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Abstract

There has been significant recent progress designing deep generative models that
generate realistic sequence data such as text or music. Nevertheless, it remains
difficult to incorporate high-level structure to guide the generative process, and
many such models perform well on local coherence, but less so on global coherence.
We propose a novel approach for incorporating global structure in the form of
relational constraints between different subcomponents of an example (e.g., lines of
a poem or measures of music). Our generative model has two parts: (i) one model to
generate a realistic set of relational constraints, and (ii) a second model to generate
realistic data satisfying these constraints. For model (i), we propose a program
synthesis algorithm that infers the relational constraints present in the training data,
and then learn a generative model based on the resulting constraint data. In our
experiments, we show that our approach significantly improves over state-of-the-art
in terms of capturing high-level structure in the data, while performing comparably
or better in terms of low-level structure.

1 Introduction

There has been tremendous recent progress in designing deep generative models for generating
sequence data such as natural language (Vaswani et al., 2017) or music (Huang et al., 2019). These
approaches leverage the vast quantities of data available in conjunction with unsupervised and self-
supervised learning to learn probabilistic models of the data; then, new examples can be generated by
sampling from these models, with the possibility of conditioning on initial elements of the sequence.

A key challenge facing deep generative models is the difficulty incorporating high-level structure
into the generated examples—e.g., rhyming and meter across lines of a poem, or repetition across
measures of a piece of music. Capturing high-level structure is important for improving the quality
of the generated data, especially in low-data regimes where only small numbers of examples are
available; intuitively, knowledge of the structure compresses the amount of information the generative
model has to learn. Furthermore, explicit representations of structure (i.e., symbolically rather than as
a vector embedding) has the benefit that users can modify the structure to guide generation.

Recently, Young et al. (2019) proposed neurosymbolic generative models for incorporating high-level
structure into image generation, focusing on simple 2D repeating patterns in images of building
facades (e.g., repeating windows). The basic idea is to leverage program synthesis to extract structure
from data—in particular, given an example image x, they devise an algorithm A that extracts a
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program c = A(x) that represents the set of 2D repeating patterns present in training examples x.
Then, using the pairs (x, c), they train two generative models: (i) a model p�(c) that generates a
program, and (ii) a model p✓(x | c) that generates an image that contains the structure represented by
c. However, their approach is heavily tailored to images in two ways. First, their representation of
structure is geared towards simple patterns occurring in images of building facades. Second, their
algorithm A is specifically designed to extract this kind of program from an image, as are their
models p�(c) for generating programs c and p✓(x | c) for generating images x conditioned on c.

We represent the relational constraints cx present in an example x by relating each subcomponent w
of a given example x with a prototype w̃, which can be thought of as the “original" subcomponent
from which w is constructed. In particular, the relationship between w and w̃ is labeled with a set
of relations R, which encodes the constraint that w and w̃ should satisfy relation r for each r 2 R.
Importantly, while each subcomponent is associated with a single prototype, each prototype may be
associated with multiple subcomponents. As a consequence, different subcomponents associated
with the same prototype are related in some way. This representation is compact, only requiring
linearly many constraints in the number of subcomponents in x (assuming the number of prototypes
is constant). Compactness ensures the representation both generalizes well and is easy to generate.

Then, we design a synthesis algorithm that can extract an optimal representation of the structure
present in a training example x (i.e., the relational constraints cx). We show how to express the
synthesis problem as a constrained combinatorial optimization problem, which we solve using an
SMT solver Z3 (De Moura & Bjørner, 2008). Next, we represent relational constraints c as sequences,
and design the model p�(c) to be a specialized sequence VAE. Finally, we propose three possible
designs of p✓(x | c), all of which try to identify an example x that is realistic (e.g., according to a
pretrained model p✓(x)) while simultaneously satisfies the given constraints c.

We evaluate our approach on two tasks: poetry generation, where the relational constraints include
rhyming lines or lines with shared meter, and music generation, where the relational constraints
include equality in terms of pitch or rhythm, that one measure is a transposition of another (i.e.,
pitches shifted up or down by a constant amount), etc. We show that our approaches outperform
or perform similarly to state-of-the-art models in terms of low-level structure, while significantly
outperforming them in terms of high-level structure. We also perform a user study in the poetry
domain to determine user-perceived quality of the generated poetry along three dimensions (structure,
lyricism, and coherence), and found that on average, our approach outperformed state-of-the-art
baselines including GPT-2. Finally, we demonstrate how our approach allows users to guide the
generation process without sacrificing overall realism by specifying values of constraints.

