
A Additional related work

Soudry et al. [2018] showed that gradient descent on linearly-separable binary classification problems
with exponentially-tailed losses (e.g., the exponential loss and the logistic loss), converges to the
maximum `2-margin direction. This analysis was extended to other loss functions, tighter convergence
rates, non-separable data, and variants of gradient-based optimization algorithms [Nacson et al., 2019,
Ji and Telgarsky, 2018b, Ji et al., 2020, Gunasekar et al., 2018a, Shamir, 2020, Ji and Telgarsky,
2021].

As detailed in Section 2, Lyu and Li [2019] and Ji and Telgarsky [2020] showed that GF on
homogeneous neural networks with exponential-type losses converge in direction to a KKT point
of the maximum-margin problem in parameter space. The implications of margin maximization
in parameter space on the implicit bias in predictor space for linear neural networks were studied
in Gunasekar et al. [2018b] (as detailed in Section 2) and also in Jagadeesan et al. [2021], Ergen
and Pilanci [2021a,b]. Moreover, several recent works considered implications of convergence to
a KKT point of the maximum-margin problem, without assuming that the KKT point is optimal:
Safran et al. [2022] proved a generalization bound in univariate depth-2 ReLU networks, Vardi
et al. [2022] proved bias towards non-robust solutions in depth-2 ReLU networks, and Haim et al.
[2022] showed that training data can be reconstructed from trained networks. Margin maximization
in predictor space for fully-connected linear networks was shown by Ji and Telgarsky [2020] (as
detailed in Section 2), and similar results under stronger assumptions were previously established
in Gunasekar et al. [2018b] and in Ji and Telgarsky [2018a]. The implicit bias in predictor space
of diagonal and convolutional linear networks was studied in Gunasekar et al. [2018b], Moroshko
et al. [2020], Yun et al. [2020]. Chizat and Bach [2020] studied the dynamics of GF on infinite-width
homogeneous two-layer networks with exponentially-tailed losses, and showed bias towards margin
maximization w.r.t. a certain function norm known as the variation norm. Sarussi et al. [2021] studied
GF on two-layer leaky-ReLU networks, where the training data is linearly separable, and showed
convergence to a linear classifier based on a certain assumption called Neural Agreement Regime
(NAR). Phuong and Lampert [2020] studied the implicit bias in depth-2 ReLU networks trained on
orthogonally-separable data.

Lyu et al. [2021] studied the implicit bias in two-layer leaky-ReLU networks trained on linearly
separable and symmetric data, and showed that GF converges to a linear classifier which maximizes
the `2 margin. They also gave constructions where a KKT point is not a global max-margin solution.
We note that their constructions do not imply any of our results. In particular, for the ReLU activation
they showed a construction where there exists a KKT point which is not a global optimum of the
max-margin problem, however this KKT point is not reachable with GF. Thus, there does not exist an
initialization such that GF actually converges to this point. In our construction (Theorem 3.2) GF
converges to a suboptimal KKT point with constant probability over the initialization. Moreover,
even their construction for the leaky-ReLU activation (which is their main focus) considers only
global suboptimality, while we show local suboptimality for the ReLU activation.

Finally, the implicit bias of neural networks in regression tasks w.r.t. the square loss was also
extensively studied in recent years (e.g., Gunasekar et al. [2018c], Razin and Cohen [2020], Arora
et al. [2019], Belabbas [2020], Eftekhari and Zygalakis [2020], Li et al. [2018], Ma et al. [2018],
Woodworth et al. [2020], Gidel et al. [2019], Li et al. [2020], Yun et al. [2020], Vardi and Shamir
[2021], Azulay et al. [2021], Timor et al. [2022]). This setting, however, is less relevant to our work.

For a broader discussion on the implicit bias in neural networks, in both classification and regression
tasks, see a survey in Vardi [2022].

B Preliminaries on the KKT conditions

Below we review the definition of the KKT condition for non-smooth optimization problems (cf. Lyu
and Li [2019], Dutta et al. [2013]).

Let f : Rd → R be a locally Lipschitz function. The Clarke subdifferential [Clarke et al., 2008] at
x ∈ Rd is the convex set

∂◦f(x) := conv
{

lim
i→∞

∇f(xi)
∣∣∣ lim
i→∞

xi = x, f is differentiable at xi
}
.

If f is continuously differentiable at x then ∂◦f(x) = {∇f(x)}.
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Consider the following optimization problem

min f(x) s.t. ∀n ∈ [N ] gn(x) ≤ 0 , (5)

where f, g1, . . . , gn : Rd → R are locally Lipschitz functions. We say that x ∈ Rd is a feasible point
of Problem 5 if x satisfies gn(x) ≤ 0 for all n ∈ [N ]. We say that a feasible point x is a KKT point
if there exists λ1, . . . , λN ≥ 0 such that

1. 0 ∈ ∂◦f(x) +
∑
n∈[N ] λn∂

◦gn(x);

2. For all n ∈ [N ] we have λngn(x) = 0.

C Proofs

C.1 Auxiliary lemmas

Throughout our proofs we use the following two lemmas from Du et al. [2018]:
Lemma C.1 (Du et al. [2018]). Let m ≥ 2, and let Φ be a depth-m fully-connected linear or
ReLU network parameterized by θ = [W1, . . . ,Wm]. Suppose that for every j ∈ [m] we have
Wj ∈ Rdj×dj−1 . Consider minimizing any differentiable loss function (e.g., the exponential or the
logistic loss) over a dataset using GF. Then, for every j ∈ [m− 1] at all time t we have

d

dt

(
‖Wj‖2F − ‖Wj+1‖2F

)
= 0 .

Moreover, for every j ∈ [m− 1] and i ∈ [dj ] we have

d

dt

(
‖Wj [i, :]‖2 − ‖Wj+1[:, i]‖2

)
= 0 ,

where Wj [i, :] is the vector of incoming weights to the i-th neuron in the j-th hidden layer (i.e.,
the i-th row of Wj), and Wj+1[:, i] is the vector of outgoing weights from this neuron (i.e., the i-th
column of Wj+1).
Lemma C.2 (Du et al. [2018]). Let m ≥ 2, and let Φ be a depth-m linear or ReLU network in N ,
parameterized by θ = [u(1), . . . ,u(m)]. Consider minimizing any differentiable loss function (e.g.,
the exponential or the logistic loss) over a dataset using GF. Then, for every j ∈ [m− 1] at all time t
we have

d

dt

(∥∥∥u(j)
∥∥∥2

−
∥∥∥u(j+1)

∥∥∥2
)

= 0 .

Note that Lemma C.2 considers a larger family of neural networks since it allows sparse and shared
weights, but Lemma C.1 gives a stronger guarantee, since it implies balancedness between the
incoming and outgoing weights of each hidden neuron separately. In our proofs we will also need
to use a balancedness property for each hidden neuron separately in depth-2 networks with sparse
weights. Since this property is not implied by the above lemmas from Du et al. [2018], we now prove
it.

Before stating the lemma, let us introduce some required notations. Let Φ be a depth-2 network in
Nno-share. We can always assume w.l.o.g. that the second layer is fully connected, namely, all hidden
neurons are connected to the output neuron. Indeed, otherwise we can ignore the neurons that are not
connected to the output neuron. For the network Φ we use the parameterization θ = [w1, . . . ,wk,v],
where k is the number of hidden neurons. For every j ∈ [k] the vector wj ∈ Rpj is the weights
vector of the j-th hidden neuron, and we have 1 ≤ pj ≤ d where d is the input dimention. For
an input x ∈ Rd we denote by xj ∈ Rpj a sub-vector of x, such that xj includes the coordinates
of x that are connected to the j-th hidden neuron. Thus, given x, the input to the j-th hidden
neuron is 〈wj ,x

j〉. The vector v ∈ Rk is the weights vector of the second layer. Overall, we have
Φ(θ;x) =

∑
j∈[k] vjσ(w>j x

j).

Lemma C.3. Let Φ be a depth-2 linear or ReLU network in Nno-share, parameterized by θ =
[w1, . . . ,wk,v]. Consider minimizing any differentiable loss function (e.g., the exponential or the
logistic loss) over a dataset using GF. Then, for every j ∈ [k] at all time t we have

d

dt

(
‖wj‖2 − v2

j

)
= 0 .
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Proof. We have

L(θ) =
∑
i∈[n]

` (yiΦ(θ;xi)) =
∑
i∈[n]

`

yi ∑
l∈[k]

vlσ(w>l x
j
i )

 .

Hence

d

dt

(
‖wj‖2

)
= 2〈wj ,

dwj

dt
〉 = −2〈wj ,∇wj

L(θ)〉

= −2
∑
i∈[n]

`′

yi ∑
l∈[k]

vlσ(w>l x
l
i)

 · yivjσ′(w>j xji )w>j xji
= −2

∑
i∈[n]

`′

yi ∑
l∈[k]

vlσ(w>l x
l
i)

 · yivjσ(w>j x
j
i ) .

Moreover,

d

dt

(
v2
j

)
= 2vj

dvj
dt

= −2vj∇vjL(θ)

= −2vj
∑
i∈[n]

`′

yi ∑
l∈[k]

vlσ(w>l x
l
i)

 · yiσ(w>j x
j
i ) .

Hence the lemma follows.

Using the above lemma, we show the following:

Lemma C.4. Let Φ be a depth-2 linear or ReLU network in Nno-share, parameterized by θ =
[w1, . . . ,wk,v]. Consider minimizing any differentiable loss function (e.g., the exponential or the
logistic loss) over a dataset using GF starting from θ(0). Assume that limt→∞ ‖θ(t)‖ =∞ and that
θ(t) converges in direction to θ̃ = [w̃1, . . . , w̃k, ṽ], i.e., θ̃ = ‖θ̃‖ · limt→∞

θ(t)
‖θ(t)‖ . Then, for every

l ∈ [k] we have ‖w̃l‖ = |ṽl|.

Proof. For every l ∈ [k], let ∆l = ‖wl(0)‖2 − vl(0)2. By Lemma C.3, we have for every l ∈ [k]

and t ≥ 0 that ‖wl(t)‖2 − vl(t)2 = ∆l, namely, the differences between the square norms of the
incoming and outgoing weights of each hidden neuron remain constant during the training. Hence,
we have

|ṽl| = ‖θ̃‖ · lim
t→∞

|vl(t)|
‖θ(t)‖

= ‖θ̃‖ · lim
t→∞

√
‖wl(t)‖2 −∆l

‖θ(t)‖
.

Thus, if limt→∞ ‖wl(t)‖ =∞, then we have |ṽl| = ‖θ̃‖ · limt→∞
‖wl(t)‖
‖θ(t)‖ = ‖w̃l‖.

Assume now that ‖wl(t)‖ 6→ ∞. By the definition of θ̃ we have ‖w̃l‖ = ‖θ̃‖ · limt→∞
‖wl(t)‖
‖θ(t)‖ .

Since limt→∞
‖wl(t)‖
‖θ(t)‖ exists and limt→∞ ‖θ(t)‖ =∞, then we have limt→∞

‖wl(t)‖
‖θ(t)‖ = 0. Hence,

limt→∞
|vl(t)|
‖θ(t)‖ = limt→∞

√
‖wl(t)‖2−∆l

‖θ(t)‖ = 0. Therefore ‖w̃l‖ = ṽl = 0.

C.2 Proof of Theorem 3.1

Suppose that the network Φ is parameterized by θ = [W (1), . . . ,W (m)]. By Theorem 2.1, GF
converges in direction to a KKT point θ̃ = [W̃ (1), . . . , W̃ (m)] of Problem 2. For every l ∈ [m] let
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∆l =
∥∥W (l)(0)

∥∥2

F
−
∥∥W (1)(0)

∥∥2

F
. By Lemma C.1, we have for every l ∈ [m] and t ≥ 0 that∥∥∥W (l)(t)

∥∥∥2

F
−
∥∥∥W (1)(t)

∥∥∥2

F
=

l−1∑
j=1

∥∥∥W (j+1)(t)
∥∥∥2

F
−
∥∥∥W (j)(t)

∥∥∥2

F

=

l−1∑
j=1

∥∥∥W (j+1)(0)
∥∥∥2

F
−
∥∥∥W (j)(0)

∥∥∥2

F

=
∥∥∥W (l)(0)

∥∥∥2

F
−
∥∥∥W (1)(0)

∥∥∥2

F
= ∆l .

Hence, we have∥∥∥W̃ (l)
∥∥∥
F

= ‖θ̃‖ · lim
t→∞

∥∥W (l)(t)
∥∥
F

‖θ(t)‖
= ‖θ̃‖ · lim

t→∞

√∥∥W (1)(t)
∥∥2

F
+ ∆l

‖θ(t)‖
.

Since by Theorem 2.1 we have limt→∞ ‖θ(t)‖ =∞, then limt→∞
∥∥W (1)(t)

∥∥
F

=∞, and we have∥∥∥W̃ (l)
∥∥∥
F

= ‖θ̃‖ · lim
t→∞

∥∥W (1)(t)
∥∥
F

‖θ(t)‖
=
∥∥∥W̃ (1)

∥∥∥
F

:= C .

By Ji and Telgarsky [2020] (Proposition 4.4), when GF on a fully-connected linear network w.r.t. the
exponential loss or the logistic loss converges to zero loss, then we have the following. There are unit
vectors v0, . . . ,vm such that

lim
t→∞

W (l)(t)∥∥W (l)(t)
∥∥
F

= vlv
>
l−1

for every l ∈ [m]. Moreover, we have vm = 1, and v0 = u where

u := argmax
‖u‖=1

min
i∈[n]

yiu
>xi

is the unique linear max margin predictor.

Note that we have

W̃ (l)

C
=

W̃ (l)∥∥∥W̃ (l)
∥∥∥
F

=
‖θ̃‖ · limt→∞

W (l)(t)
‖θ(t)‖

‖θ̃‖ · limt→∞
‖W (l)(t)‖

F

‖θ(t)‖

= lim
t→∞

W (l)(t)∥∥W (l)(t)
∥∥
F

= vlv
>
l−1 .

Thus, W̃ (l) = Cvlv
>
l−1 for every l ∈ [m].

Let ũ = W̃ (m) · . . . · W̃ (1) = Cmu. Since θ̃ is a KKT point of Problem 2, we have for every l ∈ [m]

W̃ (l) =
∑
i∈[n]

λiyi
∂Φ(θ̃;xi)

∂W (l)
,

where λi ≥ 0 for every i, and λi = 0 if yiΦ(θ̃;xi) 6= 1. