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A. Proof and theoretical analysis

A.1 Distribution function for class distribution generation

After the determination of scaled class distributions in Sec. 3.1.1 of the main paper, we target
designing an efficient quantization process. Since quantization on he uniform space is computationally
efficient and therefore hardware-friendly for deployment on devices, we aim to project data to the
uniform space prior to quantization. Inspired by the property in probability distributions that the
distribution function of any continuous probability distribution follows a standard uniform distribution,
we adopt the distribution function as the data projection before the quantization. The following
demonstrates the property:

Theorem 3.1. Let f be the continuous probability function of random variable X with its distribution
function F , then F (X) = U , where U is the random variable of the standard uniform distribution.

Proof. Distribution function with definition in the range of [0, 1]. The distribution function of X is

P (X ≤ x) = P [F (X) ≤ x] = P [X ≤ F−1(x)]

= F [F−1(x)] = x, 0 ≤ x ≤ 1,

which is the distribution function of a Uniform(0, 1) (standard uniform) random variable.

Theorem 3.1. proves that the distribution function can projects data to the uniform space, which is
favorable in efficient uniform quantization with simple operations.

A.2 Appropriate class data size estimation

To reduce quantization error in imbalanced class distributions, we aim to diminish the discrepancies
between class distributions. Therefore, we propose a distribution scaling on class variances in Sec.
3.1.1 of the main paper. To ensure the homogeneity of the variances, we examine it in accordance
with Levene’s hypothesis in Sec. 3.1.2. Moreover, we derive from the analytical results that the
homogeneity criterion is satisfied if the data size of each class is restricted. In the following, we
estimate the bounds with a statistical significance α.

Theorem 3.2. Given the definitions and the notations in Eq. (3) and its subsequent paragraphs of the
main paper, if W < Fα(k−1, N−k), where Fα(k−1, N−k) is the statistics of F-distribution with
degree of freedoms (k − 1, N − k) under the significance level α, then class data size nL
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Proof. Since
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Let the right handside of the above inequality be a constant C1. Therefore,
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By expanding the left handside, we obtain that
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Hence, we obtain the bounds of data size for each class to satisfy the homogeneity of class variances
(Levene’s hypothesis) with statistical significance. According to the result, we design a loss to
reweight the class data in the next subsection (see Sec. 3.2.2 of the main paper).

A.3. Analysis and discussion on HomoVar loss

The HomoVar loss is proposed in Sec. 3.2.2, Eq. (4) in the main paper. The idea behind is to
reweight the loss on classes for the homogeneity of class variances, which addresses the problem
of quantization errors resulting from different class distributions. The weight on the k-th class ωk

is defined as 1−β
1

|nk−ne
k
|

1−β

nk
|nk−ne

k
|

in Sec. 3.2.2 of the main paper and also illustrated in Table 1, where we

adopt the constant factor β ∈ (0, 1). In this section, we discuss with the designs through a series of
systematic analyses.

1We regard the term including SW as a constant is because the SW ’s for different classes have been scaled
closer. In particular, the SW ’s of minority classes are generally small but enlarged (see Sec. 3.1.1)
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Table 1: Class weight based on the approximation of actual class data size to expected size.

Cases Case I. |nk − ne
k| → 1 Case II. |nk − ne

k| → ∞
Approximate homogeneity of variances Heterogeneity of class variances

Loss weight ωk = 1∑nk−1

i=0 βi
ωk = 1

nk

Table 2: Class weight based on the actual class data size.

Cases Case I. nk → 1+ Case II. nk ∼ ne
k Case III. ne

k < nk → ∞
Extreme minority class Moderated sized class Extreme majority class

Loss weight ωk = 1 ωk = 1∑nk−1

i=0 βi
ωk = 0

A.3.1 Analysis of class weight based on the actual and expected class data sizes

Table 1 shows that ωk = 1∑nk−1

i=0 βi
when Case I that the actual class data size nk is close to the

expected size ne
k (defined in Eq. (5) of the main paper, which depends on nk and the bounds derived

from Theorem 3.2). In contrast, ωk = 1
nk

is calculated in Case II when the actual size is considerably
different from the expected size, i.e., when the class size is too small or too large to meet the
homogeneity of class variances. The results of these two cases are proved as follows:
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The results will be utilized in the subsequent section to assess the minority and majority class weights
in greater depth.

A.3.2 Class weight analysis for minority and majority classes

In Appendix A.3.1, we examine the class weight when the class data size is close to or far from the
size expected to guarantee the homogeneity of class variances. In this subsection, we discuss the
class weight according to whether the class belongs to the minority or the majority. The results of the
analysis are displayed in Table 2.

First, when a class belongs to the minority classes, i.e., a class with small nk, the weight ωk is near to
1, as shown in Table 1, which can be derived from:

Proof.

lim
nk→1+

lim
|nk−ne

k|→1
ωk = lim

nk→1+

1∑nk−1
i=0 βi

= 1,

and
lim

nk→1+
lim

|nk−ne
k|→∞

ωk = lim
nk→1+

1

nk
= 1.

The result indicates that the weight on a class with an extremely minor data size is close to one. In
addition, the weight is 1∑nk−1

i=0 βi
when class data size nk is close to the expected size, i.e., when

the homogeneity of class variances is satisfied, as demonstrated explicitly by Case I. in Table 1.
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Moreover, when a class has a huge quantity of data, the weight ωk is designed to be significantly less
than 1. The case where when nk → ∞, the weight is close to zero, as demonstrated below:

Proof.

lim
nk→∞

ωk = lim
nk→∞

lim
|nk−ne

k|→1
ωk = lim

nk→∞

1∑nk−1
i=0 βi

= 1− β,

and

lim
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k|→∞
ωk = lim

nk→∞

1

nk
= 0.

Since max(1− β, 0) ≤ 1∑nk−1

i=0 βi
≤ 1,∀nk ≥ 1, and β ∈ (0, 1), it is evident that our designs place

a greater weight on the minority classes and a smaller weight on the majority classes in order to
rebalance the imbalanced classes.

The motivation on how wk is designed has been described in Sec. 3.2.2 that: 1) the weights of
minority classes are heavier than those of majority classes, 2) the weights increase as the class data
size falls far below the lower bound, and 3) the weights reduce as the class data size exceeds the upper
bound. From the analyses in Appendix A.3.1 and A.3.2, we can observe the approximations of the
numerator and denominator. The numerator is designed smaller than the denominator to regularize
the wk ranging in [0, 1]. The growth rate of the denominator is faster when the class size nk is larger,
which leads to the motivation 1). In addition, when the actual class size nk is much smaller than
expected size ne

k, both the numerator and denominator approximate to one, which leads to a larger
wk (i.e., wk = 1). This is consistent with the motivation 2). Moreover, when the nk is much larger
than ne

k, the wk is smaller than one. The result reflects the motivation 3).

B. Ablation study of hyperparameter settings

B.1 Visualization of the class weights based on the different settings of the constant factor

Based on definition of the class weight ωk in Sec. 3.2.2 of the main paper, the factor beta determines
the weight scaling. Therefore, we will explore the impact of beta on the class weight ωk. As
illustrated in Table 1, the approximate weight is 1

nk
regardless of β when the actual class data size

is much larger or smaller than the expected size. In spite of this, it approximates 1∑nk−1

i=0 βi
when

the actual size is near to the expected size. Consequently, we primarily examine ωk = 1∑nk−1

i=0 βi
, as

visualized in Fig. 1 under distinct configurations of the factor β and the data size nk. Fig. 1a illustrates
the weights for various β values. It is consistent with the analysis results shown in Table 2 and
Appendix A.3.2 that 1) the weight lies within the interval [0, 1], 2) the weight declines with increasing
class data size, and 3) the weight approaches 1− β when nk is large. Additional observation is that
the weights are scaled in different ways based on β. In Fig. 1b and Fig. 1c, we investigate in depth
the minority classes (smaller data sizes) and majority classes (larger data sizes), respectively. We
can observe that the larger β results in smaller weights for majority classes, i.e., emphasize minority
classes more.