Example. Figure 1 illustrates how our approach is applied to generate poetry. During training, our
approach uses program synthesis to infer relational constraints cx present in the examples x, and uses
both x and cx to train the generative models. Here, cx is a bipartite graph, where the LHS vertices
are prototypes, and the RHS vertices correspond to lines of x. Each vertex on the right is connected
to exactly one prototype, and is labeled with constraints on how it should relate to its prototype. To
generate new examples, it first samples relational constraints c, and then samples an example x that
satisfies c—i.e., we need to choose a line to fill each RHS node in a way that the line satisfies the
relations with its prototype. Furthermore, a user can modify the sampled constraint c to guide the
generative process. Thus, our approach enables users to flexibly incorporate domain knowledge
on the high-level structure of the data into the generative process, both in terms of the relational
constraints included and by allowing them to modify the generated relational constraints.

Related work. There has been recent work using program synthesis to improve machine learning.
For instance, it has been applied to unsupervised learning of latent structure in drawings (Ellis
et al., 2015) and to reinforcement learning (Verma et al., 2018). These techniques have benefits
such as improving interpretability (Verma et al., 2018; Ellis et al., 2020), enabling learning from
fewer examples (Ellis et al., 2015), generalizing more robustly (Inala et al., 2019), and being easier
to formally verify (Bastani et al., 2018). More recently, there has been work leveraging program
synthesis in conjunction with deep learning, where the DNN handles perception and program synthesis
handles high-level structure (Ellis et al., 2017), including work in the lifelong learning setting (Valkov
et al., 2018). In contrast to these approaches, our focus is on generative models. In particular, we
extend recent work leveraging these ideas for image generation to incorporating high-level relational
structure into sequence generation tasks (Young et al., 2019). Finally, much research over the past
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Music to song, on the city air
A little music to live upon
Song, a song, yes, yes, a long with the sun,
And all together if they are all ten,
Until all is ready for men again and then,
To the capital I hall ride with chase,
And look like men tied full all around
You, and whisper that I shall found,
Though I’m not built upon a little dome,
I say, I made a home, I make a roam.

Music to song, on the city air

A little music to live upon

rhymes, meterSong, a song, yes, yes, a long with the sun,

Until all is ready for men again and then,

To the capital I hall ride with chase,

And look like men tied full all around

Though I’m not built upon a little dome,

rhymes
rhymes, meter
rhymes, meter
rhymes, meter
rhymes
rhymes, meter
rhymes

"Father," I said, "Father, I cannot play
The harp that thou didst give me, and all day
I sit in idleness, while to and fro
About me thy serene, grave servants go;
And I am weary of my lonely ease.
Better a perilous journey overseas
Away from thee, than this, the life I lead,
To sit all day in the sunshine like a weed
That grows to naught—I love thee more than they 
Who serve thee most; yet serve thee in no way

Training Example & Relational Constraints !#

The harp that thou didst give me, and all day

I sit in idleness, while to and fro

And I am weary of my lonely ease.

Away from thee, than this, the life I lead,

rhymes, meter
rhymes

rhymes, meter
rhymes

rhymes, meter
rhymes, meter
rhymes, meter
rhymes
rhymes, meter
rhymes, meter

Figure 1: Top: For each training example x, our algorithm uses program synthesis to infer the
relational constraints cx = A(x) present in x. Then, it uses cx and x to train p�(cx) and p✓(x | cx).
Bottom: Process for generating a sample x from the learned VAE p�(cx | z) (where z is Gaussian
noise) and model p✓(x | cx). Lines with the same prototype are shown in the same color; metrical
constraints are represented as purple and rhyme constraints as green edges.

few decades has focused on music and poetry generation, and on using relational constraints in neural
models; we include a discussion of the most relevant such research in Appendix A.

