PhysGNN models on Datasets 1 and 2.

D Comparison to Similar Studies

The summary table below compares our results with a few similar studies based on empirical grounds.

Study	Number of Nodes in the FE Mesh	Maximum Displacement in the Dataset(s) (mm)	Mean Absolute Position Error (mm)	Mean Euclidean Error (mm)	% of Euclidean Error Below 1 mm	Average of Maximum Euclidean Error per Simulation (mm)
Tonutti et al. [2017]	1087	_	0.191	0.18	_	_
Lorente et al. [2017]	318960 – 494310	15	_	0.07	100	_
Liu et al.	1158	30		0.129	98	0.483
[2020]	1158	30		0.392	98	1.011
PhysGNN	9118	24.5864	0.1612	0.2049	95.11	2.5924
(ours)	9118	47.8233	0.2023	0.3023	94.60	4.1952

Table 3: Comparing our method with other studies on empirical basis.

References

- Haolin Liu, Ye Han, Daniel Emerson, Houriyeh Majditehran, Qi Wang, Yoed Rabin, and Levent Burak Kara. Real-time prediction of soft tissue deformations using data-driven nonlinear presurgical simulations. *arXiv preprint arXiv:2010.13823*, 2020.
- Delia Lorente, Francisco Martínez-Martínez, María José Rupérez, MA Lago, Marcelino Martínez-Sober, Pablo Escandell-Montero, José María Martínez-Martínez, Sandra Martínez-Sanchis, Antonio J Serrano-López, C Monserrat, et al. A framework for modelling the biomechanical behaviour of the human liver during breathing in real time using machine learning. *Expert Systems with Applications*, 71:342–357, 2017.
- Michele Tonutti, Gauthier Gras, and Guang-Zhong Yang. A machine learning approach for real-time modelling of tissue deformation in image-guided neurosurgery. *Artificial intelligence in medicine*, 80:39–47, 2017.