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A Detailed Related Work

OOD Detection Algorithms. We will briefly review many representative OOD detection algorithms
in three categories. 1) Classification-based methods use an ID classifier to detect OOD data [7]5.
Representative works consider using the maximum softmax score [7], temperature-scaled score
[14] and energy-based score [23, 71] to identify OOD data. 2) Density-based methods aim to
estimate an ID distribution and identify the low-density area as OOD data [10]. 3) The recent
development of generative models provides promising ways to make them successful in OOD
detection [11, 12, 14, 72, 73]. Distance-based methods are based on the assumption that OOD data
should be relatively far away from the centroids of ID classes [9], including Mahalanobis distance
[9, 45], cosine similarity [74], and kernel similarity [75].

Early works consider using the maximum softmax score to express the ID-ness [7]. Then, temperature
scaling functions are used to amplify the separation between the ID and OOD data [14]. Recently,
researchers propose hyperparameter-free energy scores to improve the OOD uncertainty estimation
[23, 71]. Additionally, researchers also consider using the information contained in gradients to help
improve the performance of OOD detection [18].

Except for the above algorithms, researchers also study the situation, where auxiliary OOD data can
be obtained during the training process [13, 70]. These methods are called outlier exposure, and have
much better performance than the above methods due to the appearance of OOD data. However, the
exposure of OOD data is a strong assumption [4]. Thus, researchers also consider generating OOD
data to help the separation of OOD and ID data [76]. In this paper, we do not make an assumption
that OOD data are available during training, since this assumption may not hold in real world.

OOD Detection Theory. [49] rejects the typical set hypothesis, the claim that relevant OOD
distributions can lie in high likelihood regions of data distribution, as implausible. [49] argues that
minimal density estimation errors can lead to OOD detection failures without assuming an overlap
between ID and OOD distributions. Compared to [49], our theory focuses on the PAC learnable
theory of OOD detection. If detectors are generated by FCNN, our theory (Theorem 12) shows
that the overlap is the sufficient condition to the failure of learnability of OOD detection, which is
complementary to [49]. In addition, we identify several necessary and sufficient conditions for the
learnability of OOD detection, which opens a door to studying OOD detection in theory. Beyond
[49], [50] paves a new avenue to designing provable OOD detection algorithms. Compared to [50],
our paper aims to characterize the learnability of OOD detection to answer the question: is OOD
detection PAC learnable?

Open-set Learning Theory. [51] is the first to propose the agnostic PAC guarantees for open-set
detection. Unfortunately, the test data must be used during the training process. [29] considers the
open-set domain adaptation (OSDA) [52] and proposes the first learning bound for OSDA. [29]
mainly depends on the positive-unlabeled learning techniques [77, 78, 79]. However, similar to [51],
the test data must be available during training. To study open-set learning (OSL) without accessing
the test data during training, [24] proposes and studies the almost PAC learnability for OSL, which
is motivated by transfer learning [80, 81]. In our paper, we study the PAC learnability for OOD
detection, which is an open problem proposed by [24].

Learning Theory for Classification with Reject Option. Many works [53, 54] also investigate the
classification with reject option (CwRO) problem, which is similar to OOD detection in some cases.
[55, 56, 57, 58, 59] study the learning theory and propose the agnostic PAC learning bounds for
CwRO. However, compared to our work regarding OOD detection, existing CwRO theories mainly
focus on how the ID risk (i.e., the risk that ID data is wrongly classified) is influenced by special
rejection rules. Our theory not only focuses on the ID risk, but also pays attention to the OOD risk.

Robust Statistics. In the field of robust statistics [60], researchers aim to propose estimators and
testers that can mitigate the negative effects of outliers (similar to OOD data). The proposed estimators
are supposed to be independent of the potentially high dimensionality of the data [61, 62, 63]. Existing
works [64, 65, 66] in the field have identified and resolved the statistical limits of outlier robust
statistics by constructing estimators and proving impossibility results. In the future, it is a promising
and interesting research direction to study the robustness of OOD detection based on robust statistics.

5Note that, some methods assume that OOD data are available in advance [13, 70]. However, the exposure of
OOD data is a strong assumption [4]. We do not consider this situation in our paper.
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PQ Learning Theory. Under some conditions, PQ learning theory [67, 68] can be regarded as the
PAC theory for OOD detection in the semi-supervised or transductive learning cases, i.e., test data
are required during the training process. Additionally, PQ learning theory in [67, 68] aims to give
the PAC estimation under Realizability Assumption [21]. Our theory focuses on the PAC theory
in different cases, which is more difficult and more practical than PAC theory under Realizability
Assumption.

B Limitations and Potential Negative Societal Impacts

Limitations. The main limitation of our work lies in that we do not answer the most general question:

Given any hypothesis space H and space DXY , what is the necessary and sufficient condition to
ensure the PAC learnability of OOD detection?

However, this question is still difficult to be addressed, due to limited mathematical skills. Yet, based
on our observations and the main results in our paper, we believe the following result may hold:

Conjecture: If H is agnostic learnable for supervised learning, then OOD detection is learnable in
DXY if and only if compatibility condition (i.e., Condition 3) holds.

We leave this question as a future work.

Potential Negative Societal Impacts. Since our paper is a theoretical paper and the OOD detection
problem is significant to ensure the safety of deploying existing machine learning algorithms, there
are no potential negative societal impacts in our paper.

C Discussions and Details about Experiments in Figure 1

In this section, we summarize our main results, then give the details of the experiments in Figure 1.

C.1 Summary

We summarize our main results as follows:

• A necessary condition (i.e., Condition 1) for the learnability of OOD detection is proposed.
Theorem 2 shows that Condition 1 is the necessary and sufficient condition for the learnability of
OOD detection, when the domain space is the single-distribution space DDXY

XY . This implies the
Condition 1 is the necessary condition for the learnability of OOD detection.

• Theorem 3 has shown that the overlap between ID and OOD data can lead the failures of OOD
detection under some mild assumptions. Furthermore, Theorem 12 shows that when K = 1, the
overlap is the sufficient condition for the failures of OOD detection, when the hypothesis space is
FCNN-based or score-based.

• Theorem 4 provides an impossibility theorem for the total space Dall
XY . OOD detection is not

learnable in Dall
XY for any non-trivial hypothesis space.

• Theorem 5 gives impossibility theorems for the separate space Ds
XY . To ensure the impossibility

theorems hold, mild assumptions are required. Theorem 5 also implies that OOD detection may be
learnable in the separate space Ds

XY , if the feature space is finite, i.e., |X | < +∞. Additionally,
Theorem 10 implies that the finite feature space may be the necessary condition to ensure the
learnability of OOD detection in the separate space.

• When |X | < +∞ and K = 1, Theorem 6 provides the necessary and sufficient condition for
the learnability of OOD detection in the separate space Ds

XY . Theorem 6 implies that if the OOD
detection can be learnable in the distribution-agnostic case, then a large-capacity model is necessary.
Based on Theorem 6, Theorem 7 studies the learnability in the K > 1 case.

• The compatibility condition (i.e., Condition 3) for the learnability of OOD detection is proposed.
Theorem 8 shows that Condition 3 is the necessary and sufficient condition for the learnability of
OOD detection in the finite-ID-distribution space DF

XY . This also implies Condition 3 is the necessary
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condition for any prior-unknown space. Note that we can only collect finite ID datasets to build
models. Hence, Theorem 8 can handle the most practical scenarios.

• To further understand the importance of the compatibility condition (Condition 3). Theorem 9
considers the density-based space Dµ,b

XY . We discover that Realizability Assumption implies the
compatibility condition in the density-based space. Based on this observation, we prove that OOD
detection is learnable in Dµ,b

XY under Realizability Assumption.

• Theorem 10 gives practical applications of our theory. In this theorem, we discover that the finite
feature space is a necessary and sufficient condition for the learnability of OOD detection in the
separate space Ds

XY , when the hypothesis space is FCNN-based or score-based.

• Theorem 11 has shown that when K = 1 and the hypothesis space is FCNN-based or score-based,
Realizability Assumption, Condition 3, Condition 1 and the learnability of OOD detection in the
density-based space Dµ,b

XY are all equivalent.

• Meaning of Our Theory. In classical statistical learning theory, the generalization theory guarantees
that a well-trained classifier can be generalized well on the test set as long as the training and test sets
are from the same distribution [21, 22]. However, since the OOD data are unseen during the training
process, it is very difficult to determine whether the generalization theory holds for OOD detection.

Normally, OOD data are unseen and can be various. We hope that there exists an algorithm that
can be used for the various OOD data instead of some certain OOD data, which is the reason why
the generalization theory for OOD detection needs to be developed. In this paper, we investigate
the generalization theory regarding OOD detection and point out when the OOD detection can be
successful. Our theory is based on the PAC learning theory. The impossibility theorems and the
given necessary and sufficient conditions outlined provide important perspectives from which to think
about OOD detection.

C.2 Details of Experiments in Figure 1

In this subsection, we present details of the experiments in Figure 1, including data generation,
configuration and OOD detection procedure.

Data Generation. ID and OOD data are drawn from the following uniform (U) distributions (note
that we use U(I) to present the uniform distribution in region I).
• The marginal distribution of ID distribution for class c: for any c ∈ {1, ..., 10},

DXI|YI=c = U(Ic), where Ic = [dc, dc + 4]× [1, 5], (7)

here di = 5 + gapII ∗ (i− 1) + 4(i− 2) and gapII is a positive constant.
• The class-prior probability for class c: for any c ∈ {1, ..., 10},

DYI
(y = c) =

1− α

10
.

• The marginal distribution of OOD distribution:

DXO
= U(Iout), where Iout = [d1 − 1, d10 + 5]× [5 + gapIO, 10 + gapIO]. (8)

Figure 2 shows the OOD and ID distributions, when gapII = 20 and gapIO = −2. In Figure 1, we
draw n data from ID distribution (n = 15, 000, 20, 000, 25, 000) and 25, 000 data from the OOD
distribution.

Configuration. The architecture of ID classifier is a four-layer FCNN. The number of neurons in
hidden layers is set to 100, and the number of neurons of output layer is set to 10. These neurons use
sigmoid activations. We use the Adam optimizer [82] to optimize the network’s parameters (with
the ℓ2 loss). The learning rate is set to 0.001, and the max number of training iterations is set to
10, 000. Within each iteration, we use full batch to update the network’s parameters. gapII is set to
20 in our experiments. In Figure 1b, gapIO = −2 (the overlap exists, see Figure 2), and in Figure 1c,
gapIO = 100 (no overlap).

OOD Detection Procedure. We first train an ID classifier with n data drawn from the ID distribution.
Then, according to [23], we apply the free-energy score to identify the OOD data and calculate the
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(b) Illustration of ID and OOD Data

Figure 2: ID and OOD distributions in Figure 1.

α-risk (with the 0-1 loss). We repeat the above detection procedure 20 times and report the average
α-risk in Figure 1. Note that, following [23], we choose the threshold used by the free-energy method
so that 95% of ID data are correctly identified as the ID classes by the OOD detector.
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D Notations

D.1 Main Notations and Their Descriptions

In this section, we summarize important notations in Table 1.

Table 1: Main notations and their descriptions.

Notation Description
• Spaces and Labels
d and X ⊂ Rd the feature dimension of data point and feature space
Y ID label space {1, ...,K}
K + 1 K + 1 represents the OOD labels
Yall Y ∪ {K + 1}
• Distributions
XI, XO, YI, YO ID feature, OOD feature, ID label, OOD label random variables
DXIYI , DXOYO ID joint distribution and OOD joint distribution
Dα

XY Dα
XY = (1− α)DXIYI + αDXOYO , ∀α ∈ [0, 1]

πout class-prior probability for OOD distribution
DXY DXY = (1− πout)DXIYI + πoutDXOYO , called domain
DXI , DXO , DX marginal distributions for DXIYI , DXOYO and DXY , respectively
• Domain Spaces
DXY domain space consisting of some domains
Dall

XY total space
Ds

XY seperate space
DDXY

XY single-distribution space
DF

XY finite-ID-distribution space
Dµ,b

XY density-based space
• Loss Function, Function Spaces
ℓ(·, ·) loss: Yall × Yall → R≥0: ℓ(y1, y2) = 0 if and only if y1 = y2
H hypothesis space
Hin ID hypothesis space
Hb hypothesis space in binary classification
Fl scoring function space consisting some l dimensional vector-

valued functions
• Risks and Partial Risks
RD(h) risk corresponding to DXY

Rin
D(h) partial risk corresponding to DXIYI

Rout
D (h) partial risk corresponding to DXOYO

Rα
D(h) α-risk corresponding to Dα

XY

• Fully-Connected Neural Networks
q a sequence (l1, ..., lg) to represent the architecture of FCNN
σ activation function. In this paper, we use ReLU function
Fσ

q FCNN-based scoring function space
Hσ

q FCNN-based hypothesis space
fw,b FCNN-based scoring function, which is from Fσ

q

hw,b FCNN-based hypothesis function, which is from Hσ
q

• Score-based Hypothesis Space
E scoring function
λ threshold
Hσ,λ

q,E score-based hypothesis space—a binary classification space
hλ
f ,E score-based hypothesis function—a binary classifier

Given f = [f1, ..., f l]⊤, for any x ∈ X ,

argmax
k∈{1,...,l}

fk(x) := max{k ∈ {1, ..., l} : fk(x) ≥ f i(x),∀i = 1, ..., l},

where fk is the k-th coordinate of f and f i is the i-th coordinate of f . The above definition about
argmax aims to overcome some special cases. For example, there exist k1, k2 (k1 < k2) such that
fk1(x) = fk2(x) and fk1(x) > f i(x), fk2(x) > f i(x), ∀i ∈ {1, ..., l}−{k1, k2}. Then, according
to the above definition, k2 = argmaxk∈{1,...,l} f

k(x).
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D.2 Realizability Assumption

Assumption 2 (Realizability Assumption). A domain space DXY and hypothesis space H satisfy
the Realizability Assumption, if for each domain DXY ∈ DXY , there exists at least one hypothesis
function h∗ ∈ H such that RD(h∗) = 0.

D.3 Learnability and PAC learnability

Here we give a proof to show that Learnability given in Definition 1 and PAC learnability are
equivalent.

First, we prove that Learnability concludes the PAC learnability.

According to Definition 1,

ES∼Dn
XIYI

RD(A(S)) ≤ inf
h∈H

RD(h) + ϵcons(n),

which implies that
ES∼Dn

XIYI
[RD(A(S))− inf

h∈H
RD(h)] ≤ ϵcons(n).

Note that RD(A(S))− infh∈H RD(h) ≥ 0. Therefore, by Markov’s inequality, we have

P(RD(A(S))− inf
h∈H

RD(h) < ϵ) > 1−ES∼Dn
XIYI

[RD(A(S))− inf
h∈H

RD(h)]/ϵ ≥ 1− ϵcons(n)/ϵ.

Because ϵcons(n) is monotonically decreasing, we can find a smallest m such that ϵcons(m) ≥ ϵδ
and ϵcons(m − 1) < ϵδ, for δ ∈ (0, 1). We define that m(ϵ, δ) = m. Therefore, for any ϵ > 0 and
δ ∈ (0, 1), there exists a function m(ϵ, δ) such that when n > m(ϵ, δ), with the probability at least
1− δ, we have

RD(A(S))− inf
h∈H

RD(h) < ϵ,

which is the definition of PAC learnability.

