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Abstract

Quantization compresses models to low bits for efficient inferences which has
received increasing attentions. However, existing approaches focused on balanced
datasets, while imbalanced data is pervasive in the real world. Therefore, in this
study, we investigate the realistic problem, quantization on class-imbalanced data.
We observe from the analytical results that quantizing imbalanced data tends to
obtain a large error due to the differences between separate class distributions,
which leads to a significant accuracy loss. To address this issue, we propose a novel
quantization framework, Class Imbalanced Quantization (ClimbQ) that focuses on
diminishing the inter-class heterogeneity for quantization error reduction. ClimbQ
first scales the variance of each class distribution and then projects data through the
new distributions to the same space for quantization. To guarantee the homogeneity
of class variances after the ClimbQ process, we examine the quantized features
and derive that the homogeneity satisfies when data size for each class is restricted
(bounded). Accordingly, we design a Homogeneous Variance Loss (HomoVar
Loss) which reweights the data losses of each class based on the bounded data
sizes to satisfy the homogeneity of class variances. Extensive experiments on class-
imbalanced and benchmark balanced datasets reveal that ClimbQ outperforms the
state-of-the-art quantization techniques, especially on highly imbalanced data.

1 Introduction

Convolutional neural networks (CNNs) with high computational complexity inhibits the deployment
on resource-limited mobile devices [1, 2, 3, 4, 5]. Quantization has been studied an efficient
method for reducing memory storage and accelerating inferences by compressing models to low
bits [6, 7, 8, 9, 10, 11, 12]. The existing quantization approaches are generally developed under a
common assumption that the data is balanced for separate classes. However, class-imbalanced data is
ubiquitous in the real world.

Despite a realistic problem, quantization on class-imbalanced data has not been studied. Therefore,
in this research, we investigate the issues of quantization on class-imbalanced data. The exploration
results on CIFAR-10-LT (long-tailed CIFAR-10) are depicted in Fig. 1. Fig. 1a illustrates the data
size of each class, where the largest class (indexed 0) has 50 times more data than the smallest
class (indexed 9), i.e., an imbalanced dataset. We then conduct experiments to quantize the class-
imbalanced data by exploiting a baseline quantization approach, uniform quantization. Fig. 1b shows
that the majority classes (indexed 0 to 3) are quantized to 2 bits with only 2% accuracy loss (compared
to the 32-bit model), whereas the minority classes (indexed 8 and 9) obtain 14% accuracy drop. It
indicates that the quantization result is inclined to be dominated by the majority classes, which may
result from the heterogeneity of class distributions as presented in Fig. 1c. Fig. 1c manifests that
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(a) Data Size of CIFAR-10-LT. (b) Acc. Drop under Quantization. (c) T-SNE of Features.

Figure 1: Experiment results on CIFAR-10-LT. Fig. 1a presents the data size of each class in CIFAR-
10-LT (long-tailed CIFAR-10), where the maximum class has 50× data more than the minimum class.
Fig. 1b depicts the rate of accuracy loss under quantization in comparison to the 32-bit model, where
the majority classes have the least accuracy drop, while the accuracy of minority classes decreases
the most (as much as 14% accuracy drop for a 2-bit model). It indicates that the majority classes
determine the quantization result due to the fact illustrated in Fig. 1c that the majority classes not
only have a large amount of data but also distributed in large variations.

the majority classes always have greater data variations than the minority classes. Therefore, the
quantization results are inclined to be determined by the majority classes, which may lead to a large
quantization error and a notable accuracy loss for the minority classes (validated in Fig. 1b).

Motivated by this challenge in quantization, we propose a Class Imbalanced Quantization (ClimbQ)
scheme to reduce the differences between class distributions for a robust quantization on imbalanced
data. According to the result as presented in Fig. 1c that the majority classes are distributed more
diversely than the minority classes, ClimbQ scales the class distributions, allowing the class variations
to be closer. Afterward, we project data through the new class distributions to the same uniform space
for quantization to further decrease the quantization error1.