B.2 Performance of ClimbQ+ with various constant factor β settings

In Appendix B.1, we illustrated the class weights with various β constant factors. Fig. 1 shows that
the weights on the majority classes fall as β increases. With a large β, minority classes get more
attention than majority classes. To evaluate the effectiveness of β in the HomoVar loss, we conduct
experiments on different settings of β as shown in Table 3. The experimental results reveals that the
setting of β = 0.999 obtains the best performance in all circumstances, validating ClimbQ+ that
focuses more on the minority classes can effectively reduce the quantization bias toward the majority
classes. Thus, as illustrated in Sec. 4, we adopt β = 0.999 in this paper.
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(a) All Classes. (b) Minority Classes. (c) Majority Classes.

Figure 1: Visualization of class weights in HomoVar loss design based on data size and the settings
of constant factor β.

Table 3: Accuracy (%) of ClimbQ+ on class-imbalanced datasets under the settings of rebalance
factor β.

Parameters
ResNet-20 on CIFAR-10-LT ResNet-20 on Syndigits-LT MobileNet-V2 on Syndigits-LT

4 bits 2 bits 4 bits 2 bits 4 bits 2 bits

γ = 50 200 γ = 50 200 γ = 50 200 γ = 50 200 γ = 50 200 γ = 50 200

β = 0.800 70.43 60.33 68.68 58.15 87.65 75.85 86.30 75.35 82.60 65.25 80.85 64.55
β = 0.850 71.51 60.30 68.52 57.61 87.80 76.35 86.75 75.25 81.40 65.60 80.00 64.05
β = 0.900 71.57 60.01 69.60 57.84 87.80 76.60 86.35 75.75 82.55 64.75 80.95 64.60
β = 0.950 70.85 59.75 69.58 58.99 88.20 77.45 86.75 76.15 82.40 64.95 80.75 64.65
β = 0.999 72.28 61.69 71.73 61.06 89.55 80.70 88.90 80.55 83.50 66.90 83.20 67.20

C. Complementary experiments

C.1. Performance of quantized ResNet-20 and MobileNet-V2 on Syndigits-LT

In Sec. 4.2 of the main study, we assessed ClimbQ and ClimbQ+ on the CIFAR-10-LT and CIFAR-
100-LT datasets to demonstrate that they may effectively reduce the quantization error caused by the
heterogeneity of class distributions. Here we further compare the baseline quantization approaches
on Syndigit-LT as shown in Table 4. It manifests that the previous works quantized at 2 bits obtain a
significant accuracy loss compared to 4 bits. In addition, the accuracy loss is in particular large in
extremely imbalanced cases. ClimbQ+ outperforms all benchmarks across all evaluation parameters.
ClimbQ+ based 2-bit ResNet-20 on γ = 200 achieves accuracy of 80.55%, outperforming the
precious best result (58.75% by Choi et al.’s work) with more than 20% accuracy increment. As
a meanwhile, ClimbQ+ on γ = 50 for 2-bit MobileNet-V2 obtains 83.20% accuracy compared to
BatchQuant with 57.3% which improves 25% accuracy. The remarkable improvements in accuracy
can be attributed to the concept underlying ClimbQ+, which aims to diminish the differences between
the class distributions prior to quantization in order to reduce quantization errors. It is validated
in Table 4 that ClimbQ+ can achieve a minimal loss of accuracy, particularly for the extremely
imbalanced and efficient (low bit) instances.

C.2. Performance of quantized ResNets on ImageNet

(a) ResNet-20 (b) ResNet-20 (c) ResNet-50 (d) ResNet-50

Figure 2: Distributions of CNN weights and activations on the benchmark datasets, including
ResNet-20 on CIFAR-10 and ResNet-50 on ImageNet.
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Table 4: Accuracy (%) on Syndigits-LT under quantization. * indicates the quantization approach
fails at the imbalance ratio γ.

Methods 4-bit ResNet-20 2-bit ResNet-20 4-bit MobileNet-V2 2-bit MobileNet-V2

γ = 10 50 200 γ = 10 50 200 γ = 10 50 200 γ = 10 50 200

LLSQ [1] 96.00 84.20 * * * * 93.25 40.60 * * * *
ZeroQ [2] 95.95 87.40 73.55 93.30 75.00 58.05 90.10 63.35 42.55 * * *

Choi et al. [3] 95.80 88.00 76.55 92.70 74.00 58.75 77.45 61.15 45.75 * * *
ZAQ [4] 94.75 85.75 64.50 * * * 95.30 83.30 63.45 87.25 18.25 *

Qimera [5] 94.00 * * * * * * * * * * *
BatchQuant [6] 66.60 57.30 47.10 72.05 59.30 52.30 69.90 58.67 52.75 66.55 57.30 49.32

ClimbQ 95.90 88.07 77.25 95.30 87.05 76.75 95.50 82.75 66.45 94.60 83.05 66.30
ClimbQ+ 96.45 89.55 80.70 95.75 88.90 80.55 95.45 83.50 66.90 93.50 83.20 67.20

Table 5: Accuracy (%) of quantized ResNets on ImageNet.