Second, we prove that the PAC learnability concludes Learnability.

PAC-learnability: for any ϵ > 0 and 0 < δ < 1, there exists a function m(ϵ, δ) > 0 such that when
the sample size n > m(ϵ, δ), we have that with the probability at least 1− δ > 0,

RD(A(S))− inf
h∈H

RD(h) ≤ ϵ.

Note that the loss ℓ defined in Section 2 has upper bound (because Y ∪ {K + 1} is a finite set). We
assume the upper bound of ℓ is M . Hence, according to the definition of PAC-learnability, when the
sample size n > m(ϵ, δ), we have that

ES [RD(A(S))− inf
h∈H

RD(h)] ≤ ϵ(1− δ) + 2Mδ < ϵ+ 2Mδ.

If we set δ = ϵ, then when the sample size n > m(ϵ, ϵ), we have that

ES [RD(A(S))− inf
h∈H

RD(h)] < (2M + 1)ϵ,

this implies that
lim

n→+∞
ES [RD(A(S))− inf

h∈H
RD(h)] = 0,

which implies the Learnability in Definition 1. We have completed this proof.

D.4 Explanations for Some Notations in Section 2

First, we explain the concept that S ∼ Dn
XIYI

in Eq. (2).
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S = {(x1, y1), ..., (xn, yn)} is training data drawn independent and identically distributed from
DXIYI .

Dn
XIYI

denotes the probability over n-tuples induced by applying DXIYI
to pick each element of the

tuple independently of the other members of the tuple.

Because these samples are i.i.d. drawn n times, researchers often use ”S ∼ Dn
XIYI

” to represent a
sample set S (of size n) whose each element is drawn i.i.d. from DXIYI

.

Second, we explain the concept ”+” in (1− πout)DXI + πoutDXO .

For convenience, let P = (1− πout)DXI
and Q = πoutDXO

. It is clear that P and Q are measures.
Then P +Q is also a measure, which is defined as follows: for any measurable set A ⊂ X , we have

(P +Q)(A) = P (A) +Q(A).

For example, when P and Q are discrete measures, then P + Q is also discrete measure: for any
x ∈ X ,

(P +Q)(x) = P (x) +Q(x).

When P and Q are continuous measures with density functions f and g, then P+Q is also continuous
measure with density function f + g: for any measurable A ⊂ X ,

P (A) =

∫
A

f(x)dx, Q(A) =

∫
A

g(x)dx,

then
(P +Q)(A) =

∫
A

f(x) + g(x)dx.

Third, we explain the concept E(x,y)∼DXY
ℓ(h(x), y).

The concept E(x,y)∼DXY
ℓ(h(x), y) can be computed as follows:

E(x,y)∼DXY
ℓ(h(x), y) =

∫
X×Yall

ℓ(h(x), y)dDXY (x, y).

For example, when DXY is a finite discrete distribution: let Z = {(x1, y1), ..., (xm, ym)} be the
support set of DXY , and assume that ai is the probability for (xi, yi), i.e., ai = DXY (x

i, yi). Then

E(x,y)∼DXY
ℓ(h(x), y) =

∫
X×Yall

ℓ(h(x), y)dDXY (x, y)

=
1

m

m∑
i=1

aiℓ(h(xi), yi).

When DX is a continuous distribution with density f , and DY |X(Y = k|X = x) (k-th class-
conditional distribution for x) is ak(x), then

E(x,y)∼DXY
ℓ(h(x), y) =

∫
X×Yall

ℓ(h(x), y)dDXY (x, y)

=

∫
X

K+1∑
k=1

ℓ(h(x), k)f(x)ak(x)dx,

where DY |X(Y = k|X = x) is the k-th class-conditional distribution.
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E Proof of Theorem 1

Theorem 1. Given domain spaces DXY and D ′
XY = {Dα

XY : ∀DXY ∈ DXY ,∀α ∈ [0, 1)}, then
1) D ′

XY is a priori-unknown space and DXY ⊂ D ′
XY ;

2) if DXY is a priori-unknown space, then Definition 1 and Definition 2 are equivalent;
3) OOD detection is strongly learnable in DXY if and only if OOD detection is learnable in D ′

XY .

Proof of Theorem 1.

Proof of the First Result.

To prove that D ′
XY is a priori-unknown space, we need to show that for any Dα′

XY ∈ D ′
XY , then

Dα
XY ∈ D ′

XY for any α ∈ [0, 1).

According to the definition of D ′
XY , for any Dα′

XY ∈ D ′
XY , we can find a domain DXY ∈ DXY ,

which can be written as DXY = (1− πout)DXIYI + πoutDXOYO (here πout ∈ [0, 1)) such that

Dα′

XY = (1− α′)DXIYI + α′DXOYO .

Note that Dα
XY = (1− α)DXIYI + αDXOYO .

Therefore, based on the definition of D ′
XY , for any α ∈ [0, 1), Dα

XY ∈ D ′
XY , which implies that

D ′
XY is a prior-known space. Additionally, for any DXY ∈ DXY , we can rewrite DXY as Dπout

XY ,
thus DXY = Dπout

XY ∈ D ′
XY , which implies that DXY ⊂ D ′

XY .

Proof of the Second Result.

First, we prove that Definition 1 concludes Definition 2, if DXY is a prior-unknown space:

The domain space DXY is a priori-unknown space, and OOD detection is learnable in DXY for H.
⇓

OOD detection is strongly learnable in DXY for H: there exist an algorithm A : ∪+∞
n=1(X ×Y)n →

H, and a monotonically decreasing sequence ϵ(n), such that ϵ(n) → 0, as n → +∞

ES∼Dn
XIYI

[
Rα

D(A(S))− inf
h∈H

Rα
D(h)

]
≤ ϵ(n), ∀α ∈ [0, 1], ∀DXY ∈ DXY .

In the priori-unknown space, for any DXY ∈ DXY , we have that for any α ∈ [0, 1),

Dα
XY = (1− α)DXIYI

+ αDXOYO
∈ DXY .

Then, according to the definition of learnability of OOD detection, we have an algorithm A and a
monotonically decreasing sequence ϵcons(n) → 0, as n → +∞, such that for any α ∈ [0, 1),

ES∼Dn
XIYI

RDα(A(S)) ≤ inf
h∈H

RDα(h) + ϵcons(n), (by the property of priori-unknown space)

where

RDα(A(S)) =

∫
X×Yall

ℓ(A(S)(x), y)dDα
XY (x, y), RDα(h) =

∫
X×Yall

ℓ(h(x), y)dDα
XY (x, y).

Since RDα(A(S)) = Rα
D(A(S)) and RDα(h) = Rα

D(h), we have that

ES∼Dn
XIYI

Rα
D(A(S)) ≤ inf

h∈H
Rα

D(h) + ϵcons(n), ∀α ∈ [0, 1). (9)

Next, we consider the case that α = 1. Note that

lim inf
α→1

inf
h∈H

Rα
D(h) ≥ lim inf

α→1
α inf

h∈H
Rout

D (h) = inf
h∈H

Rout
D (h). (10)

Then, we assume that hϵ ∈ H satisfies that

Rout
D (hϵ)− inf

h∈H
Rout

D (h) ≤ ϵ.

It is obvious that
Rα

D(hϵ) ≥ inf
h∈H

Rα
D(h).
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Let α → 1. Then, for any ϵ > 0,

Rout
D (hϵ) = lim

α→1
Rα

D(hϵ) = lim sup
α→1

Rα
D(hϵ) ≥ lim sup

α→1
inf
h∈H

Rα
D(h),

which implies that

inf
h∈H

Rout
D (h) = lim

ϵ→0
Rout

D (hϵ) ≥ lim
ϵ→0

lim sup
α→1

inf
h∈H

Rα
D(h) = lim sup

α→1
inf
h∈H

Rα
D(h). (11)

Combining Eq. (10) with Eq. (11), we have

inf
h∈H

Rout
D (h) = lim sup

α→1
inf
h∈H

Rα
D(h) = lim inf

α→1
inf
h∈H

Rα
D(h), (12)

which implies that
inf
h∈H

Rout
D (h) = lim

α→1
inf
h∈H

Rα
D(h). (13)

Note that

ES∼Dn
XIYI

Rα
D(A(S)) = (1− α)ES∼Dn

XIYI
Rin

D(A(S)) + αES∼Dn
XIYI

Rout
D (A(S)).

Hence, Lebesgue’s Dominated Convergence Theorem [36] implies that

lim
α→1

ES∼Dn
XIYI

Rα
D(A(S)) = ES∼Dn

XIYI
Rout

D (A(S)). (14)

Using Eq. (9), we have that

lim
α→1

ES∼Dn
XIYI

Rα
D(A(S)) ≤ lim

α→1
inf
h∈H

Rα
D(h) + ϵcons(n). (15)

Combining Eq. (13), Eq. (14) with Eq. (15), we obtain that

ES∼Dn
XIYI

Rout
D (A(S)) ≤ inf

h∈H
Rout

D (h) + ϵcons(n).

Since Rout
D (A(S)) = R1

D(A(S)) and Rout
D (h) = R1

D(h), we obtain that

ES∼Dn
XIYI

R1
D(A(S)) ≤ inf

h∈H
R1

D(h) + ϵcons(n). (16)

Combining Eq. (9) and Eq. (16), we have proven that: if the domain space DXY is a priori-unknown
space, then OOD detection is learnable in DXY for H.

⇓
OOD detection is strongly learnable in DXY for H: there exist an algorithm A : ∪+∞

n=1(X×Y)n → H,
and a monotonically decreasing sequence ϵ(n), such that ϵ(n) → 0, as n → +∞,

ES∼Dn
XIYI

Rα
D(A(S)) ≤ inf

h∈H
Rα

D(h) + ϵ(n), ∀α ∈ [0, 1], ∀DXY ∈ DXY .

Second, we prove that Definition 2 concludes Definition 1:

OOD detection is strongly learnable in DXY for H: there exist an algorithm A : ∪+∞
n=1(X×Y)n → H,

and a monotonically decreasing sequence ϵ(n), such that ϵ(n) → 0, as n → +∞,

ES∼Dn
XIYI

[
Rα

D(A(S))− inf
h∈H

Rα
D(h)

]
≤ ϵ(n), ∀α ∈ [0, 1], ∀DXY ∈ DXY .

⇓
OOD detection is learnable in DXY for H.

If we set α = πout, then ES∼Dn
XIYI

Rα
D(A(S)) ≤ infh∈H Rα

D(h) + ϵ(n) implies that

ES∼Dn
XIYI

RD(A(S)) ≤ inf
h∈H

RD(h) + ϵ(n),

which means that OOD detection is learnable in DXY for H. We have completed this proof.

Proof of the Third Result.

The third result is a simple conclusion of the second result. Hence, we omit it.
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F Proof of Theorem 2

Before introducing the proof of Theorem 2, we extend Condition 1 to a general version (Condition 4).
Then, Lemma 1 proves that Conditions 1 and 4 are the necessary conditions for the learnability of
OOD detection. First, we provide the details of Condition 4.

Let ∆o
l = {(λ1, ..., λl) :

∑l
j=1 λj < 1 and λj ≥ 0,∀j = 1, ..., l}, where l is a positive integer.

Next, we introduce an important definition as follows:
Definition 6 (OOD Convex Decomposition and Convex Domain). Given any domain DXY ∈ DXY ,
we say joint distributions Q1, ..., Ql, which are defined over X × {K + 1}, are the OOD convex
decomposition for DXY , if

DXY = (1−
l∑

j=1

λj)DXIYI +

l∑
j=1

λjQj ,

for some (λ1, ..., λl) ∈ ∆o
l . We also say domain DXY ∈ DXY is an OOD convex domain corre-

sponding to OOD convex decomposition Q1, ..., Ql, if for any (α1, ..., αl) ∈ ∆o
l ,

(1−
l∑

j=1

αj)DXIYI
+

l∑
j=1

αjQj ∈ DXY .

We extend the linear condition (Condition 1) to a multi-linear scenario.
Condition 4 (Multi-linear Condition). For each OOD convex domain DXY ∈ DXY corresponding
to OOD convex decomposition Q1, ..., Ql, the following function

fD,Q(α1, ..., αl) := inf
h∈H

(
(1−

l∑
j=1

αj)R
in
D(h) +

l∑
j=1

αjRQj (h)
)
, ∀(α1, ..., αl) ∈ ∆o

l

satisfies that

fD,Q(α1, ..., αl) = (1−
l∑

j=1

αj)fD,Q(0) +

l∑
j=1

αjfD,Q(αj),

where 0 is the 1× l vector, whose elements are 0, and αj is the 1× l vector, whose j-th element is 1
and other elements are 0.

When l = 1 and the domain space DXY is a priori-unknown space, Condition 4 degenerates into
Condition 1. Lemma 1 shows that Condition 4 is necessary for the learnability of OOD detection.

Lemma 1. Given a priori-unknown space DXY and a hypothesis space H, if OOD detection is
learnable in DXY for H, then Conditions 1 and 4 hold.

Proof of Lemma 1.

Since Condition 1 is a special case of Condition 4, we only need to prove that Condition 4 holds.

For any OOD convex domain DXY ∈ DXY corresponding to OOD convex decomposition Q1, ..., Ql,
and any (α1, ..., αl) ∈ ∆o

l , we set

Qα =
1∑l

i=1 αi

l∑
j=1

αjQj .

Then, we define

Dα
XY = (1−

l∑
i=1

αi)DXIYI
+ (

l∑
i=1

αi)Q
α, which belongs to DXY .

Let
Rα

D(h) =

∫
X×Yall

ℓ(h(x), y)dDα
XY (x, y).
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Since OOD detection is learnable in DXY for H, there exist an algorithm A : ∪+∞
n=1(X × Y)n → H,

and a monotonically decreasing sequence ϵ(n), such that ϵ(n) → 0, as n → +∞, and

0 ≤ ES∼Dn
XIYI

Rα
D(A(S))− inf

h∈H
Rα

D(h) ≤ ϵ(n).

Note that

ES∼Dn
XIYI

Rα
D(A(S)) = (1−

l∑
j=1

αj)ES∼Dn
XIYI

Rin
D(A(S)) +

l∑
j=1

αjES∼Dn
XIYI

RQj
(A(S)),

and
inf
h∈H

Rα
D(h) = fD,Q(α1, ..., αl),

where

RQj
(A(S)) =

∫
X×{K+1}

ℓ(A(S)(x), y)dQj(x, y).

Therefore, we have that for any (α1, ..., αl) ∈ ∆o
l ,

∣∣(1− l∑
j=1

αj)ES∼Dn
XIYI

Rin
D(A(S)) +

l∑
j=1

αjES∼Dn
XIYI

RQj
(A(S))− fD,Q(α1, ..., αl)

∣∣ ≤ ϵ(n).

(17)

Let

gn(α1, ..., αl) = (1−
l∑

j=1

αj)ES∼Dn
XIYI

Rin
D(A(S)) +

l∑
j=1

αjES∼Dn
XIYI

RQj (A(S)).

Note that Eq. (17) implies that

lim
n→+∞

gn(α1, ..., αl) = fD,Q(α1, ..., αl), ∀(α1, ..., αl) ∈ ∆o
l ,

lim
n→+∞

gn(0) = fD,Q(0).
(18)

Step 1. Since αj /∈ ∆o
l , we need to prove that

lim
n→+∞

ES∼Dn
XIYI

RQj (A(S)) = f(αj), i.e., lim
n→+∞

gn(αj) = f(αj), (19)

where αj is the 1× l vector, whose j-th element is 1 and other elements are 0.

Let D̃XY = 0.5 ∗DXIYI
+ 0.5 ∗Qj . The second result of Theorem 1 implies that

ES∼Dn
XIYI

Rout
D̃

(A(S)) ≤ inf
h∈H

Rout
D̃

(h) + ϵ(n).

Since Rout
D̃

(A(S)) = RQj (A(S)) and Rout
D̃

(h) = RQj (h),

ES∼Dn
XIYI

RQj
(A(S)) ≤ inf

h∈H
RQj

(h) + ϵ(n).

Note that infh∈H RQj
(h) ≤ ES∼Dn

XIYI
RQj

(A(S)). We have

0 ≤ ES∼Dn
XIYI

RQj
(A(S))− inf

h∈H
RQj

(h) ≤ ϵ(n). (20)

Eq. (20) implies that
lim

n→+∞
ES∼Dn

XIYI
RQj

(A(S)) = inf
h∈H

RQj
(h). (21)

We note that infh∈H RQj (h) = fD,Q(αj). Therefore,

lim
n→+∞

ES∼Dn
XIYI

RQj
(A(S)) = fD,Q(αj), i.e., lim

n→+∞
gn(αj) = f(αj). (22)
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Step 2. It is easy to check that for any (α1, ..., αl) ∈ ∆o
l ,

lim
n→+∞

gn(α1, ..., αl) = lim
n→+∞

(
(1−

l∑
j=1

αj)gn(0) +

l∑
j=1

αjgn(αj)
)

= (1−
l∑

j=1

αj) lim
n→+∞

gn(0) +

l∑
j=1

αj lim
n→+∞

gn(αj).

(23)

According to Eq. (18) and Eq. (22), we have

lim
n→+∞

gn(α1, ..., αl) = fD,Q(α1, ..., αl), ∀(α1, ..., αl) ∈ ∆o
l ,

lim
n→+∞

gn(0) = fD,Q(0),

lim
n→+∞

gn(αj) = f(αj),

(24)

Combining Eq. (24) with Eq. (23), we complete the proof.

Lemma 2.
inf
h∈H

Rα
D(h) = (1− α) inf

h∈H
Rin

D(h) + α inf
h∈H

Rout
D (h), ∀α ∈ [0, 1),

if and only if for any ϵ > 0,

{h′ ∈ H : Rin
D(h′) ≤ inf

h∈H
Rin

D(h) + 2ϵ} ∩ {h′ ∈ H : Rout
D (h′) ≤ inf

h∈H
Rout

D (h) + 2ϵ} ≠ ∅.

Proof of Lemma 2. For the sake of convenience, we set fD(α) = infh∈H Rα
D(h), for any α ∈ [0, 1].

First, we prove that fD(α) = (1− α)fD(0) + αfD(1), ∀α ∈ [0, 1) implies

{h′ ∈ H : Rin
D(h′) ≤ inf

h∈H
Rin

D(h) + 2ϵ} ∩ {h′ ∈ H : Rout
D (h′) ≤ inf

h∈H
Rout

D (h) + 2ϵ} ≠ ∅.

For any ϵ > 0 and 0 ≤ α < 1, we can find hα
ϵ ∈ H satisfying that

Rα
D(hα

ϵ ) ≤ inf
h∈H

Rα
D(h) + ϵ.

Note that

inf
h∈H

Rα
D(h) = inf

h∈H

(
(1− α)Rin

D(h) + αRout
D (h)

)
≥ (1− α) inf

h∈H
Rin

D(h) + α inf
h∈H

Rout
D (h).

Therefore,

(1− α) inf
h∈H

Rin
D(h) + α inf

h∈H
Rout

D (h) ≤ inf
h∈H

Rα
D(h) ≤ Rα

D(hα
ϵ ) ≤ inf

h∈H
Rα

D(h) + ϵ. (25)

Note that fD(α) = (1− α)fD(0) + αfD(1),∀α ∈ [0, 1), i.e.,

inf
h∈H

Rα
D(h) = (1− α) inf

h∈H
Rin

D(h) + α inf
h∈H

Rout
D (h),∀α ∈ [0, 1). (26)

Using Eqs. (25) and (26), we have that for any 0 ≤ α < 1,

ϵ ≥
∣∣Rα

D(hα
ϵ )− inf

h∈H
Rα

D(h)
∣∣ = ∣∣(1−α)

(
Rin

D(hα
ϵ )− inf

h∈H
Rin

D(h)
)
+α

(
Rout

D (hα
ϵ )− inf

h∈H
Rout

D (h)
)∣∣.

(27)
Since Rout

D (hα
ϵ ) − infh∈H Rout

D (h) ≥ 0 and Rin
D(hα

ϵ ) − infh∈H Rin
D(h) ≥ 0, Eq. (27) implies that:

for any 0 < α < 1,

Rin
D(hα

ϵ ) ≤ inf
h∈H

Rin
D(h) + ϵ/(1− α),

Rout
D (hα

ϵ ) ≤ inf
h∈H

Rout
D (h) + ϵ/α.

Therefore,

hα
ϵ ∈ {h′ ∈ H : Rin

D(h′) ≤ inf
h∈H

Rin
D(h)+ϵ/(1−α)}∩{h′ ∈ H : Rout

D (h′) ≤ inf
h∈H

Rout
D (h)+ϵ/α}.
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If we set α = 0.5, we obtain that for any ϵ > 0,

{h′ ∈ H : Rin
D(h′) ≤ inf

h∈H
Rin

D(h) + 2ϵ} ∩ {h′ ∈ H : Rout
D (h′) ≤ inf

h∈H
Rout

D (h) + 2ϵ} ≠ ∅.

Second, we prove that for any ϵ > 0, if

{h′ ∈ H : Rin
D(h′) ≤ inf

h∈H
Rin

D(h) + 2ϵ} ∩ {h′ ∈ H : Rout
D (h′) ≤ inf

h∈H
Rout

D (h) + 2ϵ} ≠ ∅,

then fD(α) = (1− α)fD(0) + αfD(1), for any α ∈ [0, 1).

Let hϵ ∈ {h′ ∈ H : Rin
D(h′) ≤ infh∈H Rin

D(h)+2ϵ}∩{h′ ∈ H : Rout
D (h′) ≤ infh∈H Rout

D (h)+2ϵ}.

Then,

inf
h∈H

Rα
D(h) ≤ Rα

D(hϵ) ≤ (1− α) inf
h∈H

Rin
D(h) + α inf

h∈H
Rout

D (h) + 2ϵ ≤ inf
h∈H

Rα
D(h) + 2ϵ,

which implies that |fD(α)− (1− α)fD(0)− αfD(1)| ≤ 2ϵ.

As ϵ → 0, |fD(α)− (1− α)fD(0)− αfD(1)| ≤ 0. We have completed the proof.

Theorem 2. Given a hypothesis space H and a domain DXY , OOD detection is learnable in the
single-distribution space DDXY

XY for H if and only if linear condition (i.e., Condition 1) holds.

Proof of Theorem 2. Based on Lemma 1, we obtain that Condition 1 is the necessary condition for the
learnability of OOD detection in the single-distribution space DDXY

XY . Next, it suffices to prove that
Condition 1 is the sufficient condition for the learnability of OOD detection in the single-distribution
space DDXY

XY . We use Lemma 2 to prove the sufficient condition.

Let F be the infinite sequence set that consists of all infinite sequences, whose coordinates are
hypothesis functions, i.e.,

F = {h = (h1, ..., hn, ...) : ∀hn ∈ H, n = 1, ....,+∞}.

For each h ∈ F , there is a corresponding algorithm Ah
6: Ah(S) = hn, if |S| = n. F generates

an algorithm class A = {Ah : ∀h ∈ F}. We select a consistent algorithm from the algorithm class
A .

We construct a special infinite sequence h̃ = (h̃1, ..., h̃n, ...) ∈ F . For each positive integer
n, we select h̃n from {h′ ∈ H : Rin

D(h′) ≤ infh∈H Rin
D(h) + 2/n} ∩ {h′ ∈ H : Rout

D (h′) ≤
infh∈H Rout

D (h) + 2/n} (the existence of h̃n is based on Lemma 2). It is easy to check that

ES∼Dn
XIYI

Rin
D(Ah̃(S)) ≤ inf

h∈H
Rin

D(h) + 2/n.

ES∼Dn
XIYI

Rout
D (Ah̃(S)) ≤ inf

h∈H
Rout

D (h) + 2/n.

Since (1−α) infh∈H Rin
D(h)+α infh∈H Rout

D (h) ≤ infh∈H Rα
D(h), we obtain that for any α ∈ [0, 1],

ES∼Dn
XIYI

Rα
D(Ah̃(S)) ≤ inf

h∈H
Rα

D(h) + 2/n.

We have completed this proof.

G Proofs of Theorem 3 and Theorem 4

G.1 Proof of Theorem 3

Theorem 3. Given a hypothesis space H and a prior-unknown space DXY , if there is DXY ∈ DXY ,
which has overlap between ID and OOD, and infh∈H Rin

D(h) = 0 and infh∈H Rout
D (h) = 0, then

Condition 1 does not hold. Therefore, OOD detection is not learnable in DXY for H.
6In this paper, we regard an algorithm as a mapping from ∪+∞

n=1(X × Y)n to H. So we can design an
algorithm like this.
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Proof of Theorem 3. We first explain how we get fI and fO in Definition 4. Since DX is absolutely
continuous respect to µ (DX ≪ µ), then DXI ≪ µ and DXO ≪ µ. By Radon-Nikodym Theorem
[36], we know there exist two non-negative functions defined over X : fI and fO such that for any
µ-measurable set A ⊂ X ,

DXI
(A) =

∫
A

fI(x)dµ(x), DXO
(A) =

∫
A

fO(x)dµ(x).

Second, we prove that for any α ∈ (0, 1), infh∈H Rα
D(h) > 0.

We define Am = {x ∈ X : fI(x) ≥ 1
m and fO(x) ≥ 1

m}. It is clear that

∪+∞
m=1Am = {x ∈ X : fI(x) > 0 and fO(x) > 0} = Aoverlap,

and
Am ⊂ Am+1.

Therefore,
lim

m→+∞
µ(Am) = µ(Aoverlap) > 0,

which implies that there exists m0 such that

µ(Am0) > 0.

For any α ∈ (0, 1), we define cα = miny1∈Yall

(
(1− α)miny2∈Y ℓ(y1, y2) + αℓ(y1,K + 1)

)
. It is

clear that cα > 0 for α ∈ (0, 1). Then, for any h ∈ H,

Rα
D(h)

=

∫
X×Yall

ℓ(h(x), y)dDα
XY (x, y)

=

∫
X×Y

(1− α)ℓ(h(x), y)dDXIYI
(x, y) +

∫
X×{K+1}

αℓ(h(x), y)dDXOYO
(x, y)

≥
∫
Am0

×Y
(1− α)ℓ(h(x), y)dDXIYI

(x, y) +

∫
Am0

×{K+1}
αℓ(h(x), y)dDXOYO

(x, y)

=

∫
Am0

(
(1− α)

∫
Y
ℓ(h(x), y)dDYI|XI

(y|x)
)
dDXI

(x)

+

∫
Am0

αℓ(h(x),K + 1)dDXO
(x)

≥
∫
Am0

(1− α) min
y2∈Y

ℓ(h(x), y2)dDXI(x) +

∫
Am0

αℓ(h(x),K + 1)dDXO(x)

≥
∫
Am0

(1− α) min
y2∈Y

ℓ(h(x), y2)fI(x)dµ(x) +

∫
Am0

αℓ(h(x),K + 1)fO(x)dµ(x)

≥ 1

m0

∫
Am0

(1− α) min
y2∈Y

ℓ(h(x), y2)dµ(x) +
1

m0

∫
Am0

αℓ(h(x),K + 1)dµ(x)

=
1

m0

∫
Am0

(
(1− α) min

y2∈Y
ℓ(h(x), y2) + αℓ(h(x),K + 1)

)
dµ(x) ≥ cα

m0
µ(Am0) > 0.

Therefore,
inf
h∈H

Rα
D(h) ≥ cα

m0
µ(Am0) > 0.

Third, Condition 1 indicates that infh∈H Rα
D(h) = (1− α) infh∈H Rin

D(h) + α infh∈H Rin
D(h) = 0

(here we have used conditions infh∈H Rin
D(h) = 0 and infh∈H Rout

D (h) = 0), which contradicts with
infh∈H Rα

D(h) > 0 (α ∈ (0, 1)). Therefore, Condition 1 does not hold. Using Lemma 1, we obtain
that OOD detection in DXY is not learnable for H.
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G.2 Proof of Theorem 4

Theorem 4 (Impossibility Theorem for Total Space). OOD detection is not learnable in the total
space Dall

XY for H, if |ϕ ◦ H| > 1, where ϕ maps ID labels to 1 and maps OOD labels to 2.

Proof of Theorem 4. We need to prove that OOD detection is not learnable in the total space Dall
XY

for H, if H is non-trivial, i.e., {x ∈ X : ∃h1, h2 ∈ H, s.t. h1(x) ∈ Y, h2(x) = K + 1} ≠ ∅.
The main idea is to construct a domain DXY satisfying that:
1) the ID and OOD distributions have overlap (Definition 4); and 2) Rin

D(h1) = 0, Rout
D (h2) = 0.

According to the condition that H is non-trivial, we know that there exist h1, h2 ∈ H such that
h1(x1) ∈ Y, h2(x1) = K+1, for some x1 ∈ X . We set DXY = 0.5∗δ(x1,h1(x1))+0.5∗δ(x1,h2(x1)),
where δ is the Dirac measure. It is easy to check that Rin

D(h1) = 0, Rout
D (h2) = 0, which implies that

infh∈H Rin
D(h) = 0 and infh∈H Rout

D (h) = 0. In addition, the ID distribution δ(x1,h1(x1)) and OOD
distribution δ(x1,h2(x1)) have overlap x1. By using Theorem 3, we have completed this proof.

H Proof of Theorem 5

Before proving Theorem 5, we need three important lemmas.
Lemma 3. Suppose that DXY is a domain with OOD convex decomposition Q1, ..., Ql (convex
decomposition is given by Definition 6 in Appendix F), and DXY is a finite discrete distribution, then
(the definition of fD,Q is given in Condition 4)

fD,Q(α1, ..., αl) = (1−
l∑

j=1

αj)fD,Q(0) +

l∑
j=1

αjfD,Q(αj), ∀(α1, ..., αl) ∈ ∆o
l ,

if and only if

argmin
h∈H

RD(h) =

l⋂
j=1

argmin
h∈H

RQj
(h)

⋂
argmin

h∈H
Rin

D(h),

where 0 is the 1× l vector, whose elements are 0, and αj is the 1× l vector, whose j-th element is 1
and other elements are 0, and

RQj
(h) =

∫
X×{K+1}

ℓ(h(x), y)dQj(x, y).