To further ensure that the class distributions after quantization are homogeneous, we analyze the
homogeneity of class variances based on Levene’s hypothesis testing in the theory of statistics
[13]. As our contribution, we demonstrate that the data size of each class is restricted to satisfy the
homogeneity of class distributions (variances) and derive the bounds of the data sizes. Accordingly,
we design a Homogeneous Variance Loss (HomoVar Loss) to rebalance the data of each class. We
place emphases on the (minority) classes with a data size below the lower bound and weight down
the loss of the (majority) classes with a larger data size over the upper bound to prevent the majority
classes from dictating the quantization results.

Experiments demonstrate that ClimbQ+ (ClimbQ incorporated with HomoVar loss) outperforms
the prior works on both imbalanced and balanced datasets. ClimbQ+ improves the state-of-the-art
quantization approaches by 6% for 2-bit ResNet-56, while by 12% for 2-bit MobileNet-V2 on
CIFAR-100-LT in highly imbalanced instances.

Our contributions are summarized as follows:

1. We develop a novel quantization scheme, ClimbQ, that makes the first attempt to reduce the
differences between class distributions for a robust quantization process on imbalanced data.

2. We derive the bounds of data size for each class to guarantee the homogeneity of class
variances. Accordingly, we propose a HomoVar Loss to reweight the loss on each class in
order to prevent the majority classes from dictating the quantization results.

3. Experimental results demonstrate that ClimbQ+ (ClimbQ with HomoVar loss) has superior
improvements over the state-of-the-art quantization on class-imbalanced and benchmark
balanced datasets, especially significant for the low-bit models on highly imbalanced data.

2 Related works

Quantization. Quantization has received increasing attentions in recent years with the develop-
ment of the Internet of Things (IoT), meeting the requirements of efficient computing and storage.

1We adopt the uniform quantization scheme due to its efficiency when deployed on hardware devices [6, 5].
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Figure 2: Overview of ClimbQ. Fig. 2a illustrates ClimbQ (CLass IMBalanced Quantization), which
reduces differences between class distributions by scaling the standard deviation σk by ck. Afterward,
we project the data to the uniform space for quantization Q (detailed in Sec. 3.1). The ClimbQ
algorithm is applied to each convolutional layer as shown in Fig. 2c. Furthermore, as presented in
Fig. 2b, we derive the bounds nL and nU that satisfy the homogeneity of class variances by examining
the quantized features under ClimbQ. Accordingly, we propose a HomoVar loss LH to rebalance
the classes by weighting. We mainly focus on the classes with data sizes out of the bounded range
(introduced in Sec. 3.2). Fig. 2c shows that the HomoVar loss LH is computed by multiplying the
weight w and data loss L for each class (illustrated as blue and green modules).

Quantization-aware training (QAT) is one branch of approaches. It mainly focuses on learning a
clipping range [6, 14, 5, 15] or a data transformation [7, 8, 11, 16] for quantization with a small
loss of accuracy. The well-trained statistics are then stored and utilized in low-bit inferences. In
contrast, Zero-shot quantization (ZSQ) has recently been proposed to incorporate the concept of
knowledge distillation, transferring the information from 32-bit models to the quantized networks
[17, 10, 18, 19, 20]. They intend to reduce the feature differences between full-bit and low-bit models.
Existing QAT or ZSQ methods learned a single quantization scheme for all data, implicitly assuming
that the data follows identical distributions [5, 14, 9, 17, 18, 10, 11, 16]. However, class-imbalanced
data is a realistic case in which the class distributions are diverse. It is visualized in Fig. 1c that the
majority classes are always with greater variations and sizes, dominating the quantization results and
resulting in a significant quantization error for the minority classes, as seen in Fig. 1b. Therefore, we
aim to develop a robust quantization scheme on imbalanced data with a reduced quantization error.
In particular, this work mainly follows the QAT research instead of ZSQ which exploits additional
knowledge from a floating-point model and suffers from higher memory costs.

