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A Additional numerical results

A.1 Detailed simulation results

We present the tables containing the results of the simulation study in Section 4.1 of the main text.
On each table, the mean over 100 repetitions is reported, and the numbers in parenthesis denote the
standard errors. For the purpose of identifying underestimation and overestimation, we also include
the proportions of estimations for which the K̂ −K distance is negative, zero, or positive.

Table 1: Scenario 1 (n = 1, d = 1 changes from 6 cos-6 sin-6 cos)

Model K − K̂ < 0 K − K̂ = 0 K − K̂ > 0 |K̂ −K| d(Ĉ, C)
FSBS 0.05 0.86 0.09 0.17 (0.05) 16.15 (4.09)

Changes occur at the times 30 and 130.

Table 2: Scenario 2 (n = 10, d = 1, changes from 2 cos-2 sin-2 cos)

Model K − K̂ < 0 K − K̂ = 0 K − K̂ > 0 |K̂ −K| d(Ĉ, C)
FSBS 0.05 0.95 0 0.05 (0.02) 3.32 (1)
BGHK 0.58 0.42 0 1.12 (0.14) 20.11 (1.82)
HK 0.16 0.47 0.37 0.78 (0.08) 66.45 (7.87)
SN 0.04 0.03 0.93 1.83 (0.04) 181.11 (5.05)

Changes occur at the times 30 and 130.
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Table 3: Scenario 3 (n = 50, d = 1, changes from cos-sin-cos)

Model K − K̂ < 0 K − K̂ = 0 K − K̂ > 0 |K̂ −K| d(Ĉ, C)
FSBS 0 0.93 0.07 0.07 (0.03) 7.35 (0.54)
BGHK 0.85 0.15 0 2.97 (0.22) 32.88 (1.82)
HK 0 0.08 0.92 1.71 (0.06) 172.52 (5.61)
SN 0.02 0.04 0.94 1.85 (0.05) 183.63 (4.57)

Changes occur at the times 30 and 130.

Table 4: Scenario 4 (n = 10, d = 2, changes from 0-3x(1)x(2)-0)

Model K − K̂ < 0 K − K̂ = 0 K − K̂ > 0 |K̂ −K| d(Ĉ, C)
FSBS 0 0.92 0.08 0.08 (0.021) 5.02 (1.25)

Changes occur at the times 100 and 150.

Table 5: Scenario 5 (n = 50, d = 1, changes from 0-sin-2 sin)

Model K − K̂ < 0 K − K̂ = 0 K − K̂ > 0 |K̂ −K| d(Ĉ, C)
FSBS 0.02 0.98 0 0.02 (0.01) 16.9 (0.93)
BGHK 0.48 0.30 0.22 1.09 (0.11) 34.36 (1.78)
HK 0 0.19 0.81 0.81 (0.04) 48.24 (1.71)
SN 0.08 0.33 0.59 0.85 (0.07) 65.15 (6.38)

Changes occur at the times 68 and 134.

A.2 Details of Figure 2

We zoom in the top-left and top-right corners of each panel in Figure 2 and present in Figures A.2
and A.2, respectively. The top-left and top-right corners correspond to the northwest and northeast
coasts of Australia, where the changes occur.

Figure 1: Average SST of northwest coast of Australia. From left to right: average SST from 1940 to
1981, average SST from 1982 to 1996, and average SST from 1997 to 2019. The top and bottom
rows correspond to the June and July data respectively.
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Figure 2: Average SST of northeast coast of Australia. From left to right: average SST from 1940 to
1981, average SST from 1982 to 1996, and average SST from 1997 to 2019. The top and bottom
rows correspond to the June and July data respectively.

A.3 Sea surface temperature on Caribbean sea

We consider an additional real data example, also from the COBE-SSTE dataset [7], using data from
June and July. FSBS is applied to estimate potential change points on a 1 degree latitude by 1 degree
longitude grid (10× 6), located at the Caribbean sea. In both months, FSBS identified the year 2004
as a change-point. This might be associated with the development of a Modoki El Niño – a rare
type of El Niño in which unfavourable conditions are produced over the eastern Pacific instead of
the Atlantic basin due to warmer sea surface temperatures farther west along the equatorial Pacific
[13]. Variability in the climate of northeastern Caribbean is connected with this phenomenon, see for
example [6].

Figure 3: Average SST of Caribbean sea. From left to right: The first image shows the region
chosen, the small blue rectangle into the black rectangle. The second image contains four different
sub-images. Here, from left to right, the average SST from 1940 to 2003 and average SST from 2004
to 2019 is presented. The top and bottom rows correspond to the June and July data respectively.

A.4 On the dimension d

Recall that the localisation error rate of change-point estimation in Theorem 1 is

CFSBS log
max{1,10/q}(T )

(
1 + T

d
2r+dn

−2r
2r+d

)
κ−2
k ,

which is an increasing function of d, i.e. a larger d will lead to a worse localization error rate.
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In addition, Assumption 3 requires that the signal-to-noise ratio to be lower bounded by

CSNR logmax{1/2,5/q}(T )
(
1 + T

d
2r+dn

−2r
2r+d

)1/2

,

which implies that a larger d will also require a stronger signal.

We conducted additional numerical results to further show the influence of d. Using the same setting
as that in Scenario 4 in Section 4, we vary the dimension d ∈ {2, 3, 5, 10}. Results are collected in
Table 6 and Appendix A.4, supporting our theoretical findings.

Table 6: FSBS on Scenario 4 (n = 10, changes from 0-3x(1)x(2)-0)

Dimension K − K̂ < 0 K − K̂ = 0 K − K̂ > 0 |K̂ −K| d(Ĉ, C)
d = 2 0 0.92 0.08 0.08 (0.02) 5.02 (1.25)
d = 3 0.02 0.89 0.09 0.11 (0.03) 5.73 (1.22)
d = 5 0.18 0.82 0 0.18 (0.05) 5.92 (1.23)
d = 10 0.21 0.79 0 0.22 (0.08) 6.58 (1.24)

Performance of FSBS with different choices of dimension d is studied for S4. The mean over 100
repetitions is reported, and the numbers in parenthesis denote standard errors. It includes the

proportions of estimations for which the K̂ −K distance is negative, zero, or positive.

Figure 4: Bar plots for simulation results of FSBS performance on S4 with respect to the dimension
d. Each bar reports the mean and standard error computed based on 100 experiments.

A.5 Choice of kernels

The choice of kernels may affect the performance of kernel based methods. We choose Gaussian
kernel in Section 4 and demonstrate the robustness against the choice of kernels of FSBS in this
section, by choosing different kernels. Tables 7, 8 and Appendix A.5 collect results of the performance
of the FSBS with different choices of kernels, based on the settings detailed in Scenarios 1 and 2 in
Section 4, with Gaussian, Uniform, Epanechnikov and Quartic kernels.

Table 7: FSBS in Scenario 1 (different kernels comparison)

Kernel K − K̂ < 0 K − K̂ = 0 K − K̂ > 0 |K̂ −K| d(Ĉ, C)
Gaussian 0.05 0.86 0.09 0.17 (0.05) 16.15 (4.09)
Uniform 0.01 0.99 0 0.01 (0.01) 13.32 (0.42)
Epanechnikov 0.06 0.87 0.17 0.13 (0.03) 15.14 (2.40)
Quartic 0.07 0.84 0.09 0.20 (0.04) 18.28 (1.63)

The mean over 100 repetitions is reported together with the standard errors into parenthesis. The
proportions of estimations for which the K̂ −K distance is negative, zero, or positive are included.

4



Table 8: FSBS in Scenario 2 (different kernels comparison)

Kernel K − K̂ < 0 K − K̂ = 0 K − K̂ > 0 |K̂ −K| d(Ĉ, C)
Gaussian 0.05 0.95 0 0.05 (0.02) 3.32 (1)
Uniform 0 0.99 0.01 0.01 (0.01) 2.93 (1.03)
Epanechnikov 0 100 0 0 (0) 1.24 (0.28)
Quartic 0.01 0.99 0 0.01 (0.01) 2.3 (0.55)

The mean over 100 repetitions is reported together with the standard errors into parenthesis. The
proportions of estimations for which the K̂ −K distance is negative, zero, or positive are included.

Figure 5: Bar plots for simulation results of FSBS performance on S1 and S2 with respect to different
choices of kernels. Each bar reports the mean and standard error computed based on 100 experiments.

A.6 Computational costs

Our method is computationally efficient and its computational complexity is O(nT log T +
T (log T )2). Specifically, as can be seen from Algorithm 1, we need to conduct kernel smooth-
ing of the sampling distribution and mean function at log T measurement locations, which costs
O(nT log T ) operations. Once this is done, we conduct seeded binary segmentation (SBS) at the
log T measurement locations/grids. It is known that SBS has a computational cost of O(T log T ).
Thus, this step costs O(T (log T )2) computational complexity. In total, the computational complexity
of our method is O(nT log T + T (log T )2).

As for existing methods in the literature, in terms of implementation, they all rely on the two-stage
procedure. Specifically, the first stage is to register/estimate the discretely observed points into a
functional curve on each time t. Taking the B-spline smoothing with p basis functions for example,
this costs O(n2p+ p3) computational complexity for each time t due to a least square estimation.
Thus this step costs O(T (n2p + p3)) computational complexity. Once the functional curves are
registered, in the second stage, the existing methods conduct functional PCA to extract p′ principle
component scores from each function and then conduct mean change-point detection on the p′-
dimension time series of principle component scores. Ignoring the computational cost of functional
PCA, the change-point detection procedure costs at least O(T log T ) computational complexity if a
standard binary segmentation is used and could be more expensive if other segmentation algorithms
are used to conduct change-point estimation. Thus, in total, the computational complexity of existing
methods is at least O(T (n2p+ p3) + T log T ), which is more expensive unless n ⪯ log T.