Proof of Lemma 3. To better understand this proof, we recall the definition of fD,Q(α1, ..., αl):

fD,Q(α1, ..., αl) = inf
h∈H

(
(1−

l∑
j=1

αj)R
in
D(h) +

l∑
j=1

αjRQj (h)
)
, ∀(α1, ..., αl) ∈ ∆o

l

First, we prove that if

fD,Q(α1, ..., αl) = (1−
l∑

j=1

αj)fD,Q(0) +

l∑
j=1

αjfD,Q(αj), ∀(α1, ..., αl) ∈ ∆o
l ,

then,

argmin
h∈H

RD(h) =

l⋂
j=1

argmin
h∈H

RQj (h)
⋂

argmin
h∈H

Rin
D(h).

Let DXY = (1−
∑l

j=1 λj)DXIYI +
∑l

j=1 λjQj , for some (λ1, ..., λl) ∈ ∆o
l . Since DXY has finite

support set, we have

argmin
h∈H

RD(h) = argmin
h∈H

(
(1−

l∑
j=1

λj)R
in
D(h) +

l∑
j=1

λjRQj
(h)

)
̸= ∅.
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We can find that h0 ∈ argminh∈H

(
(1−

∑l
j=1 λj)R

in
D(h) +

∑l
j=1 λjRQj

(h)
)

. Hence,

(1−
l∑

j=1

λj)R
in
D(h0) +

l∑
j=1

λjRQj (h0) = inf
h∈H

(
(1−

l∑
j=1

λj)R
in
D(h) +

l∑
j=1

λjRQj (h)
)
. (28)

Note that the condition fD,Q(α1, ..., αl) = (1−
∑l

j=1 αj)fD,Q(0) +
∑l

j=1 αjfD,Q(αj) implies

(1−
l∑

j=1

λj) inf
h∈H

Rin
D(h)+

l∑
j=1

λj inf
h∈H

RQj
(h) = inf

h∈H

(
(1−

l∑
j=1

λj)R
in
D(h)+

l∑
j=1

λjRQj
(h)

)
. (29)

Therefore, Eq. (28) and Eq. (29) imply that

(1−
l∑

j=1

λj) inf
h∈H

Rin
D(h) +

l∑
j=1

λj inf
h∈H

RQj
(h) = (1−

l∑
j=1

λj)R
in
D(h0) +

l∑
j=1

λjRQj
(h0). (30)

Since Rin
D(h0) ≥ infh∈H Rin

D(h) and RQj (h0) ≥ infh∈H Rin
Qj

(h), for j = 1, ..., l, then using Eq.
(30), we have that

Rin
D(h0) = inf

h∈H
Rin

D(h),

RQj (h0) = inf
h∈H

RQj (h), ∀j = 1, ..., l,

which implies that

h0 ∈
l⋂

j=1

argmin
h∈H

RQj
(h)

⋂
argmin

h∈H
Rin

D(h).

Therefore,

argmin
h∈H

RD(h) ⊂
l⋂

j=1

argmin
h∈H

RQj
(h)

⋂
argmin

h∈H
Rin

D(h). (31)

Additionally, using

fD,Q(α1, ..., αl) = (1−
l∑

j=1

αj)fD,Q(0) +

l∑
j=1

αjfD,Q(αj), ∀(α1, ..., αl) ∈ ∆o
l ,

we obtain that for any h′ ∈
⋂l

j=1 argminh∈H RQj
(h)

⋂
argminh∈H Rin

D(h),

inf
h∈H

RD(h) = inf
h∈H

(
(1−

l∑
j=1

λj)R
in
D(h) +

l∑
j=1

λjRQj (h)
)

=(1−
l∑

j=1

λj) inf
h∈H

Rin
D(h) +

l∑
j=1

λj inf
h∈H

RQj
(h)

=(1−
l∑

j=1

λj)R
in
D(h′) +

l∑
j=1

λjRQj (h
′) = RD(h′),

which implies that
h′ ∈ argmin

h∈H
RD(h).

Therefore,
l⋂

j=1

argmin
h∈H

RQj
(h)

⋂
argmin

h∈H
Rin

D(h) ⊂ argmin
h∈H

RD(h). (32)
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Combining Eq. (31) with Eq. (32), we obtain that

l⋂
j=1

argmin
h∈H

RQj
(h)

⋂
argmin

h∈H
Rin

D(h) = argmin
h∈H

RD(h).

Second, we prove that if

argmin
h∈H

RD(h) =

l⋂
j=1

argmin
h∈H

RQj
(h)

⋂
argmin

h∈H
Rin

D(h),

then,

fD,Q(α1, ..., αl) = (1−
l∑

j=1

αj)fD,Q(0) +

l∑
j=1

αjfD,Q(αj), ∀(α1, ..., αl) ∈ ∆o
l .

We set

h0 ∈
l⋂

j=1

argmin
h∈H

RQj (h)
⋂

argmin
h∈H

Rin
D(h),

then, for any (α1, ..., αl) ∈ ∆o
l ,

(1−
l∑

j=1

αj) inf
h∈H

Rin
D(h) +

l∑
j=1

αj inf
h∈H

RQj
(h) ≤ inf

h∈H

(
(1−

l∑
j=1

αj)R
in
D(h) +

l∑
j=1

αjRQj
(h)

)

≤ (1−
l∑

j=1

αj)R
in
D(h0) +

l∑
j=1

αjRQj (h0)

= (1−
l∑

j=1

αj) inf
h∈H

Rin
D(h) +

l∑
j=1

αj inf
h∈H

RQj
(h).

Therefore, for any (α1, ..., αl) ∈ ∆o
l ,

(1−
l∑

j=1

αj) inf
h∈H

Rin
D(h) +

l∑
j=1

αj inf
h∈H

RQj
(h) = inf

h∈H

(
(1−

l∑
j=1

αj)R
in
D(h) +

l∑
j=1

αjRQj
(h)

)
,

which implies that: for any (α1, ..., αl) ∈ ∆o
l ,

fD,Q(α1, ..., αl) = (1−
l∑

j=1

αj)fD,Q(0) +

l∑
j=1

αjfD,Q(αj).

We have completed this proof.
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Lemma 4. Suppose that Assumption 1 holds. If there is a finite discrete domain DXY ∈ Ds
XY such

that infh∈H Rout
D (h) > 0, then OOD detection is not learnable in Ds

XY for H.

Proof of Lemma 4. Suppose that suppDXO
= {xout

1 , ...,xout
l }, then it is clear that DXY has OOD

convex decomposition δxout
1

, ..., δxout
l

, where δx is the dirac measure whose support set is {x}.

Since H is the separate space for OOD (i.e., Assumption 1 holds), then ∀j = 1, ..., l,

inf
h∈H

Rδxout
j

(h) = 0,

where
Rδxout

j

(h) =

∫
X
ℓ(h(x),K + 1)dδxout

j
(x).

This implies that: if
⋂l

j=1 argminh∈H Rδxout
j

(h) ̸= ∅, then for ∀h′ ∈
⋂l

j=1 argminh∈H Rδxout
j

(h),

h′(xout
i ) = K + 1, ∀i = 1, ..., l.

Therefore, if
⋂l

j=1 argminh∈H Rδxout
j

(h)
⋂

argminh∈H Rin
D(h) ̸= ∅,

then for any h∗ ∈
⋂l

j=1 argminh∈H Rδxout
j

(h)
⋂

argminh∈H Rin
D(h), we have that

h∗(xout
i ) = K + 1, ∀i = 1, ..., l.

Proof by Contradiction: assume OOD detection is learnable in Ds
XY for H, then Lemmas 1 and 3

imply that
l⋂

j=1

argmin
h∈H

Rδxout
j

(h)
⋂

argmin
h∈H

Rin
D(h) = argmin

h∈H
RD(h) ̸= ∅.

Therefore, for any h∗ ∈ argminh∈H RD(h), we have that

h∗(xout
i ) = K + 1, ∀i = 1, ..., l,

which implies that for any h∗ ∈ argminh∈H RD(h), we have Rout
D (h∗) = 0, which implies that

infh∈H Rout
D (h) = 0.

It is clear that infh∈H Rout
D (h) = 0 is inconsistent with the condition infh∈H Rout

D (h) > 0. There-
fore, OOD detection is not learnable in Ds

XY for H.

Lemma 5. If Assumption 1 holds, VCdim(ϕ ◦ H) = v < +∞ and suph∈H |{x ∈ X : h(x) ∈
Y}| > m such that v < m, then OOD detection is not learnable in Ds

XY for H, where ϕ maps ID’s
labels to 1 and maps OOD’s labels to 2.

Proof of Lemma 5. Due to suph∈H |{x ∈ X : h(x) ∈ Y}| > m, we can obtain a set

C = {x1, ...,xm,xm+1},

which satisfies that there exists h̃ ∈ H such that h̃(xi) ∈ Y for any i = 1, ...,m,m+ 1.

Let Hϕ
C = {(ϕ ◦ h(x1), ..., ϕ ◦ h(xm), ϕ ◦ h(xm+1) : h ∈ H}. It is clear that

(1, 1, ..., 1) = (ϕ ◦ h̃(x1), ..., ϕ ◦ h̃(xm), ϕ ◦ h̃(xm+1)) ∈ Hϕ
C ,

where (1, 1, ..., 1) means all elements are 1.

Let Hϕ
m+1 = {(ϕ◦h(x1), ..., ϕ◦h(xm), ϕ◦h(xm+1) : h is any hypothesis function from X to Yall}.

Clearly, Hϕ
C ⊂ Hϕ

m+1 and |Hϕ
m+1| = 2m+1. Sauer-Shelah-Perles Lemma (Lemma 6.10 in [21])

implies that

|Hϕ
C | ≤

v∑
i=0

(
m+1

i

)
.
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Since
∑v

i=0

(
m+1

i

)
< 2m+1 − 1 (because v < m), we obtain that |Hϕ

C | ≤ 2m+1 − 2. Therefore,
Hϕ

C ∪{(2, 2..., 2)} is a proper subset of Hϕ
m+1, where (2, 2, ..., 2) means that all elements are 2. Note

that (1, 1..., 1) (all elements are 1) also belongs to Hϕ
C . Hence, Hϕ

C ∪ {(2, 2..., 2)} ∪ {(1, 1..., 1)} is
a proper subset of Hϕ

m+1, which implies that we can obtain a hypothesis function h′ satisfying that:

1)(ϕ ◦ h′(x1), ..., ϕ ◦ h′(xm), ϕ ◦ h′(xm+1)) /∈ Hϕ
C ;

2) There exist xj ,xp ∈ C such that ϕ ◦ h′(xj) = 2 and ϕ ◦ h′(xp) = 1.

Let CI = C ∩ {x ∈ X : ϕ ◦ h′(x) = 1} and CO = C ∩ {x ∈ X : ϕ ◦ h′(x) = 2};

Then, we construct a special domain DXY :

DXY = 0.5 ∗DXI ∗DYI|XI
+ 0.5 ∗DXO ∗DYO|XO

, where

DXI
=

1

|CI|
∑
x∈CI

δx and DYI|XI
(y|x) = 1, if h̃(x) = y and x ∈ CI;

and

DXO
=

1

|CO|
∑

x∈CO

δx and DYO|XO
(K + 1|x) = 1, if x ∈ CO.

Since DXY is a finite discrete distribution and (ϕ ◦ h′(x1), ..., ϕ ◦ h′(xm), ϕ ◦ h′(xm+1)) /∈ Hϕ
C , it

is clear that argminh∈H RD(h) ̸= ∅ and infh∈H RD(h) > 0.

Additionally, Rin
D(h̃) = 0. Therefore, infh∈H Rin

D(h) = 0.

Proof by Contradiction: suppose that OOD detection is learnable in Ds
XY for H, then Lemma 1

implies that
inf
h∈H

RD(h) = 0.5 ∗ inf
h∈H

Rin
D(h) + 0.5 ∗ inf

h∈H
Rout

D (h).

Therefore, if OOD detection is learnable in Ds
XY for H, then infh∈H Rout

D (h) > 0.

Until now, we have constructed a domain DXY (defined over X × Yall) with finite support and
satisfying that infh∈H Rout

D (h) > 0. Note that H is the separate space for OOD data (Assumption
1 holds). Using Lemma 4, we know that OOD detection is not learnable in Ds

XY for H, which is
inconsistent with our assumption that OOD detection is learnable in Ds

XY for H. Therefore, OOD
detection is not learnable in Ds

XY for H. We have completed the proof.

Theorem 5 (Impossibility Theorem for Separate Space). If Assumption 1 holds, VCdim(ϕ ◦ H) <
+∞ and suph∈H |{x ∈ X : h(x) ∈ Y}| = +∞, then OOD detection is not learnable in separate
space Ds

XY for H, where ϕ maps ID labels to 1 and maps OOD labels to 2.

Proof of Theorem 5. Let VCdim(ϕ ◦ H) = v. Since suph∈H |{x ∈ X : h(x) ∈ Y}| = +∞, it is
clear that suph∈H |{x ∈ X : h(x) ∈ Y}| > v. Using Lemma 5, we complete this proof.

I Proofs of Theorem 6 and Theorem 7

I.1 Proof of Theorem 6

Firstly, we need two lemmas, which are motivated by Lemma 19.2 and Lemma 19.3 in [21].

Lemma 6. Let C1,...,Cr be a cover of space X , i.e.,
∑r

i=1 Ci = X . Let SX = {x1, ...,xn} be a
sequence of n data drawn from DXI , i.i.d. Then

ESX∼Dn
XI

( ∑
i:Ci∩SX=∅

DXI
(Ci)

)
≤ r

en
.
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Proof of Lemma 6.

ESX∼Dn
XI

( ∑
i:Ci∩SX=∅

DXI
(Ci)

)
=

r∑
i=1

(
DXI

(Ci) · ESX∼Dn
XI

(
1Ci∩SX=∅

))
,

where 1 is the characteristic function.

For each i,

ESX∼Dn
XI

(
1Ci∩SX=∅

)
=

∫
Xn

1Ci∩SX=∅dD
n
XI

(SX)

=
( ∫

X
1Ci∩{x}=∅dDXI

(x)
)n

=
(
1−DXI(Ci)

)n ≤ e−nDXI
(Ci).

Therefore,

ESX∼Dn
XI

( ∑
i:Ci∩S=∅

DXI
(Ci)

)
≤

r∑
i=1

DXI
(Ci)e

−nDXI
(Ci)

≤ r max
i∈{1,...,r}

DXI
(Ci)e

−nDXI
(Ci) ≤ r

ne
,

here we have used inequality: maxi∈{1,...,r} aie
−nai ≤ 1/(ne). The proof has been completed.

Lemma 7. Let K = 1. When X ⊂ Rd is a bounded set, there exists a monotonically decreasing
sequence ϵcons(m) satisfying that ϵcons(m) → 0, as m → 0, such that

Ex∼DXI
,S∼Dn

XIYI
dist(x, π1(x, S)) < ϵcons(n),

where dist is the Euclidean distance, π1(x, S) = argminx̃∈SX
dist(x, x̃), here SX is the feature

part of S, i.e., SX = {x1, ...,xn}, if S = {(x1, y1), ..., (xn, yn)}.

Proof of Lemma 7. Since X is bounded, without loss of generality, we set X ⊂ [0, 1)d. Fix ϵ = 1/T ,
for some integer T . Let r = T d and C1, C2, ..., Cr be a cover of X : for every (a1, ..., aT ) ∈ [T ]d :=
[1, ..., T ]d, there exists a Ci = {x = (x1, ..., xd) : ∀j ∈ {1, ..., d}, xj ∈ [(aj − 1)/T, aj/T )}.

If x,x′ belong to some Ci, then dist(x,x′) ≤
√
dϵ; otherwise, dist(x,x′) ≤

√
d. Therefore,

Ex∼DXI
,S∼Dn

XIYI
dist(x, π1(x, S))

≤ES∼Dn
XIYI

(√
dϵ

∑
i:Ci∩SX ̸=∅

DXI
(Ci) +

√
d

∑
i:Ci∩SX=∅

DXI
(Ci)

)
≤ESX∼Dn

XI

(√
dϵ

∑
i:Ci∩SX ̸=∅

DXI(Ci) +
√
d

∑
i:Ci∩SX=∅

DXI(Ci)
)
.

Note that C1, ..., Cr are disjoint.

Therefore,
∑

i:Ci∩SX ̸=∅ DXI
(Ci) ≤ DXI

(
∑

i:Ci∩SX ̸=∅ Ci) ≤ 1. Using Lemma 6, we obtain

Ex∼DXI
,S∼Dn

XIYI
dist(x, π1(x, S)) ≤

√
dϵ+

r
√
d

ne
=

√
dϵ+

√
d

neϵd
.

If we set ϵ = 2n−1/(d+1), then

Ex∼DXI
,S∼Dn

XIYI
dist(x, π1(x, S)) ≤

2
√
d

n1/(d+1)
+

√
d

2den1/(d+1)
.

If we set ϵcons(n) = 2
√
d

n1/(d+1) +
√
d

2den1/(d+1) , we complete this proof.
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Theorem 6. Let K = 1 and |X | < +∞. Suppose that Assumption 1 holds and the constant function
hin := 1 ∈ H. Then OOD detection is learnable in Ds

XY for H if and only if Hall − {hout} ⊂ H,
where Hall is the hypothesis space consisting of all hypothesis functions, and hout is a constant
function that hout := 2, here 1 represents ID data and 2 represents OOD data.

Proof of Theorem 6. First, we prove that if the hypothesis space H is a separate space for OOD (i.e.,
Assumption 1 holds), the constant function hin := 1 ∈ H, then that OOD detection is learnable in
Ds

XY for H implies Hall − {hout} ⊂ H.

Proof by Contradiction: suppose that there exists h′ ∈ Hall such that h′ ̸= hout and h′ /∈ H.

Let X = {x1, ...,xm}, CI = {x ∈ X : h′(x) ∈ Y} and CO = {x ∈ X : h′(x) = K + 1}.

Because h′ ̸= hout, we know that CI ̸= ∅.

We construct a special domain DXY ∈ Ds
XY : if CO = ∅, then DXY = DXI ∗DYI|XI

; otherwise,

DXY = 0.5 ∗DXI
∗DYI|XI

+ 0.5 ∗DXO
∗DYO|XO

, where

DXI =
1

|CI|
∑
x∈CI

δx and DYI|XI
(y|x) = 1, if h′(x) = y and x ∈ CI,

and
DXO =

1

|CO|
∑

x∈CO

δx and DYO|XO
(K + 1|x) = 1, if x ∈ CO.

Since h′ /∈ H and |X | < +∞, then argminh∈H RD(h) ̸= ∅, and infh∈H RD(h) > 0. Additionally,
Rin

D(hin) = 0 (here hin = 1), hence, infh∈H Rin
D(h) = 0.

Since OOD detection is learnable in Ds
XY for H, Lemma 1 implies that

inf
h∈H

RD(h) = (1− πout) inf
h∈H

Rin
D(h) + πout inf

h∈H
Rout

D (h),

where πout = DY (Y = K + 1) = 1 or 0.5. Since infh∈H Rin
D(h) = 0 and infh∈H RD(h) > 0, we

obtain that infh∈H Rout
D (h) > 0.

Until now, we have constructed a special domain DXY ∈ Ds
XY satisfying that infh∈H Rout

D (h) > 0.
Using Lemma 4, we know that OOD detection in Ds

XY is not learnable for H, which is inconsistent
with the condition that OOD detection is learnable in Ds

XY for H. Therefore, the assumption (there
exists h′ ∈ Hall such that h′ ̸= hout and h /∈ H) doesn’t hold, which implies that Hall−{hout} ⊂ H.

Second, we prove that if Hall − {hout} ⊂ H, then OOD detection is learnable in Ds
XY for H.

To prove this result, we need to design a special algorithm. Let d0 = minx,x′∈X and x ̸=x′ dist(x,x′),
where dist is the Euclidean distance. It is clear that d0 > 0. Let

A(S)(x) =

{
1, if dist(x, π1(x, S)) < 0.5 ∗ d0;
2, if dist(x, π1(x, S)) ≥ 0.5 ∗ d0,

where π1(x, S) = argminx̃∈SX
dist(x, x̃), here SX is the feature part of S, i.e., SX = {x1, ...,xn},

if S = {(x1, y1), ..., (xn, yn)}.

For any x ∈ suppDXI
, it is easy to check that for almost all S ∼ Dn

XIYI
,

dist(x, π1(x, S)) > 0.5 ∗ d0,

which implies that
A(S)(x) = 2,

hence,
ES∼Dn

XIYI
Rout

D (A(S)) = 0. (33)

Using Lemma 7, for any x ∈ suppDXI
, we have

Ex∼DXI
,S∼Dn

XIYI
dist(x, π1(x, S)) < ϵcons(n),

where ϵcons(n) → 0, as n → 0 and ϵcons(n) is a monotonically decreasing sequence.
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Hence, we have that

DXI ×Dn
XIYI

({(x, S) : dist(x, π1(x, S)) ≥ 0.5 ∗ d0}) ≤ 2ϵcons(n)/d0,

where DXI ×Dn
XIYI

is the product measure of DXI and Dn
XIYI

[36]. Therefore,

DXI
×Dn

XIYI
({(x, S) : A(S)(x) = 1}) > 1− 2ϵcons(n)/d0,

which implies that
ES∼Dn

XIYI
Rin

D(A(S)) ≤ 2Bϵcons(n)/d0, (34)

where B = max{ℓ(1, 2), ℓ(2, 1)}. Using Eq. (33) and Eq. (34), we have proved that

ES∼Dn
XIYI

RD(A(S)) ≤ 0 + 2Bϵcons(m)/d0 ≤ inf
h∈H

RD(h) + 2Bϵcons(m)/d0. (35)

It is easy to check that A(S) ∈ Hall−{hout}. Therefore, we have constructed a consistent algorithm
A for H. We have completed this proof.

I.2 Proof of Theorem 7

Theorem 7. Let |X | < +∞ and H = Hin • Hb. If Hall − {hout} ⊂ Hb and Condition 2 holds,
then OOD detection is learnable in Ds

XY for H, where Hall and hout are defined in Theorem 6.

Proof of Theorem 7. Since |X | < +∞, we know that |H| < +∞, which implies that Hin is
agnostic PAC learnable for supervised learning in classification. Therefore, there exist an algorithm
Ain : ∪+∞

n=1(X ×Y)n → Hin and a monotonically decreasing sequence ϵ(n), such that ϵ(n) → 0, as
n → +∞, and for any DXY ∈ Ds

XY ,

ES∼Dn
XIYI

Rin
D(Ain(S)) ≤ inf

h∈Hin
Rin

D(h) + ϵ(n).

Since |X | < +∞ and Hb almost contains all binary classifiers, then using Theorem 6 and Theorem
1, we obtain that there exist an algorithm Ab : ∪+∞

n=1(X × {1, 2})n → Hb and a monotonically
decreasing sequence ϵ′(n), such that ϵ′(n) → 0, as n → +∞, and for any DXY ∈ Ds

XY ,

ES∼Dn
XIYI

Rin
ϕ(D)(A

b(ϕ(S))) ≤ inf
h∈Hb

Rin
ϕ(D)(h) + ϵ′(n),

ES∼Dn
XIYI

Rout
ϕ(D)(A

b(ϕ(S))) ≤ inf
h∈Hb

Rout
ϕ(D)(h) + ϵ′(n),

where ϕ maps ID’s labels to 1 and OOD’s label to 2,

Rin
ϕ(D)(A

b(ϕ(S))) =

∫
X×Y

ℓ(Ab(ϕ(S))(x), ϕ(y))dDXIYI
(x, y), (36)

Rin
ϕ(D)(h) =

∫
X×Y

ℓ(h(x), ϕ(y))dDXIYI
(x, y), (37)

Rout
ϕ(D)(A

b(ϕ(S))) =

∫
X×{K+1}

ℓ(Ab(ϕ(S))(x), ϕ(y))dDXOYO
(x, y), (38)

and
Rout

ϕ(D)(h) =

∫
X×{K+1}

ℓ(h(x), ϕ(y))dDXOYO
(x, y), (39)

here ϕ(S) = {(x1, ϕ(y1)), ..., (xn, ϕ(yn))}, if S = {(x1, y1), ..., (xn, yn)}.

Note that Hb almost contains all classifiers, and Ds
XY is the separate space. Hence,

ES∼Dn
XIYI

Rin
ϕ(D)(A

b(ϕ(S))) ≤ ϵ′(n), ES∼Dn
XIYI

Rout
ϕ(D)(A

b(ϕ(S))) ≤ ϵ′(n).

Next, we construct an algorithm A using Ain and Aout.
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A(S)(x) =

{
K + 1, if Ab(ϕ(S))(x) = 2;

Ain(S)(x), if Ab(ϕ(S))(x) = 1.

Since infh∈H Rin
ϕ(D)(ϕ ◦ h) = 0, infh∈H Rout

D (h) = 0, then by Condition 2, it is easy to check that

inf
h∈Hin

Rin
D(h) = inf

h∈H
Rin

D(h).

Additionally, the risk Rin
D(A(S)) is from two parts: 1) ID data are detected as OOD data; 2) ID data

are detected as ID data, but are classified as incorrect ID classes. Therefore, we have the inequality:

ES∼Dn
XIYI

Rin
D(A(S)) ≤ ES∼Dn

XIYI
Rin

D(Ain(S)) + cES∼Dn
XIYI

Rin
ϕ(D)(A

b(ϕ(S)))

≤ inf
h∈Hin

Rin
D(h) + ϵ(n) + cϵ′(n) = inf

h∈H
Rin

D(h) + ϵ(n) + cϵ′(n),
(40)

where c = maxy1,y2∈Y ℓ(y1, y2)/min{ℓ(1, 2), ℓ(2, 1)}.

Note that the risk Rout
D (A(S)) is from the case that OOD data are detected as ID data. Therefore,

ES∼Dn
XIYI

Rout
D (A(S)) ≤ cES∼Dn

X|rmIYI
Rout

ϕ(D)(A
b(ϕ(S)))

≤ cϵ′(n) ≤ inf
h∈H

Rout
D (h) + cϵ′(n).

(41)

Note that (1− α) infh∈H Rin
D(h) + α infh∈H Rout

D (h) ≤ infh∈H Rα
D(h). Then, using Eq. (40) and

Eq. (41), we obtain that for any α ∈ [0, 1],

ES∼Dn
XIYI

Rα
D(A(S)) ≤ inf

h∈H
Rα

D(h) + ϵ(n) + cϵ′(n).

According to Theorem 1 (the second result), we complete the proof.

J Proofs of Theorems 8 and 9

J.1 Proof of Theorem 8

Lemma 8. Given a prior-unknown space DXY and a hypothesis space H, if Condition 3 holds, then
for any equivalence class [D′

XY ] with respect to DXY , OOD detection is learnable in the equivalence
class [D′

XY ] for H. Furthermore, the learning rate can attain O(1/n).

Proof. Let F be a set consisting of all infinite sequences, whose coordinates are hypothesis functions,
i.e.,

F = {h = (h1, ..., hn, ...) : ∀hn ∈ H, n = 1, ....,+∞}.

For each h ∈ F , there is a corresponding algorithm Ah: Ah(S) = hn, if |S| = n. F generates an
algorithm class A = {Ah : ∀h ∈ F}. We select a consistent algorithm from the algorithm class A .

We construct a special infinite sequence h̃ = (h̃1, ..., h̃n, ...) ∈ F . For each positive integer n, we
select h̃n from⋂
∀DXY ∈[D′

XY ]

{h′ ∈ H : Rout
D (h′) ≤ inf

h∈H
Rout

D (h)+2/n}
⋂

{h′ ∈ H : Rin
D(h′) ≤ inf

h∈H
Rin

D(h)+2/n}.

The existence of h̃n is based on Condition 3. It is easy to check that for any DXY ∈ [D′
XY ],

ES∼Dn
XIYI

Rin
D(Ah̃(S)) ≤ inf

h∈H
Rin

D(h) + 2/n.

ES∼Dn
XIYI

Rout
D (Ah̃(S)) ≤ inf

h∈H
Rout

D (h) + 2/n.

Since (1−α) infh∈H Rin
D(h)+α infh∈H Rout

D (h) ≤ infh∈H Rα
D(h), we obtain that for any α ∈ [0, 1],

ES∼Dn
XIYI

Rα
D(Ah̃(S)) ≤ inf

h∈H
Rα

D(h) + 2/n.

Using Theorem 1 (the second result), we have completed this proof.
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Theorem 8. Suppose that X is a bounded set. OOD detection is learnable in the finite-ID-distribution
space DF

XY for H if and only if the compatibility condition (i.e., Condition 3) holds. Furthermore,
the learning rate ϵcons(n) can attain O(1/

√
n1−θ), for any θ ∈ (0, 1).

Proof of Theorem 8.

First, we prove that if OOD detection is learnable in DF
XY for H, then Condition 3 holds.

Since DF
XY is the prior-unknown space, by Theorem 1, there exist an algorithm A : ∪+∞

n=1(X×Y)n →
H and a monotonically decreasing sequence ϵcons(n), such that ϵcons(n) → 0, as n → +∞, and for
any DXY ∈ DF

XY ,

ES∼Dn
XIYI

[
Rin

D(A(S))− inf
h∈H

Rin
D(h)

]
≤ ϵcons(n),

ES∼Dn
XIYI

[
Rout

D (A(S))− inf
h∈H

Rout
D (h)

]
≤ ϵcons(n).

Then, for any ϵ > 0, we can find nϵ such that ϵ ≥ ϵcons(nϵ), therefore, if n = nϵ, we have

ES∼Dnϵ
XIYI

[
Rin

D(A(S))− inf
h∈H

Rin
D(h)

]
≤ ϵ,

ES∼Dnϵ
XIYI

[
Rout

D (A(S))− inf
h∈H

Rout
D (h)

]
≤ ϵ,

which implies that there exists Sϵ ∼ Dnϵ

XIYI
such that

Rin
D(A(Sϵ))− inf

h∈H
Rin

D(h) ≤ ϵ,

Rout
D (A(Sϵ))− inf

h∈H
Rout

D (h) ≤ ϵ.

Therefore, for any equivalence class [D′
XY ] with respect to DF

XY and any ϵ > 0, there exists a
hypothesis function A(Sϵ) ∈ H such that for any domain DXY ∈ [D′

XY ],

A(Sϵ) ∈ {h′ ∈ H : Rout
D (h′) ≤ inf

h∈H
Rout

D (h) + ϵ} ∩ {h′ ∈ H : Rin
D(h′) ≤ inf

h∈H
Rin

D(h) + ϵ},

which implies that Condition 3 holds.

Second, we prove Condition 3 implies the learnability of OOD detection in DF
XY for H.

For convenience, we assume that all equivalence classes are [D1
XY ], ..., [D

m
XY ]. By Lemma 8, for

every equivalence class [Di
XY ], we can find a corresponding algorithm ADi such that OOD detection

is learnable in [Di
XY ] for H. Additionally, we also set the learning rate for ADi is ϵi(n). By Lemma

8, we know that ϵi(n) can attain O(1/n).

Let Z be X ×Y . Then, we consider a bounded universal kernel K(·, ·) defined over Z×Z . Consider
the maximum mean discrepancy (MMD) [83], which is a metric between distributions: for any
distributions P and Q defined over Z , we use MMDK(Q,P ) to represent the distance.

Let F be a set consisting of all finite sequences, whose coordinates are labeled data, i.e.,

F = {S = (S1, ..., Si, ..., Sm) : ∀i = 1, ...,m and ∀ labeled data Si}.

Then, we define an algorithm space as follows:

A = {AS
7 : ∀ S ∈ F},

where
AS(S) = ADi(S), if i = argmin

i∈{1,...m}
MMDK(PSi

, PS),

here
PS =

1

n

∑
(x,y)∈S

δ(x,y), PSi
=

1

n

∑
(x,y)∈Si

, δ(x,y)

7In this paper, we regard an algorithm as a mapping from ∪+∞
n=1(X × Y)n to H. So we can design an

algorithm like this.
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and δ(x,y) is the Dirac measure. Next, we prove that we can find an algorithm A from the algorithm
space A such that A is the consistent algorithm.

Since the number of different equivalence classes is finite, we know that there exists a constant c > 0

such that for any different equivalence classes [Di
XY ] and [Dj

XY ] (i ̸= j),

MMDK(Di
XIYI

, Dj
XIYI

) > c.

Additionally, according to [83] and the property of DF
XY (the number of different equivalence classes

is finite), there exists a monotonically decreasing ϵ(n) → 0, as n → +∞ such that for any DXY ∈ D ,

ES∼Dn
XIYI

MMDK(DXIYI
, PS) ≤ ϵ(n), where ϵ(n) = O(

1√
n1−θ

). (42)

Therefore, for every equivalence class [Di
XY ], we can find data points SDi such that

MMDK(Di
XIYI

, PSDi ) <
c

100
.

Let S′ = {SD1 , ..., SDi , ..., SDm}. Then, we prove that AS′ is a consistent algorithm. By Eq. (42),
it is easy to check that for any i ∈ {1, ...,m} and any 0 < δ < 1,

PS∼Di,n
XIYI

[
MMDK(Di

XIYI
, PS) ≤

ϵ(n)

δ

]
> 1− δ,

which implies that

PS∼Di,n
XIYI

[
MMDK(PSDi , PS) ≤

ϵ(n)

δ
+

c

100

]
> 1− δ.

Therefore, (here we set δ = 200ϵ(n)/c)

PS∼Di,n
XIYI

[
AS′(S) ̸= ADi(S)

]
≤ 200ϵ(n)

c
.

Because ADi is a consistent algorithm for [Di
XY ], we conclude that for all α ∈ [0, 1],

ES∼Di,n
XIYI

[
Rα

D(AS′(S))− inf
h∈H

Rα
D(h)

]
≤ ϵi(n) +

200Bϵ(n)

c
,

where ϵi(n) = O(1/n) is the learning rate of ADi and B is the upper bound of the loss ℓ.

Let ϵmax(n) = max{ϵ1(n), ..., ϵm(n)}+ 200Bϵ(n)
c .

Then, we obtain that for any DXY ∈ DF
XY and all α ∈ [0, 1],

ES∼Dn
XIYI

[
Rα

D(AS′(S))− inf
h∈H

Rα
D(h)

]
≤ ϵmax(n) = O(

1√
n1−θ

).

According to Theorem 1 (the second result), AS′ is the consistent algorithm. This proof is completed.

J.2 Proof of Theorem 9

Theorem 9. Given a density-based space Dµ,b
XY , if µ(X ) < +∞, the Realizability Assumption

holds, then when H has finite Natarajan dimension [21], OOD detection is learnable in Dµ,b
XY for H.

Furthermore, the learning rate ϵcons(n) can attain O(1/
√
n1−θ), for any θ ∈ (0, 1).

Proof of Theorem 9. First, we consider the case that the loss ℓ is the zero-one loss.

Since µ(X ) < +∞, without loss of generality, we assume that µ(X ) = 1. We also assume that
fI is DXI

’s density function and fO is DXO
’s density function. Let f be the density function for

0.5 ∗ DXI
+ 0.5 ∗ DXO

. It is easy to check that f = 0.5 ∗ fI + 0.5 ∗ fO. Additionally, due to
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Realizability Assumption, it is obvious that for any samples S = {(x1, y1), ..., (xn, yn)} ∼ Dn
XIYI

,
i.i.d., we have that there exists h∗ ∈ H such that

1

n

n∑
i=1

ℓ(h∗(xi), yi) = 0.

Given m data points Sm = {x′
1, ...,x

′
m} ⊂ Xm. We consider the following learning rule:

min
h∈H

1

m

m∑
j=1

ℓ(h(x′
j),K + 1), subject to

1

n

n∑
i=1

ℓ(h(xi), yi) = 0.

We denote the algorithm, which solves the above rule, as ASm
8. For different data points Sm, we

have different algorithm ASm . Let S be the infinite sequence set that consists of all infinite sequences,
whose coordinates are data points, i.e.,

S := {S := (S1, S2, ..., Sm, ...) : Sm are any m data points, m = 1, ...,+∞}. (43)

Using S, we construct an algorithm space as follows:

A := {AS : ∀ S ∈ S}, where AS(S) = ASn(S), if |S| = n.

Next, we prove that there exists an algorithm AS ∈ A , which is a consistent algorithm. Given
data points Sn ∼ µn, i.i.d., using the Natarajan dimension theory and Empirical risk minimization
principle [21], it is easy to obtain that there exists a uniform constant Cθ such that (we mainly use the
uniform bounds to obtain the following bounds)

ES∼Dn
XIYI

sup
h∈HS

Rin
D(h) ≤ inf

h∈H
Rin

D(h) +
Cθ√
n1−θ

,

and
ESn∼µnRµ(ASn

(S),K + 1) ≤ inf
h∈HS

Rµ(h,K + 1) +
Cθ√
n1−θ

, (44)

where

HS = {h ∈ H :

n∑
i=1

ℓ(h(xi), yi) = 0}, here S = {(x1, y1), ..., (xn, yn)} ∼ Dn
XIYI

,

and
Rµ(h,K + 1) = Ex∼µℓ(h(x),K + 1) =

∫
X
ℓ(h(x),K + 1)dµ(x).

Due to Realizability Assumption, we obtain that infh∈H Rin
D(h) = 0. Therefore,

ES∼Dn
XIYI

sup
h∈HS

Rin
D(h) ≤ Cθ√

n1−θ
, (45)

which implies that (in following inequalities, g is the groundtruth labeling function, i.e., RD(g) = 0)

Cθ√
n
≥ ES∼Dn

XIYI
sup
h∈HS

Rin
D(h) =ES∼Dn

XIYI
sup
h∈HS

∫
g<K+1

ℓ(h(x), g(x))fI(x)dµ(x)

≥2

b
ES∼Dn

XIYI
sup
h∈HS

∫
g<K+1

ℓ(h(x), g(x))dµ(x).

This implies that (here we have used the property of zero-one loss)

ES∼Dn
XIYI

inf
h∈HS

∫
g<K+1

ℓ(h(x),K + 1)dµ(x) ≥ µ(x ∈ X : g(x) < K + 1)− Cθb

2
√
n1−θ

.

8In this paper, we regard an algorithm as a mapping from ∪+∞
n=1(X × Y)n to H. So we can design an

algorithm like this.
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Therefore,

ES∼Dn
XIYI

inf
h∈HS

Rµ(h,K + 1) ≥ µ(x ∈ X : g(x) < K + 1)− Cθb

2
√
n1−θ

. (46)

Additionally, Rµ(g,K + 1) = µ(x ∈ X : g(x) < K + 1) and g ∈ HS , which implies that

inf
h∈HS

Rµ(h,K + 1) ≤ µ(x ∈ X : g(x) < K + 1). (47)

Combining inequalities (46) and (47), we obtain that∣∣ES∼Dn
XIYI

inf
h∈HS

Rµ(h,K + 1)− µ(x ∈ X : g(x) < K + 1)
∣∣ ≤ Cθb

2
√
n1−θ

. (48)

Using inequalities (44) and (48), we obtain that∣∣ES∼Dn
XIYI

ESn∼µnRµ(ASn
(S),K + 1)− µ(x ∈ X : g(x) < K + 1)

∣∣ ≤ Cθ(b+ 1)√
n1−θ

.

By Fubini theorem, we have that∣∣ESn∼µnES∼Dn
XIYI

Rµ(ASn(S),K + 1)− µ(x ∈ X : g(x) < K + 1)
∣∣ ≤ Cθ(b+ 1)√

n1−θ
. (49)

Using inequality (45), we have

ESn∼µnES∼Dn
XIYI

Rin
D(ASn

(S)) ≤ Cθ√
n1−θ

, (50)

which implies that (here we use the property of zero-one loss)∣∣ESn∼µnES∼Dn
XIYI

∫
g<K+1

ℓ(ASn(S)(x),K+1)dµ(x)−µ(x ∈ X : g(x) < K + 1)
∣∣ ≤ 2bCθ√

n1−θ
.

(51)

Combining inequalities (49) and (51), we have∣∣ESn∼µnES∼Dn
XIYI

∫
g=K+1

ℓ(ASn
(S)(x),K + 1)dµ(x)

∣∣ ≤ 2bCθ√
n1−θ

+
Cθ(b+ 1)√

n1−θ
.

Therefore, there exist data points S′
n such that

ES∼Dn
XIYI

Rout
D (AS′

n
)

=ES∼Dn
XIYI

∫
g=K+1

ℓ(ASn(S)(x),K + 1)fO(x)dµ(x)

≤2bES∼Dn
XIYI

∫
g=K+1

ℓ(ASn(S)(x),K + 1)dµ(x) ≤ 4b2Cθ√
n1−θ

+
2Cθ(b

2 + b)√
n1−θ

.

(52)

Combining inequalities (45) and (52), we obtain that for any n, there exists data points S′
n such that

ES∼Dn
XIYI

Rα
D(AS′

n
) ≤ max

{ 4b2Cθ√
n1−θ

+
2Cθ(b

2 + b)√
n1−θ

,
Cθ√
n1−θ

}
.

We set data point sequences S′ = (S′
1, S

′
2, ..., S

′
n, ...). Then, AS′ ∈ A is the universally consistent

algorithm, i.e., for any α ∈ [0, 1]

ES∼Dn
XIYI

Rα
D(AS) ≤ max

{ 4b2Cθ√
n1−θ

+
2Cθ(b

2 + b)√
n1−θ

,
Cθ√
n1−θ

}
.

We have completed this proof when ℓ is the zero-one loss.
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Second, we prove the case that ℓ is not the zero-one loss. We use the notation ℓ0−1 as the zero-one
loss. According the definition of loss introduced in Section 2, we know that there exists a constant
M > 0 such that for any y1, y2 ∈ Yall,

1

M
ℓ0−1(y1, y2) ≤ ℓ(y1, y2) ≤ Mℓ0−1(y1, y2).

Hence,
1

M
R

α,ℓ0−1

D (h) ≤ Rα,ℓ
D (h) ≤ MR

α,ℓ0−1

D (h),

where R
α,ℓ0−1

D is the α-risk with zero-one loss, and Rα,ℓ
D is the α-risk for loss ℓ.

Above inequality tells us that Realizability Assumption holds with zero-one loss if and only if
Realizability Assumption holds with the loss ℓ. Therefore, we use the result proven in first step. We
can find a consistent algorithm A such that for any α ∈ [0, 1],

ES∼Dn
XIYI

R
α,ℓ0−1

D (A) ≤ O(
1√
n1−θ

),

which implies that for any α ∈ [0, 1],

1

M
ES∼Dn

XIYI
Rα,ℓ

D (A) ≤ O(
1√
n1−θ

).

We have completed this proof.

K Proof of Proposition 1 and Proof of Proposition 2

To better understand the contents in Appendices K-M, we introduce the important notations for
FCNN-based hypothesis space and score-based hypothesis space detaily.

FCNN-based Hypothesis Space. Given a sequence q = (l1, l2, ..., lg), where li and g are positive
integers and g > 2, we use g to represent the depth of neural network and use li to represent the
width of the i-th layer. After the activation function σ is selected, we can obtain the architecture of
FCNN according to the sequence q. Given any weights wi ∈ Rli×li−1 and bias bi ∈ Rli×1, the
output of the i-layer can be written as follows: for any x ∈ Rl1 ,

fi(x) = σ(wifi−1(x) + bi), ∀i = 2, ..., g − 1,

where fi−1(x) is the i-th layer output and f1(x) = x. Then, the output of FCNN is fw,b(x) =
wgfg−1(x) + bg, where w = {w2, ...,wg} and b = {b2, ...,bg}.

An FCNN-based scoring function space is defined as:

Fσ
q := {fw,b : ∀wi ∈ Rli×li−1 , ∀bi ∈ Rli×1, i = 2, ..., g}.

Additionally, given two sequences q = (l1, ..., lg) and q′ = (l′1, ..., l
′
g′), we use the notation q ≲ q′

to represent the following equations and inequalities:

g ≤ g′, l1 = l′1, lg = l′g′ ,

li ≤ l′i, ∀i = 1, ..., g − 1,

lg−1 ≤ l′i, ∀i = g, ..., g′ − 1.

Given a sequence q = (l1, ...lg) satisfying that l1 = d and lg = K + 1, the FCNN-based scoring
function space Fσ

q can induce an FCNN-based hypothesis space. Before defining the FCNN-based
hypothesis space, we define the induced hypothesis function. For any fw,b ∈ Fσ

q , the induced
hypothesis function is:

hw,b(x) := argmax
k∈{1,...,K+1}

fk
w,b(x), ∀x ∈ X ,

where fk
w,b(x) is the k-th coordinate of fw,b(x). Then, we define the FCNN-based hypothesis space

as follows:
Hσ

q := {hw,b : ∀wi ∈ Rli×li−1 , ∀bi ∈ Rli×1, i = 2, ..., g}.
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Score-based Hypothesis Space. Many OOD algorithms detect OOD data using a score-based
strategy. That is, given a threshold λ, a scoring function space Fl ⊂ {f : X → Rl} and a scoring
function E : Fl → R, then x is regarded as ID, if E(f(x)) ≥ λ; otherwise, x is regarded as OOD.

