
A Further Examples of Polysemy Discovery

Figure 3: Semantic fields of (A) apple, (B) handle, (C) rock, (D) lead, (E) case, and (F) character,
with the most similar words shown at the bottom of each graph. The words were clustered, with
corresponding colors for each group, by using the DBSCAN algorithm [9] with eps=0.4, which is
based on the Euclidean distance. The white circles represent words that the algorithm evaluated as
outliers. In generating the representative words (i.e., those listed in the legends) for each cluster, we
used a ranking of the frequency-adjusted word similarity, sim · p0.3, where p is the word’s occurring
probability in the Wacky corpus, and we adopted the top-ranked words to better show the meaning
represented by each cluster.

14

B Derivation of Sentence Similarity

Formula (5) is derived as follows:

sim(�,�0) =

Z ⇣ nX

i=1

�ifi

⌘
d
⇣ n0X

j=1

�
0
jµ

0
j

⌘
+

Z ⇣ n0X

j=1

�
0
jf

0
j

⌘
d
⇣ nX

i=1

�iµi

⌘

=
nX

i=1

n0X

j=1

�i�
0
j

✓Z
fi dµ

0
j +

Z
f
0
j dµi

◆

=
nX

i=1

n0X

j=1

�i�
0
jsim(wi, wj)

= �
T⌃�0

.

C Smoothing of Similarity Scores by Standardization

One way to improve our framework is to standardize the similarity function. Formally, for a word wi,
we apply the following transformation:

sim(wi, wj) ⌘
sim(wi, wj)� (sim(wi, w̄) + sim(w̄, wj)) /2�

Var
⇥
sim(wi, w)

⇤
Var

⇥
sim(w,wj)

⇤�0.25 , (10)

where the mean is defined as

w̄ =
1

|W |
X

w2W

w =

"
1

W

X

w2W

µw,
1

|W |
X

w2W

fw

#
, (11)

the variance is defined as

Var
⇥
sim(wi, w)

⇤
=

1

|W |� 1

X

w2W

sim(wi, w � w̄)2, (12)

and Var
⇥
sim(w,wj)

⇤
is defined similarly.

This standardization should be applied after the regularization given in Formula (9). Thus, in a word
similarity benchmark, the predicted word-wise similarity is computed in three steps:

1. compute the word similarity by Formula (1),
2. regularize the similarity score via Formula (9), and
3. apply standardization via Formula (10).

Such standardization works because of our measure’s point-wise nature, such that the similarity
function in Formula (1) is optimized only at a point. In other words, f is optimized very locally, rather
than globally in S. Standardization of the similarity function serves to provide another regularization
against overfitting. It is executed after word representations are obtained, and thus, it does not affect
the training process.

A typical use of this standardization is for a word similarity benchmark, as in this work. Such a
benchmark defines a set of words on which we can perform standardization. We thus define W as
this set, and we compute the similarity of word or sentence pairs that are composed of words in W .

Similarity benchmarks for sentences also require this standardization procedure, with an additional
step (i.e., step 2 in the following) for composing word similarities into sentence similarities:

1. compute the word similarity by Formula (1),
2. compute the sentence similarity by composing the word similarity scores via Formula (5),
3. regularize the sentence similarity via Formula (9), and
4. apply standardization via Formula (10).

15

D Summary of Baseline Methods

Word2Vec[15] 4 A word is represented by a vector, trained via the Skip-gram algorithm.

GloVe[19] 5 This vectoral method is similar to Word2Vec but uses a different training objective
function.

Word2Gauss [29]6 A word is represented by a Gaussian random variable, parameterized by a
mean vector and a covariance matrix. There are two variants of Word2Gauss: Word2Gauss/S uses a
spherical covariance matrix rI that requires one parameter (i.e., r), whereas Word2Gauss/D uses a
diagonal covariance matrix diag(r1, · · · , rD) that requires D parameters.

Word2GM [3]7 A word is represented as a weighted mixture of K Gaussian distributions, each of
which is parameterized as in Word2Gauss. Word2GM also has two variants: Word2GM/S uses a
spherical covariance matrix, and Word2GM/D uses a diagonal covariance matrix.

The original paper recommended setting K = 2 and using a spherical covariance matrix. Accordingly,
we compared that approach with FIRE in the main text.

Word2Cloud [10] A word is represented by a Multinoulli distribution of K discrete points in a
low-dimensional space (e.g., R2). Word2Cloud also has K components. The similarity between two
words is evaluated via the Wasserstein distance, which has at least O(K2) time complexity even with
a fast approximation algorithm. The original paper used K = 64.

BERT-large [8] The large case-insensitive version of BERT is composed of 24 Transformer layers
that are stacked on vectoral word representations. In each Transformer layer, words interact with
other words to produce new vectors that contain contextual information. The vectoral output for a
word is called a contextualized word vector, which was tested in Section 8.