B Proof of Theorem 1

In this section, we present the proofs of theorem Theorem 1. To this end, we will invoke the following
well-known l∞ bounds for kernel density estimation.
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Lemma 1. Let {xt,i}n,Ti=1,t=1 be random grid points independently sampled from a common density
function u : [0, 1]d → R. Under Assumption 2-b, the density estimator of the sampling distribution µ,

p̂(x) =
1

nT

T∑
t=1

nt∑
i=1

Kh̄(x− xi,t), x ∈ [0, 1]d,

satisfies,

||p̂− E(p̂)||∞ ≤ C

√
log(nT ) + log(1/h̄)

nT h̄d
(1)

with probability at least 1− 1
nT . Moreover, under Assumption 2-a, the bias term satisfies

||E(p̂)− u||∞ ≤ C2h̄
r. (2)

Therefore,

||p̂− u||∞ = O
(( log(nT )

nT

) 2r
2r+d

)
(3)

with probability at least 1− 1
nT .

The verification of these bounds can be found in many places in the literature. For equation (1) see
for example [1], [8], [9] and [2]. For equation (2), [10] is a common reference.

Proof of Theorem 1. For any (s, e] ⊆ (0, T ], let

f̃
(s,e]
t (x) =

√
e− t

(e− s)(t− s)

t∑
l=s+1

f∗
l (x)−

√
t− s

(e− s)(e− t)

e∑
l=t+1

f∗
l (x), x ∈ [0, 1]d.

For any r̃ ∈ (ρ, T − ρ] and x ∈ [0, 1], we consider

Ax((s, e], ρ, λ) =

{
e−ρ
max

t=s+ρ+1
|F̃ s,e

t,h (x)− f̃s,e
t (x)| ≤ λ

}
;

Bx(r̃, ρ, λ) =

{
T−r̃
max
N=ρ

∣∣∣∣ 1√
N

r̃+N∑
t=r̃+1

Ft,h(x)−
1√
N

r̃+N∑
t=r̃+1

ft(x)

∣∣∣∣ ≤ λ

}⋃
{

r̃
max
N=ρ

∣∣∣∣ 1√
N

r̃∑
t=r̃−N+1

Ft,h(x)−
1√
N

r̃∑
t=r̃−N+1

ft(x)

∣∣∣∣ ≤ λ

}
.

From Algorithm 1, we have that

ρ =
log(T )

nhd
.

We observe that, ρnhd = log(T ) and for T ≥ 3, we have that

ρ1/2−1/q ≥ (nhd)1/2−(q−1)/q.

Therefore, Proposition 1 and Corollary 1 imply that with

λ = Cλ

(
log5/q(T )

√
1

nhd
+ 1 +

√
log(T )

nhd
+

√
Thr +

√
T
( log(nT )

nT

) 2r
2r+d

)
, (4)

for some diverging sequence Cλ, it holds that

P

{
Ac

x((s, e], ρ, λ)

}
≤ 4C1

log(T )

(log5/q(T ))q
+

2

T 5
+

10

Tn

and

P

{
Bc
x(r, ρ, λ)

}
≤ 2C1

log(T )

(log5/q(T ))q
+

1

T 5
+

5

Tn
.
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Then, using that log4(T ) = O(T ), from above

P

{
Ac

x((s, e], ρ, λ)

}
= O(log−4(T )) and P

{
Bc
x(r, ρ, λ)

}
= O(log−4(T )).

Now, we notice that,
K∑

k=1

ñk =

K∑
k=1

(2k − 1) ≤
K∑

k=1

2k ≤ 2(2⌈log(2)CK(log(log(T )))/ log 2⌉ − 1)

≤ 4(2(log(log(T )))/ log 2)log(2)CK = O(loglog(2)CK((T ))).

In addition, there are K = O(1) number of change-points. In consequence, it follows that

P

{
Au(I, ρ, λ) for all I ∈ J and all u ∈ {um}log(T )

m=1

}
≥ 1− 1

log2(T )
, (5)

P

{
Bu(s, ρ, λ) ∪ Bu(e, ρ, λ) for all (s, e] = I ∈ J and all u ∈ {um}log(T )

m=1

}
≥ 1− 1

log(T )
, (6)

P

{
Bu(ηk, ρ, λ) for all 1 ≤ k ≤ K and all u ∈ {um}log(T )

m=1

}
≥ 1− 1

log3(T )
. (7)

The rest of the argument is made by assuming the events in equations (5), (6) and (7) hold.

Denote

Υk = C logmax{1,10/q}(T )

(
1+T

d
2r+dn

−2r
2r+d

)
κ−2
k and Υmax = C logmax{1,10/q}(T )

(
1+T

d
2r+dn

−2r
2r+d

)
κ−2,

where κ = min{κ1, . . . , κK}. Since Υk is the desired localisation rate, by induction, it suffices to
consider any generic interval (s, e] ⊆ (0, T ] that satisfies the following three conditions:

ηm−1 ≤ s ≤ ηm ≤ . . . ≤ ηm+q ≤ e ≤ ηm+q+1, q ≥ −1;

either ηm − s ≤ Υm or s− ηm−1 ≤ Υm−1;

either ηm+q+1 − e ≤ Υm+q+1 or e− ηm+q ≤ Υm+q.

Here q = −1 indicates that there is no change-point contained in (s, e].

Denote

∆k = ηk−1 − ηk for k = 1, . . . ,K + 1 and ∆ = min{∆1, . . . ,∆K+1}.
Observe that since κk > 0 for all 1 ≤ k ≤ K and that ∆k = Θ(T ), it holds that Υmax = o(∆).
Therefore, it has to be the case that for any true change-point ηm ∈ (0, T ], either |ηm − s| ≤ Υm or
|ηm − s| ≥ ∆−Υmax ≥ Θ(T ). This means that min{|ηm − e|, |ηm − s|} ≤ Υm indicates that ηm
is a detected change-point in the previous induction step, even if ηm ∈ (s, e]. We refer to ηm ∈ (s, e]
as an undetected change-point if min{ηm − s, ηm − e} = Θ(T ). To complete the induction step, it
suffices to show that FSBS ((s, e], h, τ)
(i) will not detect any new change point in (s, e] if all the change-points in that interval have been
previously detected, and
(ii) will find a point DI∗

m∗ in (s, e] such that |ηm −DI∗

m∗| ≤ Υm if there exists at least one undetected
change-point in (s, e].

In order to accomplish this, we need the following series of steps.

Step 1. We first observe that if ηk ∈ {ηk}Kk=1 is any change-point in the functional time
series, by Lemma 8, there exists a seeded interval Ik = (sk, ek] containing exactly one change-point
ηk such that

min{ηk − sk, ek − ηk} ≥ 1

16
ζk, and max{ηk − sk, ek − ηk} ≤ ζk

where,

ζk =
9

10
min{ηk+1 − ηk, ηk − ηk−1}.
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Even more, we notice that if ηk ∈ (s, e] is any undetected change-point in (s, e]. Then it must hold
that

s− ηk−1 ≤ Υmax.

Since Υmax = O(logmax{1,10/q}(T )T
d

2r+d ) and O(loga(T )) = o(T b) for any positive numbers a
and b, we have that Υmax = o(T ). Moreover, ηk − sk ≤ ζk ≤ 9

10 (ηk − ηk−1), so that it holds that

sk − ηk−1 ≥ 1

10
(ηk − ηk−1) > Υmax ≥ s− ηk−1

and in consequence sk ≥ s. Similarly ek ≤ e. Therefore

Ik = (sk, ek] ⊆ (s, e].

Step 2. Consider the collection of intervals {Ik = (sk, ek]}Kk=1 in Step 1. In this step, it is shown
that for each k ∈ {1, . . . ,K}, it holds that

t=ek−ρ
max

t=sk+ρ

m=log(T )
max
m=1

|F̃ (sk,ek]
t,h (um)| ≥ c1

√
Tκk, (8)

for some sufficient small constant c1.

Let k ∈ {1, . . . ,K}. By Step 1, Ik contains exactly one change-point ηk. Since for every
um, f∗

t (um) is a one dimensional population time series and there is only one change-point in
Ik = (sk, ek], it holds that

f∗
sk+1(um) = ... = f∗

ηk
(um) ̸= f∗

ηk+1(um) = ... = f∗
ek
(um)

which implies, for sk < t < ηk

f̃
(sk,ek]
t (um) =

√
ek − t

(ek − sk)(t− sk)

t∑
l=sk+1

f∗
ηk
(um)−

√
t− sk

(ek − sk)(ek − t)

ηk∑
l=t+1

f∗
ηk
(um)

−

√
t− sk

(ek − sk)(ek − t)

ek∑
l=ηk+1

f∗
ηk+1(um)

=(t− sk)

√
ek − t

(ek − sk)(t− sk)
f∗
ηk
(um)− (ηk − t)

√
t− sk

(ek − sk)(ek − t)
f∗
ηk
(um)

−(ek − ηk)

√
t− sk

(ek − sk)(ek − t)
f∗
ηk+1(um)

=

√
(t− sk)(ek − t)

(ek − sk)
f∗
ηk
(um)− (ηk − t)

√
t− sk

(ek − sk)(ek − t)
f∗
ηk
(um)

−(ek − ηk)

√
t− sk

(ek − sk)(ek − t)
f∗
ηk+1(um)

=(ek − t)

√
t− sk

(ek − t)(ek − sk)
f∗
ηk
(um)− (ηk − t)

√
t− sk

(ek − sk)(ek − t)
f∗
ηk
(um)

−(ek − ηk)

√
t− sk

(ek − sk)(ek − t)
f∗
ηk+1(um)

=(ek − ηk)

√
t− sk

(ek − t)(ek − sk)
f∗
ηk
(um)− (ek − ηk)

√
t− sk

(ek − sk)(ek − t)
f∗
ηk+1(um)

=(ek − ηk)

√
t− sk

(ek − t)(ek − sk)
(f∗

ηk
(um)− f∗

ηk+1(um)).

8



Similarly, for ηk ≤ t ≤ ek

f
(sk,ek]
t (um) =

√
ek − t

(ek − sk)(t− sk)
(ηk − sk)(f

∗
ηk
(um)− f∗

ηk+1(um)).