Using E, λ and f ∈ Fσ
q , we can generate a binary classifier hλ

f ,E :

hλ
f ,E(x) :=

{
1, if E(f(x)) ≥ λ;

2, if E(f(x)) < λ,

where 1 represents ID data, and 2 represents OOD data. Hence, a binary classification hypothesis
space Hb, which consists of all hλ

f ,E , is generated. We define the score-based hypothesis space
Hσ,λ

q,E := {hλ
f ,E : ∀f ∈ Fσ

q }.

Next, we introduce two important propositions.

Proposition 1. Given a sequence q = (l1, ...lg) satisfying that l1 = d and lg = K + 1 (note that d
is the dimension of input data and K + 1 is the dimension of output), then the constant functions h1,
h2,...,hK+1 belong to Hσ

q, where hi(x) = i, for any x ∈ X . Therefore, Assumption 1 holds for Hσ
q.

Proof of Proposition 1. Note that the output of FCNN can be written as

fw,b(x) = wgfg−1(x) + bg,

where wg ∈ R(K+1)×lg−1 , bg ∈ R(K+1)×1 and fg−1(x) is the output of the lg−1-th layer. If we
set wg = 0, and set bg = yi, where yi is the one-hot vector corresponding to label i. Then
fw,b(x) = yi, for any x ∈ X . Therefore, hi(x) ∈ Hσ

q, for any i = 1, ...,K,K + 1.

Note that in some works [84], bg is fixed to 0. In fact, it is easy to check that when g > 2 and
activation function σ is not a constant, Proposition 1 still holds, even if bg = 0.

Proposition 2. For any sequence q = (l1, ..., lg) satisfying that l1 = d and lg = l (note that d is
the dimension of input data and l is the dimension of output), if {v ∈ Rl : E(v) ≥ λ} ̸= ∅ and
{v ∈ Rl : E(v) < λ} ̸= ∅, then the functions h1 and h2 belong to Hσ,λ

q,E , where h1(x) = 1 and
h2(x) = 2, for any x ∈ X , where 1 represents the ID labels, and 2 represents the OOD labels.
Therefore, Assumption 1 holds.

Proof of Proposition 2. Since {v ∈ Rl : E(v) ≥ λ} ≠ ∅ and {v ∈ Rl : E(v) < λ} ≠ ∅, we can
find v1 ∈ {v ∈ Rl : E(v) ≥ λ} and v2 ∈ {v ∈ Rl : E(v) < λ}.

For any fw,b ∈ Fσ
q , we have

fw,b(x) = wgfg−1(x) + bg,

where wg ∈ Rl×lg−1 , bg ∈ Rl×1 and fg−1(x) is the output of the lg−1-th layer.

If we set wg = 0l×lg−1
and bg = v1, then fw,b(x) = v1 for any x ∈ X , where 0l×lg−1

is l × lg−1

zero matrix. Hence, h1 can be induced by fw,b. Therefore, h1 ∈ Hσ,λ
q,E .

Similarly, if we set wg = 0l×lg−1 and bg = v2, then fw,b(x) = v2 for any x ∈ X , where 0l×lg−1 is
l × lg−1 zero matrix. Hence, h2 can be induced by fw,b. Therefore, h2 ∈ Hσ,λ

q,E .

It is easy to check that when g > 2 and activation function σ is not a constant, Proposition 2 still
holds, even if bg = 0.

L Proof of Theorem 10

Before proving Theorem 10, we need several lemmas.

Lemma 9. Let σ be ReLU function: max{x, 0}. Given q = (l1, ..., lg) and q′ = (l′1, ..., l
′
g) such

that lg = l′g and l1 = l′1, and li ≤ l′i (i = 1, ..., g − 1), then Fσ
q ⊂ Fσ

q′ and Hσ
q ⊂ Hσ

q′ .
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Proof of Lemma 9. Given any weights wi ∈ Rli×li−1 and bias bi ∈ Rli×1, the i-layer output of
FCNN with architecture q can be written as

fi(x) = σ(wifi−1(x) + bi), ∀x ∈ Rl1 ,∀i = 2, ..., g − 1,

where fi−1(x) is the i-th layer output and f1(x) = x. Then, the output of last layer is

fw,b(x) = wgfg−1(x) + bg.

We will show that fw,b ∈ Fσ
q′ . We construct fw′,b′ as follows: for every w′

i ∈ Rl′i×l′i−1 , if l′i− li > 0

and l′i−1 − li−1 > 0, we set

w′
i =

[
wi 0li×(l′i−1−li−1)

0(l′i−li)×l′i−1
0(l′i−li)×(l′i−1−li−1)

]
, b′

i =

[
bi

0(l′i−li)×1

]
where 0pq means the p× q zero matrix. If l′i − li = 0 and l′i−1 − li−1 > 0, we set

w′
i =

[
wi 0li×(l′i−1−li−1)

]
, b′

i = bi.

If l′i−1 − li−1 = 0 and l′i − li > 0, we set

w′
i =

[
wi

0(l′i−li)×l′i−1

]
, b′

i =

[
bi

0(l′i−li)×1

]
.

If l′i−1 − li−1 = 0 and l′i − li = 0, we set

w′
i = wi, b′

i = bi.

It is easy to check that if l′i − li > 0

f ′i =

[
fi

0(l′i−li)×1

]
.

If l′i − li = 0,
f ′i = fi.

Since l′g − lg = 0,
f ′g = fg, i.e., fw′,b′ = fw,b.

Therefore, fw,b ∈ Fσ
q′ , which implies that Fσ

q ⊂ Fσ
q′ . Therefore, Hσ

q ⊂ Hσ
q′ .

Lemma 10. Let σ be the ReLU function: σ(x) = max{x, 0}. Then, q ≲ q′ implies that Fσ
q ⊂ Fσ

q′ ,
Hσ

q ⊂ Hσ
q′ , where q = (l1, ..., lg) and q′ = (l′1, ..., l

′
g′).

Proof of Lemma 10. Given l′′ = (l′′1 , ..., l
′′
g′′) satisfying that g ≤ g′′, l′′i = li for i = 1, ..., g − 1,

l′′i = lg−1 for i = g, ..., g′′ − 1, and l′′g′′ = lg , we first prove that Fσ
q ⊂ Fσ

q′′ and Hσ
q ⊂ Hσ

q′′ .

Given any weights wi ∈ Rli×li−1 and bias bi ∈ Rli×1, the i-th layer output of FCNN with
architecture q can be written as

fi(x) = σ(wifi−1(x) + bi), ∀x ∈ Rl1 ,∀i = 2, ..., g − 1,

where fi−1(x) is the i-th layer output and f1(x) = x. Then, the output of the last layer is

fw,b(x) = wgfg−1(x) + bg.

We will show that fw,b ∈ Fσ
q′′ . We construct fw′′,b′′ as follows: if i = 2, ..., g − 1, then w′′

i = w

and b′′
i = bi; if i = g, ..., g′′ − 1, then w′′

i = Ilg−1×lg−1
and b′′

i = 0lg−1×1, where Ilg−1×lg−1
is the

lg−1 × lg−1 identity matrix, and 0lg−1×1 is the lg−1 × 1 zero matrix; and if i = g′′, then w′′
g′′ = wg ,

b′′
g′′ = bg . Then it is easy to check that the output of the i-th layer is

f ′′i = fg−1,∀i = g − 1, g, ..., g′′ − 1.

Therefore, fw′′,b′′ = fw,b, which implies that Fσ
q ⊂ Fσ

q′′ . Hence, Hσ
q ⊂ Hσ

q′′ .

When g′′ = g′, we use Lemma 9 (q′′ and q satisfy the condition in Lemma 9), which implies that
Fσ

q′′ ⊂ Fσ
q′ , Hσ

q′′ ⊂ Hσ
q′ . Therefore, Fσ

q ⊂ Fσ
q′ , Hσ

q ⊂ Hσ
q′ .
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Lemma 11. [85] If the activation function σ is not a polynomial, then for any continuous function
f defined in Rd, and any compact set C ⊂ Rd, there exists a fully-connected neural network with
architecture q (l1 = d, lg = 1) such that

inf
fw,b∈Fσ

q

max
x∈C

|fw,b(x)− f(x)| < ϵ.

Proof of Lemma 11. The proof of Lemma 11 can be found in Theorem 3.1 in [85].

Lemma 12. If the activation function σ is the ReLU function, then for any continuous vector-valued
function f ∈ C(Rd;Rl), and any compact set C ⊂ Rd, there exists a fully-connected neural network
with architecture q (l1 = d, lg = l) such that

inf
fw,b∈Fσ

q

max
x∈C

∥fw,b(x)− f(x)∥2 < ϵ,

where ∥ · ∥2 is the ℓ2 norm. (Note that we can also prove the same result, if σ is not a polynomial.)

Proof of Lemma 12. Let f = [f1, ..., fl]
⊤, where fi is the i-th coordinate of f . Based on Lemma 11,

we obtain l sequences q1, q2,...,ql such that

inf
g1∈Fσ

q1

max
x∈C

|g1(x)− f1(x)| < ϵ/
√
l,

inf
g2∈Fσ

q2

max
x∈C

|g2(x)− f2(x)| < ϵ/
√
l,

...

...

inf
gl∈Fσ

ql

max
x∈C

|gl(x)− fl(x)| < ϵ/
√
l.

It is easy to find a sequence q = (l1, ..., lg) (lg = 1) such that qi ≲ q, for all i = 1, ..., l. Using
Lemma 10, we obtain that Fσ

qi ⊂ Fσ
q . Therefore,

inf
g∈Fσ

q

max
x∈C

|g(x)− f1(x)| < ϵ/
√
l,

inf
g∈Fσ

q

max
x∈C

|g(x)− f2(x)| < ϵ/
√
l,

...

...

inf
g∈Fσ

q

max
x∈C

|g(x)− fl(x)| < ϵ/
√
l.

Therefore, for each i, we can find gwi,bi from Fσ
q such that

max
x∈C

|gwi,bi(x)− fi(x)| < ϵ/
√
l,

where wi represents weights and bi represents bias.

We construct a larger FCNN with q′ = (l′1, l
′
2, ..., l

′
g) satisfying that l′1 = d, l′i = l ∗ li, for i = 2, ..., g.

We can regard this larger FCNN as a combinations of l FCNNs with architecture q, that is: there are m
disjoint sub-FCNNs with architecture q in the larger FCNN with architecture q′. For i-th sub-FCNN,
we use weights wi and bias bi. For weights and bias which connect different sub-FCNNs, we set
these weights and bias to 0. Finally, we can obtain that gw,b = [gw1,b1 , gw2,b2 , ..., gwl,bl ]⊤ ∈ Fσ

q′ ,
which implies that

max
x∈C

∥gw,b(x)− f(x)∥2 < ϵ.

We have completed this proof.
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Given a sequence q = (l1, ..., lg), we are interested in following function space Fσ
q,M:

Fσ
q,M := {M · (σ ◦ f) : ∀ f ∈ Fσ

q },

where ◦ means the composition of two functions, · means the product of two matrices, and

M =

[
11×(lg−1) 0
01×(lg−1) 1

]
,

here 11×(lg−1) is the 1× (lg − 1) matrix whose all elements are 1, and 01×(lg−1) is the 1× (lg − 1)
zero matrix. Using Fσ

q,M, we can construct a binary classification space Hσ
q,M, which consists of all

classifiers satisfying the following condition:

h(x) = argmin
k={1,2}

fk
M(x),

where fk
M(x) is the k-th coordinate of M · (σ ◦ f).

Lemma 13. Suppose that σ is the ReLU function: max{x, 0}. Given a sequence q = (l1, ..., lg)
satisfying that l1 = d and lg = K + 1, then the space Hσ

q,M contains ϕ ◦ Hσ
q, and Hσ

q,M has finite
VC dimension (Vapnik–Chervonenkis dimension), where ϕ maps ID data to 1 and OOD data to 2.
Furthermore, if given q′ = (l′1, ..., l

′
g) satisfying that l′g = K and l′i = li, for i = 1, ..., g − 1, then

Hσ
q ⊂ Hσ

q′ • Hσ
q,M.

Proof of Lemma 13. For any hw,b ∈ Hσ
q, then there exists fw,b ∈ Fσ

q such that hw,b is induced by
fw,b. We can write fw,b as follows:

fw,b(x) = wgfg−1(x) + bg,

where wg ∈ R(K+1)×lg−1 , bg ∈ R(K+1)×1 and fg−1(x) is the output of the lg−1-th layer.

Suppose that

wg =


v1

v2

...
vK

vK+1

 , bg =


b1
b2
...
bK

bK+1

 ,

where vi ∈ R1×lg−1 and bi ∈ R.

We set
fw′,b′(x) = w′

gfg−1(x) + b′
g,

where

w′
g =

 v1

v2

...
vK

 , b′
g =

 b1
b2
...
bK

 ,

It is obvious that fw′,b′ ∈ Fσ
q′ . Using fw′,b′ ∈ Fσ

q′ , we construct a classifier hw′,b′ ∈ Hσ
q′ :

hw′,b′ = argmax
k∈{1,...,K}

fk
w′,b′ ,

where fk
w′,b′ is the k-th coordinate of fw′,b′ .

Additionally, we consider
fw,b,B = M · σ(B · fw,b) ∈ Fσ

q,M,

where

B =

[
I(lg−1)×(lg−1) −1(lg−1)×1

01×(lg−1) 0

]
,

here I(lg−1)×(lg−1) is the (lg − 1) × (lg − 1) identity matrix, 01×(lg−1) is the 1 × (lg − 1) zero
matrix, and 1(lg−1)×1 is the (lg − 1)× 1 matrix, whose all elements are 1.
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Then, we define that for any x ∈ X ,

hw,b,B(x) := argmax
k∈{1,2}

fk
w,b,B(x),

where fk
w,b,B(x) is the k-th coordinate of fw,b,B(x). Furthermore, we can check that hw,b,B can be

written as follows: for any x ∈ X ,

hw,b,B(x) =

{
1, if f1

w,b,B(x) > 0;

2, if f1
w,b,B(x) ≤ 0.

It is easy to check that
hw,b,B = ϕ ◦ hw,b,

where ϕ maps ID labels to 1 and OOD labels to 2.

Therefore, hw,b(x) = K + 1 if and only if hw,b,B = 2; and hw,b(x) = k (k ̸= K + 1) if and only
if hw,b,B = 1 and hw′,b′(x) = k. This implies that Hσ

q ⊂ Hσ
q′ • Hσ

q,M and ϕ ◦ Hσ
q ⊂ Hσ

q,M.

Let q̃ be (l1, ..., lg, 2). Then Fσ
q,M ⊂ Fσ

q̃ . Hence, Hσ
q,M ⊂ Hσ

q̃. According to the VC dimension
theory [37] for feed-forward neural networks, Hσ

q̃ has finite VC dimension. Hence, Hσ
q,M has finite

VC-dimension. We have completed the proof.