2 Background on Neurosymbolic Generative Models

Consider the problem of learning a generative model given training data from the underlying distri-
bution. Given training examples x1, ..., xk ⇠ p

⇤, our goal is to learn a generative model p✓ ⇡ p
⇤

from which we can draw additional samples x ⇠ p✓. We consider sequence data—i.e., an example
x 2 X is a sequence x = (w1, ..., wm) 2 Wm.1 For example, each subcomponent w may be a line
of a poem or a measure of music, and x may be a poem or song.

We are interested in domains where likely examples satisfy latent relational constraints c 2 C over
the subcomponents. For instance, c may say that two measures wi and wj of x start with the same
series of pitches, or that two lines wi and wj of x rhyme. We assume given a set of relations R (e.g.,
r 2 R might be “rhyme” or “equal”), and a function f : W ⇥W ⇥R ! [0, 1] such that f(w,w0

, r)
indicates to what extent w and w

0 satisfy relation r. Then, c is a compact representation of the
relations present in an input x. We describe the structure of c in detail in Section 3.1; for now, the
approach we describe works for any choice of c. In particular, we build on neurosymbolic generative

models (Young et al., 2019), where c is itself generated based on a latent value z 2 Z—i.e.,

p✓,�(x) =

Z X

c2C
p✓(x | c) · p�(c | z) · p(z)dz.

Then, Young et al. (2019) considers the variational distribution

q
�̃
(c, z | x) = q

�̃
(z | c) · q(c | x) and q(c | x) = �(c� cx).

Here, � is the Dirac delta function and cx is a single representative generated from x using a program
synthesis algorithm (David & Kroening, 2017)—i.e., an algorithm A that takes as input an example

1We use a fixed m to simplify our exposition; our approach trivially extends to variable m.
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x and outputs a program c = A(x) encoding the relational constraints present in x. Next, Young
et al. (2019) derive an evidence lower bound

log p✓,�(x) � log p✓(x | cx) + Eq�̃(z|cx)[log p�(cx | z)]�DKL(q�̃(z | cx) k p(z)) +H.

where DKL is the KL divergence and H is information entropy. The first term is the log-likelihood
of a generative model predicting the probability of example x given relational constraints cx, and
the second and third terms form the loss of a variational autoencoder (VAE) p�(c | z) and q

�̃
(z |

c) (Kingma & Welling, 2019). In summary, given training examples x 2 X , this approach separately
learns (i) a VAE to generate c, trained on the relational constraints cx synthesized from each training
example x, and (ii) a model to generate x given cx; the latter can take multiple forms such as a second
VAE or a generative adversarial network (GAN) (Goodfellow et al., 2014). This approach is called
synthesis-guided generative models (SGM) since it uses program synthesis to guide training.

To leverage this framework, we have to instantiate (i) the space of relational constraints C, (ii) the
synthesis algorithm A : X ! C used to extract a program encoding the structure of x, and (iii) the
architectures of p�(c | z), q�̃(z | c), and p✓(x | c). In prior work, Young et al. (2019) used heuristics
specific to the the image domain to achieve these goals—in particular, they used (i) simple equality
constraints on sub-regions of the image designed to capture 2D repeating patterns, (ii) a custom
synthesis algorithm that greedily adds constraints in the data to the program, and (iii) a representation
of cx as an image, in which case p✓ is a generative model over images, and p�, q�̃ based on an
encoding of c as a fixed-length vector.

We design a synthesis algorithm that expresses the synthesis problem as a constrained combinatorial
optimization problem, which it solves using an SMT solver called Z3 (De Moura & Bjørner, 2008).
In terms of (iii), our programs encode declarative constraints rather than imperative renderings, so
the previous architectures of p�, and q

�̃
cannot be used. Instead, we use expert domain-specific

heuristics, transformers (Vaswani et al., 2017), or graph neural networks (GNNs) (Kipf & Welling,
2017) for p� and q

�̃
. For p✓, we propose several methods for imposing the constraints encoded by c

when generating an example x.

3 Relational Constraints for Sequence Data

We describe how we represent relational constraints r, as well as our algorithm A for synthesizing
the relational constraints cx = A(x) present in an example sequence x.

3.1 Graph Representation of Relational Constraints

Recall that our generative model operates by first generating a relational program c, and then
generating an example x that satisfies c. Thus, for each training example x, we need to design a
relational program c that encode constraints on the structure of x. A program c encodes a set of
relational constraints, each of which imposes a constraint that subcomponents of x should have
certain kinds of relations. We begin by describing the structure of a single relational constraint, and
then describe how c encodes a set of relational constraints.

A relational constraint � 2 � = W ⇥ I ⇥R, where I = {1, ...,m}, is a tuple � = (w̃, i, r); we
call w̃ 2 W a prototype subcomponent. An example x satisfies � to extent h (denoted x |=h �) if
f(w̃, wi, r) = h, where wi is the ith subcomponent of x. That is, � says the ith subcomponent wi

of x should have relation r with prototype subcomponent w̃. Thus, we can interpret � as a function
� : X ! [0, 1], where �(x) = 1 if x satisfies � to the maximal extent and �(x) = 0 if x does not
satisfy � at all.

Next, a relational program cx encodes a set of relational constraints on examples x. We represent cx as
an undirected labeled bipartite graph c = (Ṽ , V, E) with vertices Ṽ and V and edges E ✓ Ṽ ⇥V ⇥2R,
where R is the set of relations and 2R is the power set of R. The vertices w̃ 2 Ṽ are prototype
subcomponents w̃ 2 W; equivalently, they may be vector embeddings of prototype subcomponents.
The vertices i 2 V = {1, ...,m} are the indices of subcomponents in x. The edges e 2 E are tuples
e = (w̃, i, R), where R = [0, 1]|R|. For tractability of synthesis, we impose the constraint that each
v 2 V is part of a single edge (w̃, v, R) (though ṽ 2 Ṽ may be part of multiple edges). Finally, c
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encodes the set of relational constraints
�c = {(w̃, i, r, h) | (w̃, i, R) 2 E ^R[r] = h} .

In other words, c includes the relational constraint that each subcomponent wi of x should have all
relations r 2 R with prototype w̃ to extent h, where v is connected to w̃.

In this paper, for most examples, we consider binary relationships that have 0 or 1 as values, and
informally state that a pair w̃, i does not have a relationship r if f(w̃, i, r) = 0. However, as we show
in our experiments, non-boolean functions with values between 0 and 1 can be used as well.

For example, in Figure 1, the graph shown on the top right encodes a relational constraint cx, and the
top right shows an example x that satisfies all the constraints � 2 �cx with a value greater than 0.
The nodes on the left-hand side of cx are prototype subcomponents w̃ 2 W , each of which is a line
of poetry. The nodes on the right-hand side correspond to indices i (from i = 1 on top to i = m = 10
on the bottom); each one is labeled with a set of relations Ri. Then, �cx contains constraints
� = (w̃, i, Ri) for each edge w̃ ! i in the graph, which says that line i of x should have relations
r 2 Ri with w̃. For instance, the last (10th) node in cx has constraints R10 = {rhyme,meter}, and
is connected to prototype line w̃ =“The harp that thou...”. Thus, this edge encodes a constraint
� = (w̃, 10, R10) saying that the last line of x should rhyme and have the same meter as w̃. Indeed,
the last line of x is w10 =“Who serve thee most...”, which satisfies this constraint.
Remark 3.1. We use prototypes rather than direct relationships between components to ensure the
size of the graph is tractable—with this choice, the graph is linear in the size of the input (assuming the
number of prototypes is constant) rather than quadratic. A compact graph is both each to synthesize
(for training) and train a model to generate (for generation). In our experiments, we show that our
approach significantly outperforms attempting to generate full graphs (i.e., adjacency tensors).
Remark 3.2. We refer to c as a program since it can be interpreted as a Datalog program (Ceri et al.,
1989) (i.e., a relational logic program); in particular, �c is a set of Datalog relations over x 2 X .

3.2 Synthesizing Relational Constraints

Recall that when training our generative model, we need to design a program synthesis algorithm A
that synthesizes a relational program cx = A(x) that best encodes the latent relational constraints
present in each training example x. A key question is where the prototypes come from. We simply
choose the prototypes w̃ to be actual subcomponents in x. Thus, cx encodes that subcomponents of x
are each related to one of a small number of distinguished subcomponents of x. As described below,
we formulate the problem of synthesizing cx as a constrained optimization problem.

Optimization variables. The variables are a binary vector H 2 Bm and a binary matrix K 2 Bm⇥m.
Intuitively, Hi indicates whether subcomponent wi of x is a prototype subcomponent in c, and Kij

indicates whether wi is the prototype for subcomponent wj .

Constraints. Our optimization problem has the following three constraints:

 1 ⌘ kmin 
mX

i=1

Hi  kmax,  2 ⌘
m^

j=1

mX

i=1

Kij = 1,  3 ⌘
m^

i=1

mX

j=1

Kij  m ·Hi.

First,  1 says that the number of prototype subcomponents is between kmin and kmax. Next,  2 says
that every subcomponent wj corresponds to exactly one prototype subcomponent wi. Finally,  3

says that for every i, if wi is the prototype subcomponent of wj according to K, then it must be a
prototype subcomponent according to H as well.

Objective. The objective of our optimization problem is expressed in terms of a precomputed distance
matrix D 2 Rm⇥m, where Dij measures the similarity between components wi and wj ; smaller
values indicate a greater degree of similarity. In particular, we define

Dij =
1P

r2R(f(wi, wj , r))
,

i.e., Dij is the extent to which each r 2 R are not satisfied by wi and wj . Then, our objective (which
is to be minimized) has the following three terms:

J1 =
mX

i,j=1

Kij ·Dij , J2 =
mX

i,j=1

 
X

k

Kki ·Kkj

!
·Dij , J3 = �

mX

i,j=1

Hi ·Hj ·Dij .
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First, J1 says that subcomponents should be similar to their prototypes. Second, J2 says that
subcomponents should also be similar to other subcomponents that share the same prototype. Third,
J3 says that different prototype subcomponents should be dissimilar.

Optimization problem. Our algorithm A uses Z3 to solve the optimization problem
(H⇤

,K
⇤) = argmin

H,K

{�1 · J1 + �2 · J2 + �3 · J3} subj. to  1 ^  2 ^  3, (1)

where �1,�2,�3 2 R�0 are hyperparameters. Finally, to construct cx, A chooses

Ṽ = {wi | H⇤
i
= 1}, V = {1, ...,m}, E = {(wi, j, Rij) | K⇤

ij
= 1},

where Rij = {r 2 R | f(wi, wj , r) = 1}—i.e., Ṽ are the prototype subcomponents according to
H

⇤, E are the edges according to K
⇤, and Rij are the extent to which relations are satisfied by wi

and wj . Z3 is guaranteed to find the optimal solution; in the event that multiple such solutions exist,
it chooses one nondeterministically. Intuitively, our approach should perform well when a handful of
prototypes are sufficient to approximately capture the relational structure in the data, which appears
to be true in the domains of rhyming poetry and melodies. Also, the user can define relations in a
way that captures desired structure for any domain.

4 Relational Constraints in Neurosymbolic Generative Models

We describe our model for generating examples x. Recall that our approach proceeds in two steps: (i)
generate c, and (ii) generate x given �c. We describe each step in detail below.

4.1 Step 1: Generating Relational Constraints

The first step of our generative model is to generate relational constraints �c using a VAE—i.e.,
p�(c | z) is a VAE with p(z) = N (z; 0, I) being a Gaussian distribution. The main choice is
the architecture to use for the VAE. In particular, we consider a representation of c as a sequence
(s1, ..., sm), where si 2 {0, 1, ..., k} for each i; intuitively, si encodes that subcomponent wi should
have the same prototype subcomponent as wi�si , or if si  0, that wi corresponds to a new prototype
subcomponent. In practice, we found that in the music domain, the vast majority of examples could
be described using k  6, which decreased the number of possible values that could be predicted and
simplified the problem; however, it would be possible in other domains for k to be as large as m� 1.

More precisely, we initialize �c = ?. Then, we generate the sequence si 2 {0, 1, ..., k} and
ri 2 {0, 1, ...,m} (where ri is represented as a binary vector of length n = |R|) using either: (i) an
LSTM-VAE, or (ii) a feedforward network whose output is iteratively sampled from as a categorical
distribution and then used as input in the next step (see Appendix C.1 for details). For each i, we
generate (w̃, Ri) based on si and ri according to the following approach: If si = 0, we generate a
new prototype subcomponent w̃ using a domain-specific generative model, and add �i = (w̃i, i, Ri)
to �c. If si > 0, we let �i = (w̃i�si , i, Ri).

4.2 Step 2: Generating Examples Given Relational Constraints

Next, we describe how we implement the second step p✓(x | c) of our generative model. We propose
three approaches for generating x given �c; we give details in Appendix B.

Approach 1: Constrained sampling. We sample values x ⇠ p✓(·) by sequentially sampling wi ⇠
p✓(·) from a pretrained generative model p✓(w). We do so using rejection sampling at each step—i.e.,
we sample wi ⇠ p✓(·) until we find wi satisfying f(w̃, wi, r) ⇡ h for each (w̃, i, r, h) 2 �c. In
addition, to speed up sampling, at each step of sampling wi (e.g., a word in a line or a pitch in a
measure), we eliminate choices that violate �c.

Approach 2: Constraint-aware embeddings. We train a conditional variational autoencoder (cVAE)
p✓(w1, ..., wm | c) in the form of a graph convolutional network (GCN) that simultaneously generates
all m subcomponents in a way that satisfies c, and sample x = (w1, ..., wm) ⇠ p✓(· | c). The GCN
takes as input embeddings of each prototype and subcomponent of x, and the adjacency matrix is
given by the edges in c (where the relation is encoded as an edge attribute). Then, the GCN-cVAE
is trained using the standard VAE objective (Kingma & Welling, 2019), along with a semantic
consistency loss that encourages the generated examples to satisfy c.
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Models NLL GCN Disc. RF

SGM (Ours) (A2) 1028.4 0.63 0.79
MusicVAE 1158.6 0.50 0.85
MusicAutobot 1760.0 0.51 0.95

Models FD GCN Disc. RF

SGM (Ours) (A1) 43.4 0.54 0.89
SGM (Ours) (A2) 32.7 0.63 0.79
SGM (Ours) (A3) 37.5 0.43 0.91
SGM (Ours) (A2, No Synth. Ablation) 42.1 0.42 0.89
SGM (Ours) (A2, Greedy Synth. Ablation) 40.5 0.50 0.88
SGM (Ours) (A2, Continuous Relation) 33.2 0.46 0.88
Attention-RNN 39.9 0.47 0.88
MusicAutobot 53.7 0.51 0.95
StructureNet 44.0 0.45 0.91

Table 1: Results for the music domain. Left: We show negative log-likelihood (“NLL”, lower
is better) on the held-out human test set (i.e., by estimating the ELBo of the entire test set using
sampling). Right: We show Fréchet distance on MusicVAE embeddings (“FD”, lower is better).
Both: We show the cross-entropy loss of the graph discriminator trained to distinguish synthesized
programs of generated examples vs. held-out test set examples (“GCN Disc.”, higher is better), and
the accuracy of a random forest trained to do the same thing on a handcrafted featurization of the
programs (“RF”, lower is better). The highest score in each column is bolded. As can be seen, our
approach with sampling strategy A2 outperforms the baselines on all metrics, also outperforming the
ablation using the same strategy but without program synthesis (i.e., using the full adjacency tensor).

Approach 3: Combinatorial optimization. We sample x ⇠ p✓(·) by sequentially generating wi

by solving an optimization problem whose objective is to maximize adherence to �c plus additional
terms encoding domain-specific heuristics encouraging wi to be realistic.

5 Experiments

We evaluate our approach on two domains: music and poetry generation. We provide details on
experimental design and additional results in Appendix C.

5.1 Music Generation

We evaluated our approach on a music generation, where x is a song and w are measures of music.
We consider 20 relations including equality, same rhythm, etc.; see Appendix C.2.

Dataset. We used songs from the Essen folk song corpus (Schaffrath, 1995), using 2223 for
training and 555 for testing (after removing examples with less than 16 measures or that were
not in the standard 4/4 meter). For this dataset, we used each of the three approaches A1, A2,
and A3 described in Section 4 to sample x ⇠ p✓(· | c). For A1, we use a pretrained transformer
called MusicAutoBot (Shaw, 2020). For A2, we require a generative model that constructs vector
embeddings of measures; we use the pretrained version of Magenta’s MusicVAE which embeds
pairs of measures (Roberts et al., 2018) and adapted it to produce single-measure embeddings. We
finetune all models on our training examples.