E Supplementary Evaluation Results for Word Similarity

In FIRE, K is the number of locations for each word and is an important factor in polysemy. In
comparison, Word2GM also implements polysemy, via mixtures. As seen in Table 1 from the rows
for Word2GM and FIRE, the mixture-based approach performed well even with small D.

From this perspective, we compared Word2GM and FIRE/m in terms of K, under the constraint of
D = 2. Here, we used FIRE/m for fair comparison, so that we could construct models with a close
number of parameters to Word2GM. The number of NN layers, L, was also set so that both models
would have roughly equal numbers of parameters, as listed in the second to fifth columns of Table 4.

As mentioned in Section 4, our method is computationally efficient even for a larger K: the time
complexities of Word2GM and Word2Cloud grow by at least O(K2), whereas FIRE has O(K)
complexity. For example, the Word2GM training took around 24 hours for K = 2, but the time grew
to around 9 days for K = 6. Accordingly, we only tested K = 2, 3, 4, 5 for Word2GM, whereas for
FIRE, we tested K up to 15.

Figure 4 shows the average Spearman’s ⇢ across the tasks of the word similarity benchmark. The
values are listed in Table 4 (rightmost column). For Word2GM, an increase in K did not improve the
performance for K � 4. In contrast, FIRE enabled implementation of large K (e.g., 10), for which
the performance greatly improved. Thus, FIRE has a larger potential to improve the performance on
word similarity benchmarks, by increasing the parameter K.

4https://github.com/dav/word2vec.
5https://github.com/stanfordnlp/GloVe.
6We used the code for Word2GM and limited it to K = 1, because this produced better results than the

original code for Word2Gauss at https://github.com/seomoz/word2gauss.
7https://github.com/benathi/word2gm.

16

https://github.com/dav/word2vec
https://github.com/stanfordnlp/GloVe
https://github.com/seomoz/word2gauss
https://github.com/benathi/word2gm

Figure 4: Average Spearman’s ⇢ for Word2GM and FIRE with respect to different K for D = 2, with
the two methods constrained to have (roughly) the same numbers of parameters for each K. Because
of its high computational cost, we limited Word2GM to K 5.

Table 4: Spearman’s correlation coefficient (%) between the similarity rankings produced by the
word representations and the gold standard.

task MC MEN RG WS-s WS-r MT MT RW Verb YP SL SV Ave.
word pairs 30 3000 65 203 252 287 771 2034 143 130 999 3500

D K #par. L

Word2GM/S 2 2 8 - 16.2 16.4 34.9 7.7 0.6 9.4 20.0 14.6 -3.9 12.5 24.4 9.3 13.5
FIRE/m 9 1 23.1 30.0 45.0 38.8 20.0 36.2 30.5 14.5 11.6 -2.5 12.5 11.4 22.5

Word2GM/S 2 3 12 - 34.2 22.3 37.7 18.5 7.9 19.3 24.6 16.1 6.3 12.0 24.4 11.3 19.6
FIRE/m 11 1 21.0 36.6 40.0 38.8 23.3 36.3 32.5 14.0 24.0 14.1 14.7 12.3 25.6

Word2GM/S 2 4 16 - 17.8 22.0 26.7 16.8 15.3 20.3 23.5 18.4 -7.2 19.6 18.3 8.5 16.7
FIRE/m 13 1 28.0 35.6 52.2 38.6 19.7 38.3 34.5 13.8 16.0 9.0 14.7 12.1 26.0

Word2GM/S 2 5 20 - 23.6 23.1 34.6 12.9 12.7 9.5 23.2 12.8 8.5 7.9 21.2 10.2 16.7
FIRE/m 20 2 25.1 48.1 49.9 40.1 28.4 44.1 42.5 17.1 32.9 16.7 18.1 12.9 31.3

Word2GM/S 2 10 40 - (took more than a week)
FIRE/m 40 4 71.2 66.0 71.7 63.2 53.6 64.1 59.7 23.0 30.4 29.6 21.7 18.1 47.7

FIRE/m 2 15 50 4 57.1 66.6 67.4 61.9 53.3 65.5 58.4 22.7 24.2 38.6 20.1 18.3 46.2

F Dimensionalities Other Than 2

Table 5: Average scores on the 12 word similarity benchmarks for FIRE defined on [�4, 4]D with
different D. Upper: We set L = 4 and K = 10 while varying D. Lower: We used several parameter
sets for D = 1, 2, 3, 4, requiring around 50 parameters to represent each word. A larger number of
parameters resulted in a better word similarity score.

D L K # parameters Average word similarity score

1 4 10 32 39.0
2 4 10 50 49.8
5 4 10 104 50.9

parameters ⇡ 50
1 10 10 50 39.4
2 4 10 50 49.8
3 3 7 49 46.0
4 3 5 52 44.9

17

G Results for Each of 24 STS Datasets

The STS benchmark consists of 24 datasets released during 2012-2016. Each dataset is a list of
sentence pairs. For each sentence pair, a human-annotated, gold-standard similarity score is provided.
We tested Word2Vec, BERT, and our FIRE on the 24 datasets.