Class-imbalanced learning. Class-imbalanced problem poses a great challenge in deep learning,
where the minority classes with few data generally have an inferior classification performance to the
majority classes [21, 22, 23, 24]. Previous research has studied resampling to balance the classes
to address this issue [25, 26, 27, 21]. They focus on collecting more data from the minority classes
(i.e., over-sampling) or eliminating some data from the majority (i.e., under-sampling). Nevertheless,
over-sampling increases memory storage and training time, whereas under-sampling raises the
over-fitting problem since models are only learned from the sampled data [28]. Another branch
of class-imbalanced learning approaches developed is reweighting. In contrast, they reweight the
data losses of each class for balancing instead of sampling, which has no problems of memory
consumption and over-fitting. Prior research suggested focusing more on the minority and assign
small losses to the majority [29, 30, 31, 32, 33]. Nevertheless, they are only concerned with class
data sizes. In this research, we design a reweighting loss that leverages not only the data size but also
the quantized features to balance data for homogeneity of class variances with a reduced error during
quantization.
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3 ClimbQ

Fig. 2 introduces ClimbQ, a novel quantization scheme that considers the heterogeneity of class
distributions on class-imbalanced data to reduce quantization errors. ClimbQ first scales class
distributions that enables the new distributions with closer variances for quantization (depicted in
Fig. 2a and detailed in Section 3.1). In Sec. 3.2, we investigate the homogeneity of class variances
based on quantized features. From the analytical results, we derive the bounds of data sizes that
satisfy the homogeneity condition (see blue modules in Fig. 2b and Fig. 2c). In Sec. 3.3, we design a
HomoVar loss that reweights the data losses of each class according to the quantized data and the
class data size (see green modules in Fig. 2c).

3.1 Class imbalanced quantization (ClimbQ)

Existing works quantized data from different classes under the same process, ignoring the heteroge-
neous class distributions in the real-world imbalanced data. As visualized in Fig. 1c on CIFAR-10-LT,
the majority classes have greater variations than the minority classes, raising the concern that the
quantization results incline to be bias toward the majority. As a result, the minority classes are
quantized with inevitable biases that result in a significant accuracy loss (validated in Fig. 1b). To
reduce the quantization error caused by the differences between class distributions, we propose class
imbalanced quantization (ClimbQ), as shown in Fig. 2, which scales the class data to obtain closer
distributions (see Sec. 3.1.1) and project them to the same space for quantization (see Sec. 3.1.2).

3.1.1 Class distribution scaling and generation

According to Fig. 1c, majority classes are always distributed in wide ranges, whereas minority classes
are distributed in small variations. Such different class distributions cause massive quantization
errors and derive a notable accuracy loss, especially for the minority classes (validated in Fig. 1b).
As a result, we aim to diminish majority class variations while enlarging minority class variations.
First, we denote the network features for N data as X = {x1, x2, ..., xN} and suppose that the data
number for the k-th class is nk, with k = 1, 2, ...,K (in total K classes). Assume the k-th class
distribution fk follows the normal distribution denoted as N(µk, σ

2
k), where µk and σk indicate the

mean and standard deviation of the distribution2. We scale the k-th class distribution fk : N(µk, σ
2
k)

to f ′
k : N(µk, (ckσk)

2), where ck is the scale factor defined as 2− nk∑K
i=1 ni

, ∀k = 1, 2, ...,K3. The
design reveals that the (minority) classes with less data have been scaled to larger variances. The
variances of the (majority) classes with a large amount of data are reduced. In the next subsection,
we will develop an efficient quantization method based on the scaled class distributions.

3.1.2 Class distribution quantization

As illustrated in Sec. 3.1.1, data are scaled to N(µk, (ckσk)
2) based on the class it belongs to. In the

following, we aim to design an efficient quantization process based on the new class distributions.
Recent works adopted and efficient process, the uniform quantization, due to its simplicity and
hardware-friendliness in operations on devices [6, 5]4. However, since data distributions are typically
not uniformly distributed, the quantization process produces massive errors [34, 35, 7, 5]. Prior re-
search therefore proposed to learn a clipping function, quantization statistics, and other preprocessing
procedures to reduce the error [7, 5, 11, 16]. Nevertheless, the proposed preprocessing procedures are
complicated and necessarily require additional learning parameters. Therefore, we propose a one-step
transformation without additional learning parameters that allows the class data to be projected to a
uniform space with a minimal error under the uniform quantization scheme.

2Previous research have studied that CNN weights and features follow normal distributions [6, 5]. In addition,
we validate the normality on the benchmark datasets in Appendix D. Therefore, in this study, we assume data
follow the normal distributions.

3We adopt the distribution function of the standard normal N(0, 1), instead of N(µk, (ckσk)
2), for inference,

since the class information is unknown for the testing data. Note that the main reason that we utilized the standard
normal is that the features had been normalized through the batch normalization layer before quantization.