Baselines. We compare to MusicAutoBot, a pretrained and finetuned attention LSTM (Attention-
RNN) (Waite, 2016), Magenta’s 16-bar MusicVAE (pretrained and finetuned), and StructureNet,
which integrates structure into an LSTM (Medeot et al., 2018). To show the importance of synthesis,
we compare to an ablation that uses A2 but with full adjacency tensors instead of synthesizing
compact representations of relational constraints, and one that uses a greedy synthesizer—i.e., at
each step, greedily choose the single prototype and its relations that most increases (1). Finally, we
consider using a continuous relation, namely, the cosine similarity of the MagentaVAE embeddings.

Metrics. We compare performance in terms of both high-level and low-level structure. For low-
level structure, we use the negative log likelihood (NLL) on a held-out test set for MusicVAE,
MusicAutobot, and our approach with strategy A2. The remaining approaches are not probabilistic
(or estimating probabilities is intractable). For these approaches, we use a variant of the standard
Fréchet distance (FD) score used to evaluate GANs (Borji, 2019)—i.e., the Fréchet distance between
the MusicVAE (16-bar) embeddings of the generated music and the held-out test set.

For high-level structure, given a generated (or human) example x, we use our synthesis algorithm to
synthesize its relational constraints cx = A(x). Then, given a collection Cgen = {cx | x 2 Xgen} of
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Models GCN Disc. FD

SGM (Ours, A1) 0.69 21.5
SGM (Ours, A3) 0.62 13.51
SGM (No Learned Structure Ablation) 0.59 21.2
GPT2 0.47 14.3
GPT2-Opt 0.56 14.4
BERT 0.50 54.9
RichLyrics 0.51 23.0

Table 2: Results for the poetry domain. We show Fréchet distance on SentenceBERT embeddings
(“FD”, lower is better), along with the cross-entropy loss of the graph discriminator trained to
distinguish synthesized programs of generated examples vs. held-out test set examples (“GCN Disc.”,
higher is better). The best score in each column is bolded. As can be seen, our approach (SGM)
with sampling strategy A1 outperforms all other approaches in terms of high-level structure, while
our approach with sampling strategy A3 outperforms all baselines in high-level structure and is also
competitive with GPT-2-based models in FD scores.

synthesized structure for generated examples, along with a collection Chuman = {cx | x 2 Xhuman} of
synthesized structure for the held-out human examples, we train a graph convolutional neural network
(GCN) to try and discriminate Cgen from Chuman, as well as a random forest (RF) over handcrafted
features (see Appendix C.4). Intuitively, higher discriminative power should indicate less realistic
structure. In both cases, we use a balanced dataset (i.e., 50% human held-out and 50% generated) so
random predictions have accuracy 0.5. Recent work has shown that such discriminator-based metrics
are valid for evaluating quality of generated examples (Lopez-Paz & Oquab, 2016).

Results. In Table 1, we show results for models for which we can compute the test set NLL (left)
and results for the remaining models (right). As can be seen, our approach (SGM) with sampling
strategy A2 outperforms all other models in both tables, in terms of both high-level structure and
low-level structure. In Table 1 (left), the closest alternative is MusicVAE, for which the NLL is not
too much larger; however, it performs significantly worse than our approach in terms of high-level
structure. In Table 1 (right), we find that our other approaches also perform well (though not as well
as A2). In particular, A1 performs well in terms of low-level structure, but is more mixed in terms
of high-level structure. In contrast, A3 performs well in terms of high-level structure, but is mixed
in terms of low-level structure, most likely since it does not use a learning-based model to generate
low-level structure. Our ablation where we perform no synthesis performs poorly, especially in terms
of structure, as does the one using greedy synthesis, demonstrating the importance of using constraint
solving to synthesize compact representations of structure. On the other hand, greedy synthesis can
be significantly more scalable than constrained optimization for large examples; thus, improving this
strategy is an interesting direction for future work. Finally, using a continuous relation performs
competitively in terms of FD score (though interestingly, it performs worse in terms of high-level
structure), demonstrating that our approach can be applied with continuous relations.

5.2 Poetry Generation

Next, we apply our approach (SGM) to poetry generation; in this case, x is a poem, and w is a line.
We consider two relations, rhyming and equal meter; see Appendix C.3 for details.

Dataset. We use from Project Gutenberg’s poetry collection (Parrish, 2018), focusing on 10-line
poems with rhymes and meter, with 2700 for training and 300 for testing.

Our approach. In the rhyming domain, due to the lack of rhyme-aware line embeddings, we did not
perform A2. In applying A1, rather than sample words going forward, we sample them backwards,
making it easier to sample lines that satisfy rhyming constraints; see Appendix B. Thus, we use BERT
to sample (Devlin et al., 2018), since it is bidirectional. We apply A3 by performing constrained
optimization to satisfy as many relations as possible while maintaining a low NLL.

Baselines. We compare to generation using beam search for BERT and GPT2 (Radford et al., 2019;
Vaswani et al., 2017), both finetuned on our dataset. We also consider a variant GPT2-Opt of GPT2
where we use beam search to choose line breaks in a way that maximizes occurrences of rhyme and
meter. We also tried a variant of GPT2 that used constrained sampling to try and find poems that fit a
given rhyme and meter, but the search space was too large and it failed to generate a single poem
even after several hours. We also compare to an implementation of RichLyrics (Castro & Attarian,
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Figure 2: Left: Poetry generated using relational constraints c ⇠ p�(·). Right: user modified variant
of c where the last two lines share a prototype with the two lines before them.

Method Average Score Lyricism Coherence Rhyme/Meter

SGM (Ours, A1) 3.66 3.81 3.59 3.59
GPT2-Finetune 3.30 2.90 3.91 3.12
BERT-Finetune 2.28 2.11 2.00 2.77
RichLyrics 3.09 3.24 3.09 2.93

Table 3: A user study evaluation in the poetry domain. While GPT2-Finetune outperforms our
model in terms of coherence (presumably due to the well-known superiority of GPT-2 over BERT for
generation), our method outperforms in terms of overall lyricism (i.e., whether the poem reads like
poetry or prose), prominence of rhythmic/metrical structure, and average score.

2018), where the consecutive parts of speech for each line given the previous line and the ability to
fill in the correct word for the given part of speech were both learned separately from the corpus.
Finally, to show the importance of learning the distribution over constraints, we consider an ablation
that uses A1, but sampling �c uniformly randomly rather than from a learned distribution.

Metrics. For low-level structure, we use FD score on SentenceBert embeddings, which are unaware
of rhyme and meter (Reimers & Gurevych, 2019); we cannot evaluate log-likelihood since we are
using constrained sampling. For high-level structure, we train a GCN to discriminate synthesized
programs for generated examples vs, test examples.

Results. We show results in Table 2. Our approach (SGM) with sampling strategy A3 significantly
outperforms all baselines in terms of high-level programmatic structure, while also outperforming
them in terms of FD scores. Approach A1 performs even better in terms of programmatic structure,
but is not competitive with respect to FD scores, presumably due to the fact that GPT-2 is significantly
better at natural language generation than BERT.

User study. We also performed a user study, discussed in Appendix C.5, which further confirmed
this methods’ strength in the poetry domain. in this domain, with 50 participants.

User modifications. A key benefit of our approach is that the user can modify the relational
constraints c (or construct their own from scratch) for use in the second step p✓(x | c), giving the
user a way to guide the generative process. An example in the poetry domain is shown in Figure 5.2,
and musical examples are shown in Appendix 3.

6 Conclusion

We have presented a novel approach for representing and synthesizing relational constraints on
sequence data, and for generating examples whose relational structure resembles that of the training
data. Our experiments demonstrate that we outperform existing approaches in terms of achieving
human-like structure, while performing comparably or better on both a user study and widely-used
quantitative metrics that do not explicitly account for structure. Finally, our approach enables users to
guide the generative process by modifying constraints. A key direction for future work is to apply
our approach to other applications such as dialog generation and summarization, which may require
novel programmatic structure compared to the ones we study.
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Limitations & ethical considerations. We discuss limitations and ethical concerns in Appendix F.
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