Lemma 14. Let |X | < +∞ and σ be the ReLU function: max{x, 0}. Given r hypothesis functions
h1, h2, ..., hr ∈ {h : X → {1, ..., l}}, then there exists a sequence q = (l1, ..., lg) with l1 = d and
lg = l, such that h1, ..., hr ∈ Hσ

q.

Proof of Lemma 14. For each hi (i = 1, ..., r), we introduce a corresponding fi (defined over X )
satisfying that for any x ∈ X , fi(x) = yk if and only if hi(x) = k, where yk ∈ Rl is the one-hot
vector corresponding to the label k. Clearly, fi is a continuous function in X , because X is a discrete
set. Tietze Extension Theorem implies that fi can be extended to a continuous function in Rd.

Since X is a compact set, then Lemma 12 implies that there exist a sequence qi = (li1, ..., l
i
gi) (li1 = d

and ligi = l) and fw,b ∈ Fσ
qi such that

max
x∈X

∥fw,b(x)− fi(x)∥ℓ2 <
1

10 · l
,

where ∥ · ∥ℓ2 is the ℓ2 norm in Rl. Therefore, for any x ∈ X , it easy to check that

argmax
k∈{1,...,l}

fk
w,b(x) = hi(x),

where fk
w,b(x) is the k-th coordinate of fw,b(x). Therefore, hi(x) ∈ Hσ

qi .

Let q be (l1, ..., lg) (l1 = d and lg = l) satisfying that qi ≲ q. Using Lemma 10, we obtain that
Hσ

qi ⊂ Hσ
q, for each i = 1, ..., r. Therefore, h1, ..., hr ∈ Hσ

q.

Lemma 15. Let the activation function σ be the ReLU function. Suppose that |X | < +∞. If
{v ∈ Rl : E(v) ≥ λ} and {v ∈ Rl : E(v) < λ} both contain nonempty open sets of Rl (here, open
set is a topological terminology). There exists a sequence q = (l1, ..., lg) (l1 = d and lg = l) such
that Hσ,λ

q,E consists of all binary classifiers.

Proof of Lemma 15. Since {v ∈ Rl : E(v) ≥ λ}, {v ∈ Rl : E(v) < λ} both contain nonempty
open sets, we can find v1 ∈ {v ∈ Rl : E(v) ≥ λ}, v2 ∈ {v ∈ Rl : E(v) < λ} and a constant
r > 0 such that Br(v1) ⊂ {v ∈ Rl : E(v) ≥ λ} and Br(v2) ⊂ {v ∈ Rl : E(v) < λ}, where
Br(v1) = {v : ∥v − v1∥ℓ2 < r} and Br(v2) = {v : ∥v − v2∥ℓ2 < r}, here ∥ · ∥ℓ2 is the ℓ2 norm.
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For any binary classifier h over X , we can induce a vector-valued function as follows: for any x ∈ X ,

f(x) =

{
v1, if h(x) = 1;

v2, if h(x) = 2.

Since X is a finite set, then Tietze Extension Theorem implies that f can be extended to a continuous
function in Rd. Since X is a compact set, Lemma 12 implies that there exists a sequence qh =
(lh1 , ..., l

h
gh) (lh1 = d and lhgh = l) and fw,b ∈ Fσ

qh such that

max
x∈X

∥fw,b(x)− f(x)∥ℓ2 <
r

2
,

where ∥ · ∥ℓ2 is the ℓ2 norm in Rl. Therefore, for any x ∈ X , it is easy to check that E(fw,b(x)) ≥ λ
if and only if h(x) = 1, and E(fw,b(x)) < λ if and only if h(x) = 2.

For each h, we have found a sequence qh such that h is induced by fw,b ∈ Fσ
qh , E and λ. Since

|X | < +∞, only finite binary classifiers are defined over X . Using Lemma 14, we can find a
sequence q such that Hb

all = Hσ,λ
q,E , where Hb

all consists of all binary classifiers.

Lemma 16. Suppose the hypothesis space is score-based. Let |X | < +∞. If {v ∈ Rl : E(v) ≥ λ}
and {v ∈ Rl : E(v) < λ} both contain nonempty open sets, and Condition 2 holds, then there exists
a sequence q = (l1, ..., lg) (l1 = d and lg = l) such that for any sequence q′ satisfying q ≲ q′ and
any ID hypothesis space Hin, OOD detection is learnable in the separate space Ds

XY for Hin • Hb,
where Hb = Hσ,λ

q′,E and Hin • Hb is defined below Eq. (4).

Proof of Lemma 16. Note that we use the ReLU function as the activation function in this lemma.
Using Lemma 10, Lemma 15 and Theorem 7, we can prove this result.

Theorem 10. Suppose that Condition 2 holds and the hypothesis space H is FCNN-based or score-
based, i.e., H = Hσ

q or H = Hin • Hb, where Hin is an ID hypothesis space, Hb = Hσ,λ
q,E and

H = Hin • Hb is introduced below Eq. (4), here E is introduced in Eqs. (5) or (6). Then
There is a sequence q = (l1, ..., lg) such that OOD detection is
learnable in the separate space Ds

XY for H if and only if |X | < +∞.
Furthermore, if |X | < +∞, then there exists a sequence q = (l1, ..., lg) such that for any sequence
q′ satisfying that q ≲ q′, OOD detection is learnable in Ds

XY for H.

Proof of Theorem 10. Note that we use the ReLU function as the activation function in this theorem.

• The Case that H is FCNN-based.

First, we prove that if |X | = +∞, then OOD detection is not learnable in Ds
XY for Hσ

q, for any
sequence q = (l1, ..., lg) (l1 = d and lg = K + 1).

By Lemma 13, Theorems 5 and 8 in [86], we know that VCdim(ϕ ◦ Hσ
q) < +∞, where ϕ maps ID

data to 1 and maps OOD data to 2. Additionally, Proposition 1 implies that Assumption 1 holds and
suph∈Hσ

q
|{x ∈ X : h(x) ∈ Y}| = +∞, when |X | = +∞. Therefore, Theorem 5 implies that OOD

detection is not learnable in Ds
XY for Hσ

q, when |X | = +∞.

Second, we prove that if |X | < +∞, there exists a sequence q = (l1, ..., lg) (l1 = d and lg = K+1)
such that OOD detection is learnable in Ds

XY for Hσ
q.

Since |X | < +∞, it is clear that |Hall| < +∞, where Hall consists of all hypothesis functions from
X to Yall. According to Lemma 14, there exists a sequence q such that Hall ⊂ Hσ

q. Additionally,
Lemma 13 implies that there exist Hin and Hb such that Hσ

q ⊂ Hin • Hb. Since Hall consists all
hypothesis space, Hall = Hσ

q = Hin • Hb. Therefore, Hb contains all binary classifiers from X to
{1, 2}. Theorem 7 implies that OOD detection is learnable in Ds

XY for Hσ
q.
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Third, we prove that if |X | < +∞, then there exists a sequence q = (l1, ..., lg) (l1 = d and
lg = K + 1) such that for any sequence q′ = (l′1, ..., l

′
g′) satisfying that q ≲ q′, OOD detection is

learnable in Ds
XY for Hσ

q′ .

We can use the sequence q constructed in the second step of the proof. Therefore, Hσ
q = Hall.

Lemma 10 implies that Hσ
q ⊂ Hσ

q′ . Therefore, Hσ
q′ = Hall = Hσ

q. The proving process (second step
of the proof) has shown that if |X | < +∞, Condition 2 holds and hypothesis space H consists of all
hypothesis functions, then OOD detection is learnable in Ds

XY for H. Therefore, OOD detection is
learnable in Ds

XY for Hσ
q′ . We complete the proof when the hypothesis space H is FCNN-based.

• The Case that H is score-based

Fourth, we prove that if |X | = +∞, then OOD detection is not learnable in Ds
XY for Hin • Hb,

where Hb = Hσ,λ
q,E for any sequence q = (l1, ..., lg) (l1 = d, lg = l), where E is in Eqs. (5) or (6).

By Theorems 5 and 8 in [86], we know that VCdim(Hσ,λ
q,E) < +∞. Additionally, Proposition 2

implies that Assumption 1 holds and suph∈Hσ
q
|{x ∈ X : h(x) ∈ Y}| = +∞, when |X | = +∞.

Hence, Theorem 5 implies that OOD detection is not learnable in Ds
XY for Hσ

q, when |X | = +∞.

Fifth, we prove that if |X | < +∞, there exists a sequence q = (l1, ..., lg) (l1 = d and lg = l) such
that OOD detection is learnable in Ds

XY for for Hin • Hb, where Hb = Hσ,λ
q,E for any sequence

q = (l1, ..., lg) (l1 = d, lg = l), where E is in Eq. (5) or Eq. (6).

Based on Lemma 16, we only need to show that {v ∈ Rl : E(v) ≥ λ} and {v ∈ Rl : E(v) < λ}
both contain nonempty open sets for different scoring functions E.

Since maxk∈{1,...,l}
exp (vk)∑l
c=1 exp (vc)

, maxk∈{1,...,l}
exp (vk/T )∑K
c=1 exp (vc/T )

and T log
∑l

c=1 exp (v
c/T ) are

continuous functions, whose ranges contain ( 1l , 1), (
1
l , 1), (0,+∞) and (0,+∞), respectively.

Based on the property of continuous function (E−1(A) is an open set, if A is an open set), we obtain
that {v ∈ Rl : E(v) ≥ λ} and {v ∈ Rl : E(v) < λ} both contain nonempty open sets. Using
Lemma 16, we complete the fifth step.

Sixth, we prove that if |X | < +∞, then there exists a sequence q = (l1, ..., lg) (l1 = d and lg = l)
such that for any sequence q′ = (l′1, ..., l

′
g′) satisfying that q ≲ q′, OOD detection is learnable in

Ds
XY for for Hin • Hb, where Hb = Hσ,λ

q′,E , where E is in Eq. (5) or Eq. (6).

In the fifth step, we have proven that Eq. (5) and Eq. (6) meet the condition in Lemma 16. Therefore,
Lemma 16 implies this result. We complete the proof when the hypothesis space H is score-based.

M Proofs of Theorem 11 and Theorem 12

M.1 Proof of Theorem 11

Theorem 11. Suppose that each domain DXY in Dµ,b
XY is attainable, i.e., argminh∈H RD(h) ̸= ∅

(the finite discrete domains satisfy this). Let K = 1 and the hypothesis space H be score-based
(H = Hσ,λ

q,E , where E is in Eqs. (5) or (6)) or FCNN-based (H = Hσ
q). If µ(X ) < +∞, then the

following four conditions are equivalent:

Learnability in Dµ,b
XY for H ⇐⇒ Condition 1 ⇐⇒ Realizability Assumption ⇐⇒ Condition 3

Proof of Theorem 11.

1) By Lemma 1, we conclude that Learnability in Dµ,b
XY for H ⇒ Condition 1.

2) By Proposition 1 and Proposition 2, we know that when K = 1, there exist h1, h2 ∈ H, where
h1 = 1 and h2 = 2, here 1 represents ID, and 2 represent OOD. Therefore, we know that when
K = 1, infh∈H Rin

D(h) = 0 and infh∈H Rout
D (h) = 0, for any DXY ∈ Dµ,b

XY .

By Condition 1, we obtain that infh∈H RD(h) = 0, for any DXY ∈ Dµ,b
XY . Because each domain

DXY in Dµ,b
XY is attainable, we conclude that Realizability Assumption holds.
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We have proven that Condition 1⇒ Realizability Assumption.

3) By Theorems 5 and 8 in [86], we know that VCdim(ϕ ◦ Hσ
q) < +∞ and VCdim(Hσ,λ

q,E) < +∞.
Then, using Theorem 9, we conclude that Realizability Assumption⇒ Learnability in Dµ,b

XY for H.

4) According to the results in 1), 2) and 3), we have proven that

Learnability in Dµ,b
XY for H ⇔Condition 1⇔ Realizability Assumption.

5) By Lemma 2, we conclude that Condition 3⇒Condition 1.

6) Here we prove that Learnability in Dµ,b
XY for H ⇒Condition 3. Since Dµ,b

XY is the prior-unknown
space, by Theorem 1, there exist an algorithm A : ∪+∞

n=1(X × Y)n → H and a monotonically
decreasing sequence ϵcons(n), such that ϵcons(n) → 0, as n → +∞, and for any DXY ∈ Dµ,b

XY ,

ES∼Dn
XIYI

[
Rin

D(A(S))− inf
h∈H

Rin
D(h)

]
≤ ϵcons(n),

ES∼Dn
XIYI

[
Rout

D (A(S))− inf
h∈H

Rout
D (h)

]
≤ ϵcons(n).

Then, for any ϵ > 0, we can find nϵ such that ϵ ≥ ϵcons(nϵ), therefore, if n = nϵ, we have

ES∼Dnϵ
XIYI

[
Rin

D(A(S))− inf
h∈H

Rin
D(h)

]
≤ ϵ,

ES∼Dnϵ
XIYI

[
Rout

D (A(S))− inf
h∈H

Rout
D (h)

]
≤ ϵ,

which implies that there exists Sϵ ∼ Dnϵ

XIYI
such that

Rin
D(A(Sϵ))− inf

h∈H
Rin

D(h) ≤ ϵ,

Rout
D (A(Sϵ))− inf

h∈H
Rout

D (h) ≤ ϵ.

Therefore, for any equivalence class [D′
XY ] with respect to Dµ,b

XY and any ϵ > 0, there exists a
hypothesis function A(Sϵ) ∈ H such that for any domain DXY ∈ [D′

XY ],

A(Sϵ) ∈ {h′ ∈ H : Rout
D (h′) ≤ inf

h∈H
Rout

D (h) + ϵ} ∩ {h′ ∈ H : Rin
D(h′) ≤ inf

h∈H
Rin

D(h) + ϵ},

which implies that Condition 3 holds. Therefore, Learnability in Dµ,b
XY for H ⇒Condition 3.

7) Note that in 4), 5) and 6), we have proven that

Learnability in Dµ,b
XY for H ⇒Condition 3⇒Condition 1, and Learnability in Dµ,b

XY for H ⇔Condition
1, thus, we conclude that Learnability in Dµ,b

XY for H ⇔Condition 3⇔Condition 1.

8) Combining 4) and 7), we have completed the proof.

M.2 Proof of Theorem 12

Theorem 12. Let K = 1 and the hypothesis space H be score-based (H = Hσ,λ
q,E , where E is in

Eqs. (5) or (6)) or FCNN-based (H = Hσ
q). Given a prior-unknown space DXY , if there exists a

domain DXY ∈ DXY , which has an overlap between ID and OOD distributions (see Definition 4),
then OOD detection is not learnable in the domain space DXY for H.

Proof of Theorem 12. Using Proposition 1 and Proposition 2, we obtain that infh∈H Rin
D(h) = 0 and

infh∈H Rout
D (h) = 0. Then, Theorem 3 implies this result.

Note that if we replace the activation function σ (ReLU function) in Theorem 12 with any other
activation functions, Theorem 12 still hold.
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