4A uniform quantization scheme quantizes the continuous data values to the discrete values with the same
intervals.
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We adopt the distribution function (namely, cumulative distribution function) as the uniform space
projection function. In the following theorem according to [36], we prove that the data are uniformly
distributed after the projection.
Theorem 3.1. (Proved in Appendix A.1) Let f be the continuous probability function of random
variable X with its distribution function F , then F (X) = U , where U is the random variable of the
standard uniform distribution.

Therefore, by Theorem 3.1, we exploit the distribution function of the new class distributions
f ′
k : N(µk, (ckσk)

2),∀k (determined in Sec. 3.1.1), to project data xk from the k-th class to the
uniform space denoted as Dk. The projection function is then formulated as:

Dk(xk) =

∫ xk

−∞

1

ckσk

√
2π

e
− (t−µk)2

2c2
k
σ2
k dt, ∀k = 1, 2, ...,K, (1)

where ck is the scale factor introduced and defined in Sec. 3.1.1. Eq. (1) indicates that the data
projection is conditioned on its belonged class and the data size. After transformed to the uniform
space, the data x′

k := Dk(xk) is then processed by the following uniform quantization function:

Q(x′
k) =

round(2B−1 · x′
k)

2B−1
, (2)

where round is the rounding operation, and B represents the quantization bits.

In summary, as depicted in Fig. 2a, the data from different classes are scaled to diminish the
differences between class distributions (detailed in Sec. 3.1.1) and then projected to the uniform
space for quantization (see Eq. (1) and Eq. (2)). ClimbQ process is applied in each convolutional
layer as presented as the red module in Fig. 2c, i.e., the quantized data Q(x′

k) output from the last
layer acts as the input xk for the current layer. The effectiveness of the scaling on quantization error
reduction is demonstrated in Appendix E.

3.2 Rebalancing for homogeneity of variances

In Sec. 3.1, we proposed distribution scaling and uniform space projection to reduce the differences
between class distributions for a minimal quantization error. To ensure homogeneity of the class
distributions after quantized through the ClimbQ process, in this subsection, we examine the variances
of the quantized features from different classes based on Levene’s hypothesis testing. Our main
contribution is the derivation of the bounds of the data size for each class to satisfy the homogeneity
(illustrated in the blue modules in Fig. 2b and Fig. 2c). Accordingly, we design a HomoVar loss that
focuses on the classes with data sizes out of the bounds (as illustrated in the green modules in Fig. 2b
and Fig. 2c). To prevent the results from being dominated by the majority classes [29, 30, 31, 32], we
intend to weight down the losses of those classes whose data size exceeds the upper bound, i.e., the
majority classes, while putting more weights on the losses of the minority classes with a smaller data
size than the lower bound.

3.2.1 Appropriate class data size estimation

For a systematic analysis of the homogeneity of class distributions following the ClimbQ process
(introduced in Sec. 3.1), we refer to Levene’s hypothesis testing based on the theory of statistical
learning [13]. Assume there are total K classes in the dataset. Two hypotheses are included in
Levene’s testing: null hypothesis H0 : σ2

1 = σ2
2 = ... = σ2

K and alternative hypothesis Ha : σ2
i ̸= σ2

j ,
for arbitrary i ̸= j, i, j = 1, 2, ...,K. The null hypothesis claims the homogeneity of variances,
whereas the alternative hypothesis stands for the heterogeneity if any variance is much different from
the others.

According to Levene’s hypothesis testing, the null hypothesis is satisfied when the testing statistics
W is small. The testing statistics W is formulated as the following:

W =

∑K
k=1 nk(z̄k· − z̄··)

2/(k − 1)∑K
k=1

∑nk

i=1(z̄ki − z̄k·)2/(N − k)
=

SB

SW
, (3)

where zki = |xki − 1
nk

∑nk

i=1 xki| is the variation, i.e., the distance of data xki from the center of the

k-th class5, z̄k· = 1
nk

∑nk

i=1 zki represents the mean variation of the k-th class, and z̄·· =
1
K

∑K
k=1 z̄k·

5x here is as same as the notation in Sec. 3.1 that denotes the data (features) of convolutional layers.
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stands for the mean variation for all data. In addition, nk and N individually denote the data size of
the k-th class and total data size, i.e., N =

∑K
k=1 nk.