Therefore,

f̃
(sk,ek]
t (um) =


√

t−sk
(ek−sk)(ek−t) (ek − ηk)(f

∗
ηk
(um)− f∗

ηk+1(um)), sk < t < ηk;√
ek−t

(ek−sk)(t−sk)
(ηk − sk)(f

∗
ηk
(um)− f∗

ηk+1(um)), ηk ≤ t ≤ ek.
(9)

By Lemma 7, with probability at least 1− o(1), there exists uk̃ ∈ {um}log(T )
m=1 such that

|f∗
ηk
(uk̃)− f∗

ηk+1(uk̃)| ≥
3

4
κk.

Since ∆ = Θ(T ), ρ = O(log(T )T
d

2r+d ) and loga(T ) = o(T b) for any positive numbers a and b, we
have that

min{ηk − sk, ek − ηk} ≥ 1

16
ζk ≥ c2T > ρ, (10)

so that ηk ∈ [sk + ρ, ek − ρ]. Then, from (9), (10) and the fact that |ek − sk| < T and |ηk − sk| < T ,

|f̃ (sk,ek]
ηk

(uk̃)| =
√

ek − ηk
(ek − sk)(ηk − sk)

(ηk − sk)|f∗
ηk
(uk̃)− f∗

ηk+1(uk̃)| ≥ c2
√
T
3

4
κk. (11)

Therefore, it holds that
t=ek−ρ
max

t=sk+ρ

m=log(T )
max
m=1

|F̃ (sk,ek]
t,h (um)| ≥|F̃ (sk,ek]

ηk,h
(uk̃)|

≥|f̃ (sk,ek]
ηk

(uk̃)| − λ

≥c2
3

4

√
Tκk − λ,

where the first inequality follows from the fact that ηk ∈ [sk + ρ, ek − ρ], the second inequality
follows from the good event in (5), and the last inequality follows from (11).

Next, we observe that log
5
q (T )

√
1

nhd + 1 = o(
√

T
2r+d

d )O(
√

T
d

2r+d ) = o(
√
T ), ρ < c2T , hr =

o(1) and
(

lognT
nT

) 2r
2r+d

= o(1). In consequence, since κk is a positive constant, by the upper bound
of λ on Equation (4), for sufficiently large T , it holds that

c2
4

√
Tκk ≥ λ.

Therefore,
t=ek−ρ
max

t=sk+ρ

m=log(T )
max
m=1

|F̃ (sk,ek]
t,h (um)| ≥ c2

2

√
Tκk.

Therefore Equation (8) holds with c1 = c2
2 .

Step 3. In this step, it is shown that FSBS((s, e], h, τ) can consistently detect or reject the
existence of undetected change-points within (s, e].

Suppose ηk ∈ (s, e] is any undetected change-point. Then by the second half of Step 1,
Ik ⊆ (s, e]. Therefore

AI∗

m∗ ≥ t=ek−ρ
max

t=sk+ρ

m=log(T )
max
m=1

|F̃ (sk,ek]
t,h (um)| ≥ c1

√
Tκk > τ,

where the second inequality follows from Equation (8), and the last inequality fol-
lows from the fact that, loga(T ) = o(T b) for any positive numbers a and b implies

τ = Cτ

(
logmax{1,10/q}(T )

√
1

nhd + 1

)
= o(

√
T ).

Suppose there does not exist any undetected change-point in (s, e]. Then for any I = (α, β] ⊆ (s, e],
one of the following situations must hold,
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(a) There is no change-point within (α, β];

(b) there exists only one change-point ηk within (α, β] and min{ηk − α, β − ηk} ≤ Υk;

(c) there exist two change-points ηk, ηk+1 within (α, β] and

ηk − α ≤ Υk and β − ηk+1 ≤ Υk+1.

The calculations of (c) are provided as the other two cases are similar and simpler. Note that for any
x ∈ [0, 1]d, it holds that

|f∗
ηk+1

(x)− f∗
ηk+1+1(x)| ≤ ∥f∗

ηk+1
− f∗

ηk+1+1∥∞ = κk+1

and similarly
|f∗

ηk
(x)− f∗

ηk+1(x)| ≤ κk.

By Lemma 10 and the assumption that (α, β] contains only two change-points, it holds that for all
x ∈ [0, 1]d,

β
max
t=α

|f̃ (a,β]
t (x)| ≤

√
β − ηr+1|f∗

ηr+1
(x)− f∗

ηr+1+1(x)|+
√
ηr − α|f∗

ηr
(x)− fη∗

r+1(x)|

≤
√
Υk+1κk+1 +

√
Υkκk ≤ 2

√
C logmax{1/2,5/q}(T )

√
1 + T

d
2r+dn

−2r
2r+d .

Thus

β
max
t=α

∥f̃ (a,β]
t ∥∞ ≤ 2

√
C logmax{1/2,5/q}(T )

√
1 + T

d
2r+dn

−2r
2r+d . (12)

Therefore in the good event in Equation (5), for any 1 ≤ m ≤ log(T ) and any I = (α, β] ⊆ (s, e], it
holds that

AI
m =

β−ρ
max
t=α+ρ

|F̃ (α,β]
t,h (um)|

≤ β−ρ
max
t=α+ρ

∥f̃ (α,β]
t ∥∞ + λ

≤2
√
C logmax{1/2,5/q}(T )

√
1 + T

d
2r+dn

−2r
2r+d + λ,

where the first inequality follows from Equation (5), and the last inequality follows from Equation (12).
Then,

2
√
C logmax{1/2,5/q}(T )

√
1 + T

d
2r+dn

−2r
2r+d + λ

=2
√
C logmax{1/2,5/q}(T )

√
1

nhd
+ 1

+ Cλ log
5/q(T )

√
1

nhd
+ 1 + Cλ

√
log(T )

nhd
+ Cλ

√
Thr + Cλ

√
T
( log nT

nT

) 2r
2r+d

.

We observe that
√

log(T )
nhd = O(log(T )1/2

√
1

nhd + 1). Moreover,

√
Thr =

√
T
( 1

nT

) r
2r+d ≤ (T

1
2−

r
2r+d )

1

n
r

2r+d
,

and given that,
1

2
− r

2r + d
=

d

2(2r + d)
,

we get,
√
Thr = o

(
logmax 1/2,5/q(T )

√
1

nhd
+ 1

)
.

Following the same line of arguments, we have that

√
T
( log nT

nT

) 2r
2r+d

= T
1
2−

2r
2r+d log

2r
2r+d (T ) = o

(
log T

√
1

nhd
+ 1

)
.

10



Thus, by the choice of τ , it holds that with sufficiently large constant Cτ ,

AI
m ≤ τ for all 1 ≤ m ≤ log(T ) and all I ⊆ (s, e]. (13)

As a result, FSBS ((s, e], h, τ) will correctly reject if (s, e] contains no undetected change-points.

Step 4. Assume that there exists an undetected change-point ηk̃ ∈ (s, e] such that
min{ηk̃ − s, ηk̃ − e} = Θ(T ).

Let m∗ and I∗ be defined as in FSBS ((s, e], h, τ) with
I∗ = (α∗, β∗].

To complete the induction, it suffices to show that, there exists a change-point ηk ∈ (s, e] such that
min{ηk − s, ηk − e} = Θ(T ) and |DI∗

m∗ − ηk| ≤ Υk.

Consider the uni-variate time series

Ft,h(um∗) =
1

n

n∑
i=1

yt,iKh(um∗ − xt,i) and f∗
t (um∗) for all 1 ≤ t ≤ T.

Since the collection of the change-points of the time series {f∗
t (um∗)}t∈I∗ is a subset of that of

{ηk}K+1
k=0 ∩ (s, e], we may apply Lemma 9 to by setting

µt = Ft,h(um∗) and ωt = f∗
t (um∗)

on the interval I∗. Therefore, it suffices to justify that all the assumptions of Lemma 9 hold.

In the following, λ is used in Lemma 9. Then Equation (33) and Equation (34) are directly
consequence of Equation (5), Equation (6), Equation (7).
We observe that, for any I = (α, β] ⊆ (s, e],

β∗−ρ
max

t=α∗+ρ
|F̃ (α∗,β∗]

t,h (um∗)| = AI∗

m∗ ≥ AI
m =

β−ρ
max
t=α+ρ

|F̃ (α,β]
t,h (um)|

for all m. By Step 1 with Ik = (sk, ek], it holds that

min{ηk − sk, ek − ηk} ≥ 1

16
ζk ≥ c2T,

Therefore for all k ∈ {k̃ : min{ηk̃ − s, e− ηk̃} ≥ c2T},
β∗−ρ
max

t=α∗+ρ
|F̃ (α∗,β∗]

t,h (um∗)| ≥
t=ek−ρ,m=log(T )

max
t=sk+ρ,m=1

|F̃ (sk,ek]
t,h (um)| ≥ c1

√
Tκk,

where the last inequality follows from Equation (8). Therefore Equation (35) holds in Lemma 9.
Finally, Equation (36) is a direct consequence of the choices that

h = Ch(Tn)
−1

2r+d and ρ =
log(T )

nhd
.

Thus, all the conditions in Lemma 9 are met. So that, there exists a change-point ηk of {f∗
t (um∗)}t∈I∗ ,

satisfying
min{β∗ − ηk, ηk − α∗} > cT, (14)

and

|DI∗

m∗ − ηk| ≤ max{C3λ
2κ−2

k , ρ} ≤C4 log
max{10/q,1}(T )

(
1 +

1

nhd
+ Th2r + T

(
log(nT )

nT

) 4r
2r+d

)
κ−2
k

≤C logmax{10/q,1}(T )

(
1 + T

d
2r+dn

−2r
2r+d

)
κ−2
k

for sufficiently large constant C, where we have followed the same line of arguments than for the
conclusion of (13). Observe that
i) The change-points of {f∗

t (um∗)}t∈I∗ belong to (s, e] ∩ {ηk}Kk=1; and
ii) Equation (14) and (α∗, β∗] ⊆ (s, e] imply that

min{e− ηk, ηk − s} > cT ≥ Υmax.

As discussed in the argument before Step 1, this implies that ηk must be an undetected change-point
of {f∗

t (um∗)}t∈I∗ .
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C Deviation bounds related to kernels

In this section, we deal with all the large probability events occurred in the proof of Theorem 1.
Recall that Ft,h(x) =

1
n

∑n
i=1 yt,iKh(x−xt,i)

p̂(x) , and

F̃
(s,e]
t,h (x) =

√
e− t

(e− s)(t− s)

t∑
l=s+1

Fl,h(x)−

√
t− s

(e− s)(e− t)

e∑
l=t+1

Fl,h(x).

By assumption 2, we have maxql=1 ∥Kl∥∞ = maxql=1 ∥K∥l∞ < CK , where CK > 0 is an absolute
constant. Moreover, assumption 1b implies |f∗

t (x)| < Cf for any x ∈ [0, 1]d, t ∈ 1, ..., T.

Proposition 1. Suppose that Assumption 1 and 2 hold, that ρnhd ≥ log(T ) and that T ≥ 3. Then
for any x ∈ [0, 1]d

P
(

T−r̃
max
k=ρ

∣∣∣∣ 1√
k

r̃+k∑
t=r̃+1

(
Ft,h(x)− f∗

t (x)
)∣∣∣∣ ≥ 2

c̃
z

√
1

nhd
+ 1 +

C̃1

c̃

(√ log(T )

nhd

)
+

C̃

c̃

√
Thr +

C̄Cf

c̃

√
T
( log(nT )

nT

) 2r
2r+d

)
≤ 2C1

log(T )

zq
+ T−5 +

5

Tn
; (15)

P
(

r̃
max
k=ρ

∣∣∣∣ 1√
k

r̃∑
t=r̃−k+1

(
Ft,h(x)− f∗

t (x)
)∣∣∣∣ ≥ 2

c̃
z

√
1

nhd
+ 1 +

C̃1

c̃

(√ log(T )

nhd

)
+

C̃

c̃

√
Thr +

C̄Cf

c̃

√
T
( log(nT )

nT

) 2r
2r+d

)
≤ 2C1

log(T )

zq
+ T−5 +

5

Tn
. (16)

Proof. The proofs of Equation (15) and Equation (16) are the same. So only the proof of Equation (15)

is presented. We define the events E1 =
{
||p̂ − u||∞ ≤ C̄

((
log(Tn)

Tn

) 2r
2r+d

)}
and E2 =

{
p̂ ≥

c̄, c̄ = infx u(x)− C̄
(

log(Tn)
Tn

) 2r
2r+d

}
. Using Lemma 1, especifically by equation (3), we have that

P (E1) ≥ 1− 1
nT . Then, we observe that in event E1, for x ∈ [0, 1]d

inf
s
u(s)− p̂(x) ≤ u(x)− p̂(x) ≤ |u(x)− p̂(x)| ≤ C̄

( log(Tn)
Tn

) 2r
2r+d

which implies E1 ⊆ E2. Therefore, P (Ec
2) ≤ 1

nT .
Now, for any x, observe that, by definition of Ft,h and triangle inequality

I =
T−r̃
max
k=ρ

1√
k

∣∣∣∣ r̃+k∑
t=r̃+1

Ft,h(x)−
r̃+k∑

t=r̃+1

f∗
t (x)

∣∣∣∣
≤ T−r̃

max
k=ρ

∣∣∣∣ 1√
k

r̃+k∑
t=r̃+1

1

n

n∑
i=1

(
f∗
t (xt,i)Kh(x− xt,i)

p̂(x)
− f∗

t (x)

)∣∣∣∣
+

T−r̃
max
k=ρ

∣∣∣∣ 1√
k

r̃+k∑
t=r̃+1

1

n

n∑
i=1

ξt(xt,i)Kh(x− xt,i)

p̂(x)

∣∣∣∣ (17)

+
T−r̃
max
k=ρ

∣∣∣∣ 1√
k

r̃+k∑
t=r̃+1

1

n

n∑
i=1

δt,iKh(x− xt,i)

p̂(x)

∣∣∣∣
= I1 + I2 + I3.

In the following, we will show that I1 ≤ I1,1 + I1,2 + I1,3, and that

1. P
(
I1,1 ≥ C̃1

c̃

(√
log(T )
nhd

))
≤ 1

T 5 + 1
Tn ,

2. P
(
I1,2 ≥ C̃

c̃

√
Thr

)
≤ 1

Tn ,

12



3. P
(
I1,3 ≥ C̄Cf

c̃

√
T
(

log(nT )
nT

) 2r
2r+d

)
≤ 1

Tn ,

4. P
(
I2 ≥ 1

c̃ z
√

1
nhd + 1

)
≤ C1 log T

zq + 1
Tn ,

5. P
(
I3 ≥ 1

c̃ z
√

1
nhd + 1

)
≤ C1 log T

zq + 1
Tn ,

in order to conclude that,

P
(
I ≥ 2z

√
1

nhd
+ 1 + C̃1

(√ log(T )

nhd

)
+

C̃

c̃

√
Thr +

C̄Cf

c̃

√
T
( log(nT )

nT

) 2r
2r+d

)
≤P

(
I1,1 ≥ C̃1

(√ log(T )

nhd

))
+ P

(
I1,2 ≥ C̃

c̃

√
Thr

)
+ P

(
I1,3 ≥ C̄Cf

c̃

√
T
( log(nT )

nT

) 2r
2r+d

)
+P

(
I2 ≥ z

√
1

nhd
+ 1

)
+ P

(
I3 ≥ z

√
1

nhd
+ 1

)
≤2C1

log(T )

zq
+ T−5 +

5

Tn
.

Step 1. The analysis for I1 is done. We observe that,

T−r̃
max
k=ρ

∣∣∣∣ 1√
k

r̃+k∑
t=r̃+1

1

n

n∑
i=1

(
f∗
t (xt,i)Kh(x− xt,i)

p̂(x)
− f∗

t (x)

)∣∣∣∣
≤ T−r̃

max
k=ρ

∣∣∣∣ 1√
k

r̃+k∑
t=r̃+1

1

n

n∑
i=1

(
f∗
t (xt,i)Kh(x− xt,i)

p̂(x)
−

∫
f∗
t (z)Kh(x− z)dµ(z)

p̂(x)

)∣∣∣∣
+

T−r̃
max
k=ρ

∣∣∣∣ 1√
k

r̃+k∑
t=r̃+1

1

n

n∑
i=1

(∫
f∗
t (z)Kh(x− z)dµ(z)

p̂(x)
− f∗

t (x)

)∣∣∣∣ = I1,1 + Ĩ1.

Step 1.1 The analysis for I1,1 is done. We note that the random variables {f∗
t (xt,i)Kh(x −

xt,i)}1≤i≤nt,1≤t≤N are independent distributed with mean
∫
f∗
t (z)Kh(x− z)dµ(z) and

Var
(
f∗
t (xt,i)Kh(x− xt,i)

)
≤E

{
(f∗

t )
2(xt,i)K

2
h(x− xt,i)

}
=

∫
[0,1]d

(f∗
t )

2(z)
1

h2d
K2

(x− z

h

)
dµ(z)

≤
C2

f

hd

∫
[0,1]d

1

hd
K2

(x− z

h

)
dµ(z)

=
C2

f

hd

∫
[0,1]d

K2
(
u
)
dµ(u) <

C2
fC

2
K

hd
.

Since |f∗
t (xt,i)Kh(x− xt,i)| ≤ CfCKh−d, by Bernstein inequality [11], we have that

P
(∣∣∣∣ 1

kn

r+k∑
t=r+1

n∑
i=1

f∗
t (xt,i)Kh(x−xt,i)−

∫
f∗
t (z)Kh(x−z)dµ(z)

∣∣∣∣ ≥ C̃1

{√
log(T )

knhd
+
log(T )

knhd

})
≤ T−6.

Since knhd ≥ log(T ) if k ≥ ρ, with probability at most T−5, it holds that

T−r̃
max
k=ρ

∣∣∣∣ 1√
kn

r+k∑
t=r+1

n∑
i=1

(
f∗
t (xt,i)Kh(x− xt,i)−

∫
f∗
t (z)Kh(x− z)dµ(z)

)∣∣∣∣ ≥ C̃1

√
log(T )

nhd
.

Therefore, using that P (Ec
2) ≤ 1

Tn , we conclude

T−r̃
max
k=ρ

∣∣∣∣ 1√
k

r̃+k∑
t=r̃+1

1

n

n∑
i=1

(
f∗
t (xt,i)Kh(x− xt,i)

p̂(x)
−

∫
f∗
t (z)Kh(x− z)dµ(z)

p̂(x)

)∣∣∣∣ ≥ C̃1

c̃

√
log(T )

nhd

13



with probability at most T−5 + 1
nT .

Step 1.2 The analysis for I1,2 and I1,3 is done. We observe that

Ĩ1 =
T−r̃
max
k=ρ

∣∣∣∣ 1√
k

r̃+k∑
t=r̃+1

1

n

n∑
i=1

(∫
f∗
t (z)Kh(x− z)dµ(z)

p̂(x)
− f∗

t (x)

)∣∣∣∣
≤ T−r̃
max
k=ρ

∣∣∣∣ 1√
k

r̃+k∑
t=r̃+1

1

n

n∑
i=1

(∫
f∗
t (z)Kh(x− z)dµ(z)

p̂(x)
− f∗

t (x)u(x)

p̂(x)

)∣∣∣∣ (18)

+
T−r̃
max
k=ρ

∣∣∣∣ 1√
k

r̃+k∑
t=r̃+1

1

n

n∑
i=1

(
f∗
t (x)u(x)

p̂(x)
− f∗

t (x)

)∣∣∣∣ = I1,2 + I1,3. (19)

Then, we observe that

I1,2 =

∣∣∣∣ 1√
k

r̃+k∑
t=r̃+1

1

n

n∑
i=1

(∫
f∗
t (z)Kh(x− z)dµ(z)− f∗

t (x)u(x)

)∣∣∣∣
≤ 1√

k

r̃+k∑
t=r̃+1

1

n

n∑
i=1

∣∣∣∣ ∫ f∗
t (z)Kh(x− z)dµ(z)− f∗

t (x)u(x)

∣∣∣∣
≤ 1√

k

r̃+k∑
t=r̃+1

1

n

n∑
i=1

C̃hr

=
1√
k

r̃+k∑
t=r̃+1

C̃hr

=
√
kC̃hr

where the second inequality follows from assumption 2. Therefore, using event E2, we can bound
(18) by C̃

c̃

√
Thr with probability at least 1− 1

nT . Meanwhile, for (19) we have that,

I1,3 =
T−r̃
max
k=ρ

∣∣∣∣ 1√
k

r̃+k∑
t=r̃+1

1

n

n∑
i=1

(
f∗
t (x)u(x)

p̂(x)
− f∗

t (x)

)∣∣∣∣
≤ T−r̃
max
k=ρ

1√
k

r̃+k∑
t=r̃+1

1

n

n∑
i=1

|f∗
t (x)|

∣∣∣∣u(x)− p̂(x)

p̂(x)

∣∣∣∣. (20)

Then, since in the event E1, it is satisfies that

||p̂− u||∞ ≤ C̄
(( log(Tn)

Tn

) 2r
2r+d

)
, and p̂ ≥ c̄;

we have that equation (20), is bounded by

T−r̃
max
k=ρ

1√
k

r̃+k∑
t=r̃+1

1

n

n∑
i=1

C̄Cf

c̃

( log(nT )
nT

) 2r
2r+d ≤ C̄Cf

c̃

√
T
( log(nT )

nT

) 2r
2r+d

with probability at least 1− 1
nT .

Step 2. The analysis for I2 and I3 is done. For 1 ≤ t ≤ T , let

Zt =
1

n

n∑
i=1

ξt(xt,i)Kh(x− xt,i) and Wt =
1

n

n∑
i=1

δt,iKh(x− xt,i).

By Lemma 2 and event E2, it holds that

P
{

T−r̃
max
k=ρ

∣∣∣∣ 1√
k

r̃+k∑
t=r̃+1

Zt

p̂(x)

∣∣∣∣ ≥ 1

c̃
z

√
1

nhd
+ 1

}
≤ C1 log(T )

zq
+

1

nT

14



and

P
{

T−r̃
max
k=ρ

∣∣∣∣ 1√
k

r̃+k∑
t=r̃+1

Wt

p̂(x)

∣∣∣∣ ≥ 1

c̃
z

√
1

nhd
+ 1

}
≤ C1 log(T )

zq
+

1

nT
.

The desired result follows from putting the previous steps together.

Corollary 1. Suppose that ρnhd ≥ log(T ) and that T ≥ 3. Then for z > 0

P
{

e−ρ
max

t=s+ρ+1

∣∣∣∣F̃ (s,e]
t,h (x)− f̃

(s,e]
t (x)

∣∣∣∣ ≥ 4

c̃
z

√
1

nhd
+ 1 +

2C̃1

c̃

(√ log(T )

nhd

)
+

2C̃

c̃

√
Thr +

2C̄Cf

c̃

√
T
( log(nT )

nT

) 2r
2r+d

}
≤ 2T−5 +

4C1 log(T )

zq
+ 10

1

Tn
.

Proof. By definition of F̃ (s,e]
t,h and f̃

(s,e]
t , we have that∣∣∣∣F̃ (s,e]

t,h (x)− f̃
(s,e]
t (x)

∣∣∣∣ ≤ ∣∣∣∣
√

e− t

(e− s)(t− s)

t∑
l=s+1

(Fl,h(x)− f∗
l (x))

∣∣∣∣
+

∣∣∣∣
√

t− s

(e− s)(e− t)

e∑
l=t+1

(Fl,h(x)− f∗
l (x))

∣∣∣∣.
Then, we observe that,√

e− t

(e− s)(t− s)
≤

√
1

t− s
if s ≤ t, and

√
t− s

(e− s)(e− t)
≤

√
1

e− t
if t ≤ e.

Therefore,

X =
e−ρ
max

t=s+ρ+1

∣∣∣∣F̃ (s,e]
t,h (x)− f̃

(s,e]
t (x)

∣∣∣∣ ≤ e−ρ
max

t=s+ρ+1

∣∣∣∣
√

1

t− s

t∑
l=s+1

(
Fl,h(x)− {f∗

l (x)

)∣∣∣∣
+

e−ρ
max

t=s+ρ+1

∣∣∣∣
√

1

e− t

e∑
l=t+1

(
Fl,h(x)− f∗

l (x)

)∣∣∣∣ = X1 +X2.

Finally, letting λ = 4
c̃ z

√
1

nhd + 1+ 2C̃1

c̃

(√
log(T )
nhd

)
+ 2C̃

c̃

√
Thr +

2C̄Cf

c̃

√
T
(

log(nT )
nT

) 2r
2r+d

, we get
that

P(X ≥ λ) ≤P(X1 +X2 ≥ λ

2
+

λ

2
)

≤P(X1 ≥ λ

2
) + P(X2 ≥ λ

2
)

≤2T−5 +
4C1 log(T )

zq
+ 10

1

Tn
,

where the last inequality follows from Proposition 1.
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C.1 Additional Technical Results

The following lemmas provide lower bounds for

Zt =
1

n

n∑
i=1

ξt(xt,i)Kh(x− xt,i) and Wt =
1

n

n∑
i=1

δt,iKh(x− xt,i).

They are a direct consequence of the temporal dependence and heavy-tailedness of the data considered
in Assumption 1.
Lemma 2. Let ρ ≤ T be such that ρnhd ≥ log(T ) and T ≥ 3. Let N ∈ Z+ be such that N ≥ ρ.
a. Suppose that for any q ≥ 3 it holds that

∞∑
t=1

t1/2−1/qE
{
∥ξt − ξ∗t ∥q∞

}1/q
= O(1). (21)

Then for any z > 0,

P
{

N
max
k=ρ

∣∣∣∣{ 1

nhd
+ 1

}−1/2
1√
k

k∑
t=1

Zt

∣∣∣∣ ≥ z

}
≤ C1 log(T )

zq
.

b. Suppose that for some q ≥ 3,
∞∑
t=1

t1/2−1/q n
max
i=1

{
E|δt,i − δ∗t,i|q

}1/q
< O(1). (22)

Then for any w > 0,

P
{

N
max
k=ρ

∣∣∣∣{ 1

nhd
+ 1

}−1/2
1√
k

k∑
t=1

Wt

∣∣∣∣ ≥ w

}
≤ C1 log(T )

wq
.

Proof. The proof of part b is similar and simpler than that of part a. For conciseness, only the proof
of a is presented.

By Lemma 4 and Equation (21), for all J ∈ Z+, it holds that

E
{

J
max
k=1

|
k∑

t=1

Zt|q
}1/q

≤ J1/2C

{(
1

nhd

)1/2

+ 1

}
+ J1/qC ′′

{(
1

nhd

)(q−1)/q

+ 1

}
.

As a result there exists a constant C1 such that

E
{

J
max
k=1

|
k∑

t=1

Zt|q
}

≤C1J
q/2

{(
1

nhd

)1/2

+ 1

}q

+ C1J

{(
1

nhd

)(q−1)/q

+ 1

}q

.

We observe that

Jq/2 =
q

2

∫ J

0

xq/2−1dx (23)

=
q

2

(∫ 1

0

xq/2−1dx+

∫ J

1

xq/2−1dx
)

(24)

≤q

2

(
1 +

∫ J

1

xq/2−1dx
)

(25)

=
q

2

(
1 +

∫ 2

1

xq/2−1dx+ ...+

∫ J

J−1

xq/2−1dx
)

(26)

≤q

2

(
1 +

∫ 2

1

2q/2−1dx+ ...+

∫ J

J−1

Jq/2−1dx
)

(27)

=
q

2

J∑
k=1

kq/2−1, (28)
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which implies, there is a constant C2 such that

C1J
q/2

{(
1

nhd

)1/2

+ 1

}q

+ C1J

{(
1

nhd

)(q−1)/q

+ 1

}q

≤ C2

J∑
k=1

αk,

where

αk = kq/2−1

{(
1

nhd

)1/2

+ 1

}q

+

{(
1

nhd

)(q−1)/q

+ 1

}q

.

By theorem B.2 of Kirch (2006),

E
{

N
max
k=1

∣∣∣∣ 1√
k

k∑
t=1

Zt

∣∣∣∣}q

≤4C2

N∑
l=1

l−q/2αl

=4C2

N∑
l=1

(
l−1

{(
1

nhd

)1/2

+ 1

}q

+ l−q/2

{(
1

nhd

)(q−1)/q

+ 1

}q)

≤C3 log(N)

{(
1

nhd

)1/2

+ 1

}q

+ C3N
−q/2+1

{(
1

nhd

)(q−1)/q

+ 1

}q

where the last inequality follows from the fact that
∫ N

1
1
x = log(N) and that

∫ N

1
x

−q
2 =

O(N−q/2+1). Since
N1/2−1/q ≥ ρ1/2−1/q ≥ (nhd)1/2−(q−1)/q,

it holds that, 1
nhd ≤ N. Moreover,

N−q/2+1

{(
1

nhd

)(q−1)/q

+ 1

}q

=N−q/2+1

{(
1

nhd

)(q−1)/q+1/2−1/2

+ 1

}q

=N−q/2+1

{(
1

nhd

)(q−1)/q−1/2(
1

nhd

)1/2

+ 1

}q

≤N−q/2+1

{(
1

nhd

)1/2

+ 1

}q{(
1

nhd

)(q−1)/q−1/2

+ 1

}q

=N−q/2+1

{(
1

nhd

)1/2

+ 1

}q{(
1

nhd

)1/2−1/q

+ 1

}q

=N−q/2+1

{(
1

nhd

)1/2

+ 1

}q{(
1

nhd

)(q−2)/(2q)

+ 1

}q

≤C
′

3N
−q/2+1

{(
1

nhd

)1/2

+ 1

}q{(
1

nhd

)(q−2)/(2q)}q

=C
′

3N
−q/2+1

{(
1

nhd

)1/2

+ 1

}q{(
1

nhd

)(q−2)/(2)}
≤C

′

3N
−q/2+1

{(
1

nhd

)1/2

+ 1

}q{(
1

nhd

)q/2−1}
≤C

′

3N
−q/2+1

{(
1

nhd

)1/2

+ 1

}q

Nq/2−1

=C
′

3

{(
1

nhd

)1/2

+ 1

}q

.