Following the conventional setting, a model’s performance was evaluated by the Pearson correlation
coefficients between the predicted similarity scores and the gold standard. Spearman’s correlation
coefficient (⇢), which we used for the word similarity benchmarks, was not used for evaluating
sentences, because the sentence benchmarks contained many duplicate similarity scores that made
Spearman’s ⇢ non-unique.

Table 6 lists the results. Each row is a dataset, and each column is a sentence-embedding model. The
bottom row gives the average scores, which are given in Table 3 in the main text.

On average, FIRE performed slightly worse than Word2Vec, though it actually had better performance
on many individual datasets.

Table 6: Pearson correlation coefficients on each of the STS datasets (rows) for Word2Vec, BERT,
and our proposed FIRE (columns). Each block contains datasets released in the same year.

N (# parameters) 50 50 100 100 1024
Word2Vec FIRE Word2Vec FIRE BERT-large

12/MSRphr 38.3 28.1 39.1 33.9 38.7
12/MSRvid 76.0 73.9 78.8 76.3 70.6
12/SMTeuroparl 46.2 33.7 47.7 36.9 50.6
12/WordNet 66.7 65.0 69.3 67.7 69.0
12/SMTnews 54.7 35.8 51.6 48.3 53.3
Average 56.4 47.3 57.3 52.6 56.4

13/FNWN 39.3 37.8 42.9 42.4 43.2
13/Headlines 62.2 62.7 64.2 66.7 69.8
13/WordNet 71.2 73.8 73.5 75.7 58.8
Average 57.6 58.1 60.2 61.6 57.3

14/Forum 32.6 27.3 34.9 31.9 39.9
14/News 67.8 60.0 70.1 68.5 73.8
14/Headlines 58.6 58.7 60.3 62.5 66.1
14/Images 72.8 70.8 75.9 74.9 70.8
14/WordNet 74.9 76.3 77.2 78.7 68.4
14/Twitter 60.8 59.2 63.8 60.6 66.1
Average 61.3 58.7 63.7 62.8 64.2

15/Forums 49.8 52.8 54.0 54.6 54.9
15/Students 64.6 64.9 66.7 66.0 72.6
15/Belief 54.4 58.8 57.2 63.1 64.1
15/Headlines 66.4 66.3 69.1 69.8 71.9
15/Images 74.1 74.1 77.4 76.9 77.8
Average 61.8 63.4 64.9 66.1 68.3

16/Answer 37.1 42.5 38.0 41.4 53.0
16/Headlines 63.6 66.4 65.9 68.7 71.3
16/Plagiarism 73.2 69.7 76.4 69.8 77.3
16/Postediting 67.0 67.6 69.3 71.8 81.9
16/Question 59.3 54.6 62.6 58.7 55.6
Average 60.0 60.2 62.4 62.1 67.8

Average of all 59.7 57.5 61.9 61.1 63.3

18

H Plotting on 2D Plane

In Figure 2 (upper), we showed qualitative results for FIRE and the other methods, where the 1000
most similar words out of the most frequent 50000 words were shown on a 2D plane. Here, we
describe the two dimensionality reduction methods that we used.

H.1 PCA

For Figure 2(a), we applied principal component analysis (PCA) to the word “vectors” and reduced
the dimensionality to 2 to make the vectors visualizable on a 2D plane. Because all methods are
different, we adapted each one to extract representative vectors for PCA, as follows:

FIRE (D = 2, L = 4,K = 1) We used the word location s 2 R2 as the vector. Because we used
K = 1, there was only one such vector for each of the 1000 words. For FIRE, PCA is equivalent to
performing rotation and normalization.

Word2Vec The word vector in R50 was used.

Word2Gauss/S The mean vector of the Gaussian distribution in R49 was used.

Word2GM/S (K = 2) Each word was represented by two independent Gaussian components,
which represented different senses of the word. For a target word such as “bank,” we considered
500 components that were similar to the first component of “bank” and 500 that were similar to the
second. As with Word2Gauss, we used the mean vector to represent a component. We used the
Word2GM/S model listed in Table 2 (third block), which assigns 50 parameters to each word; thus,
the mean vectors were in R23.

BERT-large We collected 1000 sentences for each target word from the Wacky dataset. A sentence
was input to the BERT model, and a contextualized word vector of the target word was acquired, with
1024 dimensions.

H.2 Spectral Embedding of Word Similarity Matrix

Another way to visualize the most similar 1000 words was to use the similarity matrix between words.
For FIRE, the similarity was computed with Formulas (1) and (9). For BERT, we used the cosine
similarity between the contextualized word vectors.

A spectral embedding was acquired by applying SVD decomposition to the similarity matrix and
taking only the first two eigenvectors. We used the implementation in the sklearn.manifold package.

19