Methods ResNet-50 ResNet-18

4 bits 2 bits 4 bits 2 bits

LLSQ [1] - - - -
ZeroQ [2] 69.30 63.12 26.00 -

Choi et al. [3] 69.10 63.00 - -
ZAQ [4] 70.06 65.52 - -

Qimera [5] 66.25 - 63.84 -
BatchQuant [6] 67.72 62.21 - -

ClimbQ/ClimbQ+ 72.73 65.68 66.14 61.13

We have validated the effectiveness of ClimbQ and ClimbQ+ on imbalanced datasets in Sec. 4.2 of
the main paper and in Appendix C.1. In this subsection, we compare our results against the ImageNet
baselines. Table 5 manifests that even though ImageNet is nearly balanced with an imbalance ratio of
1.77, ClimbQ/ClimbQ+ improves the baselines by 2.7% to 5% accuracy for 4-bit ResNet-50 and by
2.3% to 40% accuracy for 4-bit ResNet-18 footnote Since ClimbQ and ClimbQ+ perform similarly
in this almost balanced situation, we only present one result for each evaluation setting in Table 5..
These results demonstrate that ClimbQ/ClimbQ+ are effective not only with imbalanced data, but
also with balanced data.

D. Normality of converged CNN weights and activations

In Sec. 3.1.1 of the main paper, we assume that CNN weights and activations (features) converge to a
normal distribution which earlier research has investigated [7, 8, 9]. To evaluate the normality, we
conduct experiments on benchmark datasets and converged (pretrained) CNN models. Fig. 2 visual-
izes the distributions of CNN weights and activations. The results are consistent with the findings of
earlier studies [7, 8, 9]. Therefore, normal distributions are appropriate for class distributions.

E. Effectiveness of scaling on quantization error reduction

In Sec. 3.1, we propose to scale the class distributions for quantization error reduction. In this section,
we mainly investigate the effectiveness of the scaling on reduction of quantization errors. First, we
measure the quantization error as |wq−w|

max(wq)−min(wq)
. The numerator is the discrepancy between the

quantized weight and the original floating-point weight. We further normalize the error by dividing
the range of the quantized space. Fig. 3 reveals that when the class distributions are not scaled (“w/o
scaling”), i.e., the differences in the class distributions are not reduced, we have a larger quantization
error and therefore obtain a lower accuracy as presented in Table 6 and Table 7. In contrast, after
the class distributions are scaled to the similar variations (“w/. scaling”) and projected to the same
space before the quantization (see Sec. 3.1), the total quantization error is reduced, hence leading to a
higher accuracy.
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(a) 2-bit ResNet-20 (b) 2-bit MobileNet-V2

Figure 3: Comparison of layer-wise quantization errors without/with scaling of class distributions.
Fig. 3 (a) presents the result of 2-bit ResNet-20 on CIFAR-10-LT (γ=50). Fig. 3 (b) shows the result
of 2-bit MobileNet-V2 on CIFAR-100-LT (γ=50).

Table 6: Comparisons of total quantization errors and accuracies (%) without/with scaling of class
distributions for 2-bit ResNet-20 on CIFAR-10-LT (γ=50).

w/o Scaling w/. Scaling (Ours)
Total quantization error 21,856 11,306

Test Accuracy (%) 68.71 70.33

Table 7: Comparisons of total quantization errors and accuracies (%) without/with scaling of class
distributions for 2-bit MobileNet-V2 on CIFAR-100-LT (γ=50).

w/o Scaling w/. Scaling (Ours)
Total quantization error 118,317 90,810

Test Accuracy (%) 1.07 33.18
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