It follows that,

E
{

N
max
k=1

∣∣∣∣ 1√
k

k∑
t=1

Zt

∣∣∣∣}q

≤ C4 log(N)

{(
1

nhd

)1/2

+ 1

}q

.
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By Markov’s inequality, for any z > 0 and the assumption that T ≥ N,

P
{

N
max
k=1

{
1

nhd
+ 1

}−1/2∣∣∣∣ 1√
k

k∑
t=1

Zt

∣∣∣∣ ≥ z

}
≤ C1 log(T )

zq
.

Since N ≥ ρ, this directly implies that

P
{

N
max
k=ρ

{
1

nhd
+ 1

}−1/2∣∣∣∣ 1√
k

k∑
t=1

Zt

∣∣∣∣ ≥ z

}
≤ C1 log(T )

zq
.

Lemma 3. Suppose Assumption 1 c holds and q ≥ 2. Then there exists absolute constants C > 0 so
that

E|Zt − Z∗
t |q ≤ CE

{
∥ξt − ξ∗t ∥q∞

}{(
1

nhd

)q−1

+ 1

}
. (29)

If in addition E
{
∥ξt∥q∞

}
= O(1), then there exists absolute constants C ′ such that

E|Zt|q ≤ C ′
{(

1

nhd

)q−1

+ 1

}
. (30)

Proof. The proof of the Equation (30) is simpler and simpler than Equation (29). So only the proof of
Equation (29) is presented. Note that since {xt}Tt=1 and {ξt}Tt=1 are independent, and that {xt}Tt=1
are independent identically distributed,

Z∗
t =

1

n

n∑
i=1

ξ∗t (xt,i)Kh(x− xt,i).

Step 1. Note that, by the Newton’s binomial

E|Zt − Z∗
t |q =E

{∣∣∣∣ 1n
n∑

i=1

{ξ∗t − ξt}(xt,i)Kh(x− xt,i)

∣∣∣∣q}

≤ 1

nq
E
{ ∑

β1+β2+...+βn=q
β1≥0,...,βn≥0

(
q

β1, β2, . . . , βn

) n∏
j=1

∣∣{ξ∗t − ξt}(xt,i)Kh(x− xt,i)
∣∣βj

}

=
1

nq
E
{ q∑

k=1

∑
β1+β2+...+βn=q

β=(β1,...,βn),∥β∥0=k,β≥0

(
q

β1, β2, . . . , βn

) n∏
j=1

∣∣{ξ∗t − ξt}(xt,i)Kh(x− xt,i)
∣∣βj

}
.

Step 2. For a fixed β = (β1, . . . , βn) such that β1 + . . .+ βn = q and that ∥β∥0 = k, consider

E
{ n∏

j=1

∣∣{ξ∗t − ξt}(xt,i)Kh(x− xt,i)
∣∣βj

}
.

Without loss of generality, assume that β1, . . . , βk are non-zero. Then it holds that

E
{∣∣(ξ∗t − ξt)(xt,1)

∣∣β1
∣∣Kh(x− xt,1)

∣∣β1 · · ·
∣∣(ξ∗t − ξt)(xt,k)

∣∣βk
∣∣Kh(x− xt,k)

∣∣βk

}
=Eξ

{∫ ∣∣(ξ∗t − ξt)(r)
∣∣β1

∣∣Kh(x− r)
∣∣β1

dµ(r) · · ·
∫ ∣∣(ξ∗t − ξt)(r)

∣∣βk
∣∣Kh(x− r)

∣∣βkdµ(r)

}
=Eξ

{∫ ∣∣(ξ∗t − ξt)(x− sh)
∣∣β1

∣∣K(s)
∣∣β1

hd(β1−1)
dµ(s) · · ·

∫ ∣∣(ξ∗t − ξt)(x− sh)
∣∣βk

∣∣K(s)
∣∣βk

hd(βk−1)
dµ(s)

}
≤h−d

∑k
j=1(βj−1)Eξ

{
∥ξ∗t − ξt∥β1

∞Cβ1

K · · · ∥ξ∗t − ξt∥βk
∞Cβk

K

}
≤h−d(q−k)Cq

KEξ

{
∥ξ∗t − ξt∥

∑k
j=1 βk

∞

}
≤h−d(q−k)Cq

KEξ

{
∥ξ∗t − ξt∥q∞

}
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where the third equality follows by using the change of variable s = x−r
h , the first inequality by

assumption 2.

Step 3. Let k ∈ {1, . . . , q} be fixed. Note that
(

q
β1,β2,...,βn

)
≤ q!. Consider set

Bk =

{
β ∈ Nn : β ≥ 0, β1 + . . .+ βn = q, |β|0 = k

}
.

To bound the cardinality of the set Bk, first note that since |β|0 = k, there are
(
n
k

)
number of ways to

choose the index of non-zero entries of β.
Suppose {i1, . . . ik} are the chosen index such that βi1 ̸= 0, . . . , βik ̸= 0. Then the constrains
βi1 > 0, . . . , βi1 > 0 and βi1 + . . .+ βik = q are equivalent to that of diving q balls into k groups
(without distinguishing each ball). As a result there are

(
q−1
k−1

)
number of ways to choose the

{βi1 , . . . , βik} once the index {i1, . . . ik} are chosen.

Step 4. Combining the previous three steps, it follows that for some constants Cq, C1 > 0
only depending on q,

E|Zt − Z∗
t |q ≤ 1

nq
E
{ q∑

k=1

∑
β1+β2+...+βn=q

β=(β1,...,βn),|β|0=k,β≥0

(
q

β1, β2, . . . , βn

) n∏
j=1

∣∣(ξ∗t − ξt)(xt,i)Kh(x− xt,i)
∣∣βj

}

≤ 1

nq

q∑
k=1

(
n

k

)(
q − 1

k − 1

)
q!h−d(q−k)Cq

KEξ

{
∥ξ∗t − ξt∥q∞

}
≤ 1

nq

q∑
k=1

nkCqC
q
Kh−d(q−k)Eξ

{
∥ξ∗t − ξt∥q∞

}
≤C1Eξ

{
∥ξ∗t − ξt∥q∞

}{(
1

nhd

)q−1

+

(
1

nhd

)q−2

+ . . .+

(
1

nhd

)
+ 1

}
≤C1Eξ

{
∥ξ∗t − ξt∥q∞

}
q

{(
1

nhd

)q−1

+ 1

}
,

where the second inequality is satisfied by step 3 and that
(

q
β1,β2,...,βn

)
≤ q!, while the third inequality

is achieved by using that
(
n
k

)(
q−1
k−1

)
q! ≤

(
n
k

)
Cq ≤ nkCq. Moreover, given that 1

nq n
kh−d(q−k) =(

1
nhd

)q−k

the fourth inequality is obtained. The last inequality holds because if 1
nhd ≤ 1, then{(

1
nhd

)q−1

+ . . .+

(
1

nhd

)
+1

}
≤ q, and if 1

nhd ≥ 1, then
{(

1
nhd

)q−1

+ . . .+

(
1

nhd

)
+1

}
≤

q

(
1

nhd

)q−1

.

Lemma 4. Suppose Assumption 1 c holds. Let ρ ≤ T be such that ρnhd ≥ log(T ) and T ≥ 3. Let
N ∈ Z+ be such that N ≥ ρ. Then, it holds that{

E N
max
k=1

|
k∑

t=1

Zt|q
}1/q

≤ N1/2C

{(
1

nhd

)1/2

+ 1

}
+N1/qC ′

{(
1

nhd

)(q−1)/q

+ 1

}
.

Proof. We have that q > 2 and E|Z1| < ∞ by the use of Lemma 3. Then, making use of Theorem 1
of Liu et al. (2013), we obtain that{

E N
max
k=1

|
k∑

t=1

Zt|q
}1/q

≤N1/2C1

{ N∑
j=1

Θj,2 +

∞∑
j=N+1

Θj,q + {E|Z1|2}1/2
}

+N1/qC2

{ N∑
j=1

j1/2−1/qΘj,q + {E|Z1|q}1/q
}
,
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where Θj,q = {E(|Z∗
j − Zj |q)}1/q. Moreover, we observe that since Θj,2 ≤ Θj,q for any q ≥ 2, it

follows {
E N
max
k=1

|
k∑

t=1

Zt|q
}1/q

≤N1/2C1

{ ∞∑
j=1

Θj,q + {E|Z1|2}1/2
}

+N1/qC2

{ ∞∑
j=1

j1/2−1/qΘj,q + {E|Z1|q}1/q
}
,

Next, by the first part of Lemma 3,

Θq
j,q ≤ CE

{
∥ξj − ξ∗j ∥q∞

}{(
1

nhd

)q−1

+ 1

}
.

even more, we have that N ≥ 1
nhd , implies that{

E N
max
k=1

|
k∑

t=1

Zt|q
}1/q

≤N1/2C
′
1

{ ∞∑
j=1

CE
{
∥ξj − ξ∗j ∥q∞

}{(
1

nhd

)q−1}1/q

+ {E|Z1|2}1/2
}

+N1/qC
′
2

{ ∞∑
j=1

j1/2−1/qCE
{
∥ξj − ξ∗j ∥q∞

}{(
1

nhd

)q−1

+ 1

}1/q

+ {E|Z1|q}1/q
}

≤N1/2C
′′
1

{ ∞∑
j=1

CE
{
∥ξj − ξ∗j ∥q∞

}{(
1

nhd

)1/2−1/q}{(
1

nhd

)1/2

+ 1

}
+ {E|Z1|2}1/2

}

+N1/qC
′
2

{ ∞∑
j=1

j1/2−1/qCE
{
∥ξj − ξ∗j ∥q∞

}{(
1

nhd

)q−1

+ 1

}1/q

+ {E|Z1|q}1/q
}

≤N1/2C
′′
1

{ ∞∑
j=1

CE
{
∥ξj − ξ∗j ∥q∞

}{(
N

)1/2−1/q}{(
1

nhd

)1/2

+ 1

}
+ {E|Z1|2}1/2

}

+N1/qC
′
2

{ ∞∑
j=1

j1/2−1/qCE
{
∥ξj − ξ∗j ∥q∞

}{(
1

nhd

)q−1

+ 1

}1/q

+ {E|Z1|q}1/q
}
.

From Assumption 1 c,{
E N
max
k=1

|
k∑

t=1

Zt|q
}1/q

≤N1/2C ′′′
1

{
1 +

{(
1

nhd

)1/2

+ 1

}
+ {E|Z1|2}1/2

}

+N1/qC
′′

2

{
1 +

{(
1

nhd

)q−1

+ 1

}1/q

+ {E|Z1|q}1/q
}
.

By the second part of Lemma 3, it holds that{
E N
max
k=1

|
k∑

t=1

Zt|q
}1/q

≤ N1/2C ′′′′
1

{
1 +

{(
1

nhd

)
+ 1

}1/2}
+N1/qC ′′′

2

{
1 +

{(
1

nhd

)q−1

+ 1

}1/q}
.

This immediately implies the desired result.

Lemma 5. Suppose Assumption 1 holds. Then there exists absolute constants C1 such that

E|Wt −W ∗
t |q ≤ C1

n
max
i=1

E
{
|δt,i − δ∗t,i|q

}{(
1

nhd

)q−1

+ 1

}
. (31)

If in addition E
{
|δt,i|qq

}
= O(1) for all 1 ≤ i ≤ n, then there exists absolute constants C ′ such that

E(|Wt|q)1/q ≤ C ′
{(

1

nhd

)q−1

+ 1

}1/q

. (32)
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Proof. The proof is similar to that of Lemma 3. The proof of the Equation (32) is simpler and simpler
than Equation (31). So only the proof of Equation (31) is presented. Note that since {xt}Tt=1 and
{δt}Tt=1 are independent, and that {xt}Tt=1 are independent identically distributed,

δ∗t =
1

n

n∑
i=1

δ∗t,iKh(x− xt,i).

Step 1. Note that, by the Newton’s binomial

E|δt − δ∗t |q =E
{∣∣∣∣ 1n

n∑
i=1

(δ∗t,i − δt,i)Kh(x− xt,i)

∣∣∣∣q}

≤ 1

nq
E
{ ∑

β1+β2+...+βn=q
β1≥0,...,βn≥0

(
q

β1, β2, . . . , βn

) n∏
j=1

∣∣(δ∗t,i − δt,i)Kh(x− xt,i)
∣∣βj

}

=
1

nq
E
{ q∑

k=1

∑
β1+β2+...+βn=q

β=(β1,...,βn),|β|0=k,β≥0

(
q

β1, β2, . . . , βn

) n∏
j=1

∣∣(δ∗t,i − δt,i)Kh(x− xt,i)
∣∣βj

}
.

Step 2. For a fixed β = (β1, . . . , βn) such that β1 + . . .+ βn = q and that |β|0 = k, consider

E
{ n∏

j=1

∣∣(δ∗t,i − δt,i)Kh(x− xt,i)
∣∣βj

}
.

Without loss of generality, assume that β1, . . . , βk are non-zero. Then it holds that

E
{∣∣(δ∗t,1 − δt,1)

∣∣β1
∣∣Kh(x− xt,1)

∣∣β1 · · ·
∣∣(δ∗t,k − δt,k)

∣∣βk
∣∣Kh(x− xt,k)

∣∣βk

}
=Eδ

{∫ ∣∣(δ∗t,1 − δt,1
∣∣β1

∣∣Kh(x− r)
∣∣β1

dµ(r) · · ·
∫ ∣∣(δ∗t,k − δt,k)

∣∣βk
∣∣Kh(x− r)

∣∣βkdµ(r)

}
=Eδ

{∫ ∣∣(δ∗t,1 − δt,1
∣∣β1

∣∣K(s)
∣∣β1

hd(β1−1)
dµ(s) · · ·

∫ ∣∣(δ∗t,k − δt,k)
∣∣βk

∣∣K(s)
∣∣βk

hd(βk−1)
dµ(s)

}
≤h−d

∑k
j=1(βj−1)Eδ

{∣∣(δ∗t,1 − δt,1)
∣∣β1

Cβ1

K · · ·
∣∣(δ∗t,k − δt,k)

∣∣βkCβk

K

}
≤h−d(q−k)Cq

KEδ

{
n

max
i=1

|δt,i − δ∗t,i|
∑k

j=1 βk

}
≤h−d(q−k)Cq

KEδ

{ n
max
i=1

|δt,i − δ∗t,i|q
}

where the third equality follows by using the change of variable s = x−r
h , the first inequality by

assumption 2.
Step 3. Let k ∈ {1, . . . , q} be fixed. Note that

(
q

β1,β2,...,βn

)
≤ q!. Consider set

Bk =

{
β ∈ Nn : β ≥ 0, β1 + . . .+ βn = q, |β|0 = k

}
.

To bound the cardinality of the set Bk, first note that since |β|0 = k, there are
(
n
k

)
number of ways to

choose the index of non-zero entries of β.
Suppose {i1, . . . ik} are the chosen index such that βi1 ̸= 0, . . . , βik ̸= 0. Then the constrains
βi1 > 0, . . . , βi1 > 0 and βi1 + . . .+ βik = q are equivalent to that of diving q balls into k groups
(without distinguishing each ball). As a result there are

(
q−1
k−1

)
number of ways to choose the

{βi1 , . . . , βik} once the index {i1, . . . ik} are chosen.

Step 4. Combining the previous three steps, it follows that for some constants Cq, C1 > 0
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only depending on q,

E|Wt −W ∗
t |q ≤ 1

nq
E
{ q∑

k=1

∑
β1+β2+...+βn=q

β=(β1,...,βn),|β|0=k,β≥0

(
q

β1, β2, . . . , βn

) n∏
j=1

∣∣(δ∗t,i − δt,i)Kh(x− xt,i)
∣∣βj

}

≤ 1

nq

q∑
k=1

(
n

k

)(
q − 1

k − 1

)
q!h−d(q−k)Cq

KEδ

{ n
max
i=1

|δt,i − δ∗t,i|q
}

≤ 1

nq

q∑
k=1

nkCqC
q
Kh−d(q−k)Eδ

{ n
max
i=1

|δt,i − δ∗t,i|q
}

≤C1Eδ

{ n
max
i=1

|δt,i − δ∗t,i|q
}{(

1

nhd

)q−1

+

(
1

nhd

)q−2

+ . . .+

(
1

nhd

)
+ 1

}
≤C1Eδ

{ n
max
i=1

|δt,i − δ∗t,i|q
}
q

{(
1

nhd

)q−1

+ 1

}
,

where the second inequality is satisfied by step 3 and that
(

q
β1,β2,...,βn

)
≤ q!, while the third inequality

is achieved by using that
(
n
k

)(
q−1
k−1

)
q! ≤

(
n
k

)
Cq ≤ nkCq. Moreover, given that 1

nq n
kh−d(q−k) =(

1
nhd

)q−k

the fourth inequality is obtained. The last inequality holds because if 1
nhd ≤ 1, then{(

1
nhd

)q−1

+ . . .+

(
1

nhd

)
+1

}
≤ q, and if 1

nhd ≥ 1, then
{(

1
nhd

)q−1

+ . . .+

(
1

nhd

)
+1

}
≤

q

(
1

nhd

)q−1

.

Lemma 6. Suppose Assumption 1 d holds. Let ρ ≤ T be such that ρnhd ≥ log(T ) and T ≥ 3. Let
N ∈ Z+ be such that N ≥ ρ. Then, it holds that{

E N
max
k=1

|
k∑

t=1

Wt|q
}1/q

≤ N1/2C

{(
1

nhd

)1/2

+ 1

}
+N1/qC ′

{(
1

nhd

)(q−1)/q

+ 1

}
.

Proof. We have that q > 2 and E|W1| < ∞ by the use of Lemma 5. Then, making use of Theorem
1 of Liu et al. (2013), we obtain that{

E N
max
k=1

|
k∑

t=1

Zt|q
}1/q

≤N1/2C1

{ N∑
j=1

Θj,2 +

∞∑
j=N+1

Θj,q + {E|W1|2}1/2
}

+N1/qC2

{ N∑
j=1

j1/2−1/qΘj,q + {E|W1|q}1/q
}
,

where Θj,q = {E(|W ∗
j −Wj |q)}1/q . Moreover, we observe that since Θj,2 ≤ Θj,q for any q ≥ 2, it

follows {
E N
max
k=1

|
k∑

t=1

Wt|q
}1/q

≤N1/2C1

{ ∞∑
j=1

Θj,q + {E|W1|2}1/2
}

+N1/qC2

{ ∞∑
j=1

j1/2−1/qΘj,q + {E|W1|q}1/q
}
.

Next, by the first part of Lemma 3,

Θq
j,q ≤ CE

{ n
max
i=1

|δt,i − δ∗t,i|q
}{(

1

nhd

)q−1

+ 1

}
.
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Since we have that N ≥ 1
nhd , the above inequality further implies that{

E N
max
k=1

|
k∑

t=1

Wt|q
}1/q

≤N1/2C
′
1

{ ∞∑
j=1

CE
{ n
max
i=1

|δt,i − δ∗t,i|q
}{(

1

nhd

)q−1}1/q

+ {E|W1|2}1/2
}

+N1/qC
′
2

{ ∞∑
j=1

j1/2−1/qCE
{ n
max
i=1

|δt,i − δ∗t,i|q
}{(

1

nhd

)q−1

+ 1

}1/q

+ {E|W1|q}1/q
}

≤N1/2C
′′
1

{ ∞∑
j=1

CE
{ n
max
i=1

|δt,i − δ∗t,i|q
}{(

1

nhd

)1/2−1/q}{(
1

nhd

)1/2

+ 1

}
+ {E|W1|2}1/2

}

+N1/qC
′
2

{ ∞∑
j=1

j1/2−1/qCE
{ n
max
i=1

|δt,i − δ∗t,i|q
}{(

1

nhd

)q−1

+ 1

}1/q

+ {E|W1|q}1/q
}

≤N1/2C
′′
1

{ ∞∑
j=1

CE
{ n
max
i=1

|δt,i − δ∗t,i|q
}{(

N

)1/2−1/q}{(
1

nhd

)1/2

+ 1

}
+ {E|W1|2}1/2

}

+N1/qC
′
2

{ ∞∑
j=1

j1/2−1/qCE
{ n
max
i=1

|δt,i − δ∗t,i|q
}{(

1

nhd

)q−1

+ 1

}1/q

+ {E|W1|q}1/q
}
.