The denominator of W in Eq. (3) represents the sum of the differences from the within class variations,
whereas the numerator shows the total difference from the between class variations. Thus, we denote
the former as SW and the latter as SB in Eq. (3). The null hypothesis is accepted when W is small,
i.e., W < Fα(k − 1, N − k), where Fα(k − 1, N − k) is the statistics of F-distribution with degree
of freedoms, k− 1 and N − k under the significance level α that manifests the statistical significance
on the testing results 6.

Derived from W < Fα(k − 1, N − k), we prove in the following theorem that each class data size is
restricted with a lower bound nL

k and an upper bound nU
k , ∀k = 1, 2, ...,K. It indicates that when

class data sizes are not too tiny or excessively large, class variances are homogeneous (H0 is satisfied).
On the other hand, when class data sizes are too small or large, significant differences appear between
class variances (H0 is rejected).
Theorem 3.2. (Proved in Appendix A.2) Given the definitions and the notations in Eq. (3), if
W < Fα(k − 1, N − k), where Fα(k − 1, N − k) is the statistics of F-distribution with degree
of freedoms (k − 1, N − k) under the significance level α, then class data size nL

k < nk <

nU
k ,∀k = 1, 2, ...,K. The bounds nL

k , n
U
k =

2z̄···
∑nk

i=1 zki+C±
√

(2z̄···
∑nk

i=1 zki+C)2−4z̄2
··(

∑nk
i=1 zki)2

2z̄2
··

,

where C = (k − 1) · Fα(k − 1, N − k) · SW −
∑K

j ̸=k nj(z̄j· − z̄··)
2.

Theorem 3.2 demonstrates that if the data size of class nk is in the interval [nL
k , n

U
k ], H0 is satisfies,

i.e., the class variances are homogeneous. Otherwise, H0 is rejected, which reveals that classes
with out-of-range data sizes (too minor or too large) may violate the homogeneity of class variances.
Therefore, in the subsequent subsection, we design a loss using the analyzed bounds to reweight the
data losses of each classes to adapt the class distributions to satisfy the homogeneity.

3.2.2 Loss for homogeneity of class variances

In the preceding subsection, we derived the bounds of data sizes for each class that satisfies the
homogeneity of class variances (see Eq. (3.2)). Consequently, in this subsection, we propose a
reweighted loss, named HomoVar loss, to reweight the classes that may exhibit significant differences
from other classes. We consider three cases on classes: 1) minority classes with a data size below
the lower bound, 2) moderated classes with a data size within the required range, and 3) majority
classes with a data size exceeding the upper bound.

To avoid the majority from dominating the prediction outcomes, we primarily focus on the minority
and downweight the majority (shown in Fig. 1b). That is, the minority classes are penalized the
greatest, followed by the middle and then the majority. In addition, we evaluate the degree of minority
or majority of a class, i.e. how close the class data size is to the nearest bound. Classes with a minor
(enormous) data size far from the derived bounds are weighted more heavily (weighted less).

According to the above insights, we design the HomoVar loss denoted as LH in the following:

LH =
1

N

K∑
k=1

(ωk ·
nk∑
i=1

Lki) =
1

N

K∑
k=1

(
1− β

1
|nk−ne

k
|

1− β
nk

|nk−ne
k
|
·

nk∑
i=1

Lki), (4)

where Lki represents the loss on the i-th data of the k-th class, ωk = 1−β
1

|nk−ne
k
|

1−β

nk
|nk−ne

k
|

is the weight on

the data of the k-th class, β is a constant factor in (0, 1) that scales the losses on different classes
(discussed in Appendix B). The term |nk − ne

k| is used to measure the degree of the minority and
majority, where ne

k, namely the expected data size, is defined as the nearest bound to the data size if
the actual data size nk is out of the range [nL

k , n
U
k ], otherwise, nk − 17.

When the k-th class is an extraordinarily minor class, the weight ωk is around 1. Moreover, ωk is
near to 1∑nk−1

i=0 βi
≤ 1 when nk is inside the restricted range satisfying the homogeneity of class

6A larger α results in a smaller Fα(k − 1, N − k) which is of greater evidence to support the homogeneity
of class differences. In statistical hypothesis testing, the significance level alpha is typically set to 0.1, 0.05, or
0.001. In this paper, we adopt the significance level of 0.05.

7We set ne
k to nk − 1 instead of nk is to avoid the zero denominator in Eq. (4).
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Table 1: Accuracy (%) on CIFAR-10-LT under quantization. * indicates the quantization approach
fails at the imbalance ratio γ.

Methods 4-bit ResNet-20 2-bit ResNet-20 4-bit MobileNet-V2 2-bit MobileNet-V2

γ = 10 50 200 γ = 10 50 200 γ = 10 50 200 γ = 10 50 200

LLSQ [15] 68.57 48.20 58.90 * * * 64.28 53.08 34.08 * * *
ZeroQ [18] 79.37 69.40 58.70 77.75 69.25 59.10 80.05 69.85 58.93 * * *

Choi et al. [17] 79.69 69.74 59.42 77.80 69.36 58.46 80.13 69.98 61.04 59.25 * *
ZAQ [10] 79.81 69.71 59.98 77.72 70.03 58.79 80.15 70.82 58.49 * * *

Qimera [11] 79.22 69.96 61.57 53.85 39.82 34.16 * * * * * *
BatchQuant [16] 76.98 69.19 56.55 71.74 59.39 54.27 73.93 * * 16.24 * *

ClimbQ 80.72 70.90 61.31 79.25 70.33 59.44 78.91 71.77 60.98 69.94 61.74 52.47
ClimbQ+ 80.58 72.28 61.69 78.88 71.73 61.06 80.24 71.82 62.10 72.51 63.41 56.89

variances. Additionally, it demonstrates that 1∑nk−1

i=0 βi
decreases as the size nk increases, eventually

approaching 1− β when nk is exceedingly large, i.e., a majority class. If the data size is far beyond
the upper bound, ωk approaches zero. The results are consistent with the ideas behind the design: 1)
the weights of minority classes are heavier than those of majority classes, 2) the weights increase as
the class data size falls far below the lower bound, and 3) the weights reduce as the class data size
exceeds the upper bound. We analyze and discuss further details in Appendix A.3.

4 Experiments

4.1 Experiment settings

Class-imbalanced datasets. We evaluate the effectiveness of ClimbQ and ClimbQ+ (ClimbQ with
HomoVar loss) on the class-imbalanced datasets, Syndigit-LT [37], CIFAR-10-LT [38] and CIFAR-
100-LT [38]. A parameter setting γ determines the degree of imbalance in the datasets. γ is the
ratio between the data size of the maximum class and the size of the minimum class. For example,
γ = 100 indicates that the data size of the largest class is 100 times larger than the minimum class.
In this paper, we train at imbalance ratios of 10, 50, and 200 and validate on the balanced testing data
(i.e., γ = 1) to fairly evaluate the performance of each class.

Benchmark balanced dataset. Although we are primarily concerned with imbalanced data, we
compare with the baseline quantization approaches on the benchmark dataset ImageNet-ILSVRC
2012 [39]. The imbalanced ratio is 1.77, which is close to perfectly balanced data (γ = 1).

Architectures. We use ResNets [40] and MobileNet-V2 [41] as the underlying architectures. ResNet
is a benchmark architecture for quantization research, while MobileNet-V2 is essentially an efficient
architecture with lightweight module designs that is also commonly used in image recognition.

Training. We utilize an NVIDIA Tesla V100 GPU and an NVIDIA GTX 2080Ti for implementation.
ImageNet has a batch size of 512, while Syndigits-LT, CIFAR-10-LT, and CIFAR-100-LT have 128.
The maximum number of training epochs is 200. The range of the learning rate is from 0.01 to 0.1.
The significance level α referring to Theorem 3.2 is set to 0.05. The constant factor β in Eq. (4) is
set to 0.999. More discussions about the setting are detailed in Appendix B. Code is available at
https://github.com/tinganchen/ClimbQ.git.

4.2 Comparison results

In the following, we compare the quantization performance of ClimbQ and ClimbQ+ with QAT
[8, 15, 11, 16] and ZSQ baselines [19, 18, 17, 10] on the class-imblanced datasets with distinct
imbalance ratio settings8.

CIFAR-10-LT. The results of 4-bit and 2-bit quantization of ResNet-20 and MobileNet-V2 on
CIFAR-10-LT are presented in Table 1. First, we can observe that the prediction accuracy declines
with the imbalance ratio γ increases. In addition, the process of low-bit quantization reduces precision.

8In this paper, model weights and features are quantized to low bits for each convolution layer. The baselines
being compared have the same quantization settings.
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Table 2: Accuracy (%) on CIFAR-100-LT under quantization. * indicates the quantization approach
fails at the imbalance ratio γ.

Methods 4-bit ResNet-56 2-bit ResNet-56 4-bit MobileNet-V2 2-bit MobileNet-V2

γ = 10 50 200 γ = 10 50 200 γ = 10 50 200 γ = 10 50 200

LLSQ [15] * * * * * * 34.46 26.23 11.60 * * *
ZeroQ [18] 5.74 4.92 1.38 5.47 5.27 1.27 53.79 27.29 20.91 25.91 15.89 13.56

Choi et al. [17] 6.25 4.09 * 5.03 1.18 1.00 53.84 36.38 28.30 26.51 15.27 12.38
ZAQ [10] 18.81 * * * * * 52.86 35.70 27.15 * * *

Qimera [11] 48.64 34.44 * 8.60 2.98 * * * * * * *
BatchQuant [16] 41.50 28.91 22.91 37.24 27.03 22.17 41.50 23.77 21.48 35.80 23.79 10.69

ClimbQ 50.04 34.30 25.64 47.15 33.85 23.91 53.74 31.47 22.58 41.50 22.02 18.53
ClimbQ+ 52.13 35.10 27.46 49.12 34.79 27.39 55.62 36.89 28.47 43.96 33.18 25.45

In particular, most of the compared quantization approaches have a significant accuracy loss for low
bit models in highly imbalanced cases, since they quantize on imbalanced data (with heterogeneous
class distributions) using the same quantization functions or distillation method, which results in a
huge quantization error and a significant loss of accuracy. In contrast, our ClimbQ and ClimbQ+
quantization schemes are proposed to diminish the heterogeneity in different classes (introduced in
Sec. 3). Table 1 demonstrates that our proposed methodologies can effectively reduce quantization
error and accuracy loss, especially on the lightweight architecture design, MobileNet-V2. ClimbQ
increases the accuracy of baselines under all studied conditions. In addition, ClimbQ yields a
performance increase of up to 10% for 2-bit MobileNet-V2 with γ = 10 and can successfully
implemented on the highly imbalanced cases γ = 50 and 200. ClimbQ+ can further improve the
performance of ClimbQ by as much as 4.4% in absolute accuracy. The exceptional performance is a
result of attempts to reduce the heterogeneity of class variances using quantized features and class
data sizes (see the evaluation of homogeneity and the proposed HomoVar loss in Sec. 3.2).

CIFAR-100-LT. We also study the efficacy of ClimbQ and ClimbQ+ on CIFAR-100-LT, which
contains 10 times as many classes as CIFAR-10-LT. Due to the increasing difficulty of the recognition
task, we employ a deeper ResNet-56 model instead of ResNet-20 for quantization. Table 2 reveals
that the accuracy of the compared approaches degrades significantly under highly imbalanced
circumstances. ClimbQ+ enhances the performance of the BatchQuant by 5% to 12% accuracy on
2-bit ResNet-56 and increases 8% to 15% for 2-bit MobileNet-V2, validating the effectiveness of
the ClimbQ process (scaling the class variances as introduced in Sec. 3.1) and the HomoVar loss
(rebalancing the data size of each class as shown in Sec. 3.2) on quantization error reduction.

Syndigits-LT and ImageNet. We further evaluate and discuss the performances of ClimbQ and
ClimbQ+ on the imbalanced dataset Syndigits-LT and balanced benchmark ImageNet in Appendix C.
ClimbQ+ on Syndigits-LT in the highly imbalanced case, γ = 200, achieves a remarkable 80.55%
accuracy for 2-bit ResNet-20, i.e., a 22% accuracy improvement over the best baseline result evaluated
(only 58.75% accuracy). Moreover, ClimbQ+ on 2-bit MobileNet-V2 outperforms the state-of-the-art
BatchQuant with a 26% increase in accuracy. In addition to the imbalanced datasets, we compare
our quantization methods against those previously proposed on the balanced benchmark ImageNet.
ClimbQ+ outperforms the previous studies by approximately 3% in terms of accuracy. More details
are discussed in Appendix C.

5 Ablation study on rebalancing strategies

In Sec. 4, we demonstrated the superior performance of ClimbQ (introduced in Sec. 3.1) and
ClimbQ+ (described in Sec. 3.2) over the baseline quantization approaches, which is particularly with
a significant improvement for low-bit and lightweight models in extremely imbalanced scenarios. In
this section, we compare ClimbQ+ to other effective rebalancing methods9. Table 3 demonstrates that
ClimbQ+ has outstanding performances compared to the previous research on rebalancing data sizes.
ClimbQ+ improves absolute accuracy by 4.4% to 22.4% for the 2-bit model on CIFAR-10-LT with
γ = 50 and by 2.6% to 25.3% accuracy with γ = 200. The extraordinary performances of ClimbQ+
verifies that the HomoVar loss introduced in Sec. 3.2 can effectively reduce more quantization errors

9The rebalancing methodologies are implemented under proposed ClimbQ quantization process on the
imbalanced data to compare with our reweighted loss, the HomoVar loss (designed in Sec. 3.2).
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Table 3: Accuracy (%) of rebalancing approaches on ClimbQ based low-bit ResNet-20. * indicates
the quantization approach fails at the imbalance ratio γ.

Methods Syndigits-LT (4-bit) Syndigits-LT (2-bit) CIFAR-10-LT (4-bit) CIFAR-10-LT (2-bit)

γ = 10 50 200 γ = 10 50 200 γ = 10 50 200 γ = 10 50 200

Focal [29] 96.05 88.20 76.35 95.20 87.15 76.05 80.52 66.69 55.80 78.27 55.96 37.69
CB [30] 96.10 88.45 76.45 95.50 87.60 74.80 76.31 69.70 60.46 65.62 59.94 51.69

LDAM [32] 95.25 86.85 78.15 94.80 86.35 76.90 80.48 70.68 56.01 78.65 49.38 37.21
Causal [33] 96.20 88.65 79.70 95.40 87.90 78.50 76.60 69.81 60.05 73.44 67.33 58.44
LADE [31] 95.45 85.65 72.10 95.15 85.45 71.80 80.69 64.99 49.56 78.88 60.24 47.45

ClimbQ+ 96.45 89.55 80.70 95.75 88.90 80.55 80.58 72.28 61.69 78.88 71.73 61.06

and accuracy loss owing to the rebalancing strategy that takes the homogeneity of the class variances
(variances of quantized features) into a consideration, rather than only leveraging the class data sizes.

6 Discussion with potential impacts and limitations

Potential impacts. ClimbQ with the HomoVar loss aims to rebalance the classes for homogeneity
of class variances. To prevent the majority classes from dominating the quantization results, the
rebalancing strategy focuses primarily on the minority classes while scaling down the weights on
the majority classes for the homogeneity of class variances, which implies that the prediction results
of the minority classes are more dependent on the small amount of data. Accordingly, they may be
much easier to be attacked with a notable performance degradation. However, recent research has
developed the defense strategy against the attacks on imbalanced data [42] which can also be applied
to ClimbQ.

Limitations. ClimbQ mainly focuses on the class-imbalanced data with different class data sizes and
distributions. However, we believe that there are other scenarios of heterogeneous data in the real
world that have not been fully studied. As a result, we will explore and study more research issues of
quantization on heterogeneous data in our future works.

7 Conclusion

In this paper, we study a realistic but not fully studied research problem of quantization on class-
imbalanced data, where the differences in class distributions lead to a huge quantization error in
the minority classes. To address this issue, we propose ClimbQ to scale the class distributions to
diminish the differences between classes for quantization error reduction. Moreover, we analyze that
the homogeneity of class variances under ClimbQ process is subjected to restricted class data sizes.
Therefore, we further propose HomoVar loss to rebalance the classes based on the derived bounds of
data sizes to satisfy the homogeneity. Experiments reveal that ClimbQ/ClimbQ+ outperforms the
baseline quantization and rebalance techniques, validating the effectiveness on quantization error
reduction by diminishing the differences in class distributions.
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