From Assumption 1 d, the above inequality further implies that{
E N
max
k=1

|
k∑

t=1

Wt|q
}1/q

≤N1/2C ′′′
1

{
1 +

{(
1

nhd

)1/2

+ 1

}
+ {E|W1|2}1/2

}

+N1/qC
′′

2

{
1 +

{(
1

nhd

)q−1

+ 1

}1/q

+ {E|W1|q}1/q
}
.

By the second part of Lemma 3, it holds that{
E N
max
k=1

|
k∑

t=1

Zt|q
}1/q

≤ N1/2C ′′′′
1

{
1 +

{(
1

nhd

)
+ 1

}1/2}
+N1/qC ′′′

2

{
1 +

{(
1

nhd

)q−1

+ 1

}1/q}
.

This immediately implies the desired result.

D Additional Technical Results

Lemma 7. Suppose that f, g : [0, 1]d → R such that f, g ∈ Hr(L) for some r ≥ 1 L > 0.
Suppose in addition that {xm}Mm=1 is a collection of grid points randomly sampled from a density
u : [0, 1]d → R such that infx∈[0,1]d u(x) ≥ cu > 0. If ∥f − g∥∞ ≥ κ for some parameter κ > 0,
then

P
{

M
max
m=1

|f(xm)− g(xm)| ≥ 3

4
κ

}
≥ 1− exp

(
− cMκd

)
,

where c is a constant only depending on d.

Proof. Let h = f − g. Since f, g ∈ Hr(L), h ∈ Hr(L). Since r ≥ 1, we have that

|h(x)− h(x′)| ≤ L|x− x′| for all x, x′ ∈ [0, 1]d.

for some absolute constant L > 0. Let x0 ∈ [0, 1]d be such that

|h(x0)| = ∥h∥∞.

Then for all x′ ∈ B(x0,
κ
4L ) ∩ [0, 1]d,

|h(x′)| ≥ |h(x0)| − L|x0 − x′| ≥ 3

4
κ.

Therefore

P
{

M
max
m=1

|f(xm)− g(xm)| < 3

4
κ

}
≤ P

(
{xm}Mm=1 ̸∈ B

(
x0,

κ

4L

))
.
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Since

P

(
{xm}Mm=1 ̸∈ B(x0,

κ

4L
)

)
=

{
1− P

(
x1 ∈ B(x0,

κ

4L
)

)}M

≤
(
1−

{cuκ
4L

}d
)M

≤ exp
(
−Mcκd

)
,

the desired result follows.

Lemma 8. Let J be defined as in Definition 1 and suppose Assumption 1 e holds. Denote

ζk =
9

10
min{ηk+1 − ηk, ηk − ηk−1} k ∈ {1, ...,K}.

Then for each change-point ηk there exists a seeded interval Ik = (sk, ek] such that
a. Ik contains exactly one change-point ηk;
b. min{ηk − sk, ek − ηk} ≥ 1

16ζk; and
c. max{ηk − sk, ek − ηk} ≤ ζk;

Proof. These are the desired properties of seeded intervals by construction. The proof is the same as
theorem 3 of Kovács et al. (2020) and is provided here for completeness.

Since ζk = Θ(T ), by construction of seeded intervals, one can find a seeded interval
(sk, ek] = (ck − rk, ck + rk] such that (ck − rk, ck + rk] ⊆ (ηk − ζk, ηk + ζk], rk ≥ ζk

4

and |ck − ηk| ≤ 5rk
8 . So (ck − rk, ck + rk] contains only one change-point ηk. In addition,

ek − ηk = ck + rk − ηk ≥ rk − |ck − ηk| ≥
3rk
8

≥ 3ζk
32

,

and similarly ηk − sk ≥ 3ζk
32 , so b holds. Finally, since (ck − rk, ck + rk] ⊆ (ηk − ζk, ηk + ζk], it

holds that ck + rk ≤ ηk + ζk and so

ek − ηk = ck + rk − ηk ≤ ζk.

D.1 Univariate CUSUM

We introduce some notation for one-dimensional change-point detection and the corresponding
CUSUM statistics. Let {µi}ni=1, {ωi}ni=1 ⊆ R be two univariate sequences. We will make the
following assumptions.

Assumption 1 (Univariate mean change-points). Let {ηk}K+1
k=0 ⊆ {0, . . . , n}, where η0 = 0 and

ηK+1 = T , and
ωt ̸= ωt+1 if and only if t ∈ {η1, ...ηK},

Assume
K+1
min
k=1

(ηk − ηk−1) ≥ ∆ > 0,

0 < |ωηk+1
− ωηk

| = κk for all k = 1, . . . ,K.

We also have the corresponding CUSUM statistics over any generic interval [s, e] ⊆ [1, T ] defined as

µ̃s,e
t =

√
e− t

(e− s)(t− s)

t∑
i=s+1

µi −

√
t− s

(e− s)(e− t)

e∑
i=t+1

µi,

ω̃s,e
t =

√
e− t

(e− s)(t− s)

t∑
i=s+1

ωi −

√
t− s

(e− s)(e− t)

e∑
i=t+1

ωi.

Throughout this section, all of our results are proven by regarding {µi}Ti=1 and {ωi}Ti=1 as two
deterministic sequences. We will frequently assume that µ̃s,e

t is a good approximation of ω̃s,e
t in

ways that we will specify through appropriate assumptions.
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Consider the following events

A((s, e], ρ, γ) =

{
e−ρ
max

t=s+ρ+1
|µ̃s,e

t − ω̃s,e
t | ≤ γ

}
;

B(r, ρ, γ) =
{

T−r
max
N=ρ

∣∣∣∣ 1√
N

r+N∑
t=r+1

(µt − ωt)

∣∣∣∣ ≤ γ

}⋃{
r

max
N=ρ

∣∣∣∣ 1√
N

r∑
t=r−N+1

(µt − ωt)

∣∣∣∣ ≤ γ

}
.

Lemma 9. Suppose Assumption 1 holds. Let [s, e] be an subinterval of [1, T ] and contain at least
one change-point ηr with min{ηr − s, e− ηr} ≥ cT for some constant c > 0. Let κs,e

max = max{κp :
min{ηp − s, e− ηp} ≥ cT}. Let

b ∈ arg
e−ρ
max
t=s+ρ

|µ̃s,e
t |.

For some c1 > 0, λ > 0 and δ > 0, suppose that the following events hold

A((s, e], ρ, γ), (33)

B(s, ρ, γ) ∪ B(e, ρ, γ) ∪
⋃

η∈{ηk}K
k=1

B(η, ρ, γ) (34)

and that
e−ρ
max
t=s+ρ

|µ̃s,e
t | = |µ̃s,e

b | ≥ c1κ
s,e
max

√
T (35)

If there exists a sufficiently small c2 > 0 such that

γ ≤ c2κ
s,e
max

√
T and that ρ ≤ c2T, (36)

then there exists a change-point ηk ∈ (s, e) such that

min{e− ηk, ηk − s} > c3T and |ηk − b| ≤ C3 max{γ2κ−2
k , ρ},

where c3 is some sufficiently small constant independent of T .

Proof. The proof is the same as that for Lemma 22 in Wang et al. (2020).

Lemma 10. If [s, e] contain two and only two change-points ηr and ηr+1, then
e

max
t=s

|ω̃s,e
t | ≤

√
e− ηr+1κr+1 +

√
ηr − sκr.

Proof. This is Lemma 15 in Wang et al. (2020).

E Common Stationary Processes

Basic time series models which are widely used in practice, can be incorporated by Assumption 1b
and c. Functional autoregressive model (FAR) and functional moving average model (FMA) are
presented in examples 1 below. The vector autoregressive (VAR) model and vector moving average
(VMA) model can be defined in similar and simpler fashions.
Example 1 (FMA and FAR). Let L = L(H,H) be the set of bounded linear operators from H to H ,
where H = L∞. For A ∈ L, we define the norm operator ||A||L = sup||ε||H≤1 ||Aε||H . Suppose
θ1,Ψ ∈ L with ∥Ψ∥L < 1 and ∥θ1∥L < ∞.

a) For FMA model, let (εt : t ∈ Z) be a sequence of independent and identically dis-
tributed random L∞ functions with mean zero. Then the FMA time series (ξj : j ∈ Z) of order 1 is
given by the equation

ξt = θ1(εt−1) + εt = g(. . . , ε−1, ε0, ε1, . . . , εt−1, εt). (37)

For any t ≥ 2, by (37) we have that
ξt − ξ∗t = 0
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and ξ1 − ξ∗1 = θ1(ε0)− θ1(ε
′

0). As a result
∞∑
t=1

t1/2−1/qE(||ξt − ξ∗t ||q∞)1/q = E(||ξ1 − ξ∗1 ||q∞)1/q = E(∥θ1(ε0)− θ1(ε
′

0)∥q∞)1/q < ∞.

Therefore Assumption 1b is satisfied by FMA models.

b) We can define a FAR time series as

ξt = Ψ(ξt−1) + εt. (38)

It admits the expansion,

ξt =

∞∑
j=0

Ψj(εt−j)

=Ψ(εt) + Ψ1(εt−1) + ...+Ψt(ε0) + Ψt+1(ε−1) + ...

=g(. . . , ε−1, ε
′
0, ε1, . . . , εt−1, εt).

Then for any t ≥ 1, we have that ξt − ξ∗t = Ψt(ε0)−Ψt(ε
′

0). Thus,
∞∑
t=1

t1/2−1/qE(||ξt − ξ∗t ||q∞)1/q =

∞∑
t=1

t1/2−1/qE(||Ψt(ε0)−Ψt(ε′0)||q∞)1/q

≤
∞∑
t=1

t1/2−1/q||Ψ||tLE(||ε0 − ε′0||q∞)1/q < ∞.

Assumption 1b incorporates FAR time series.
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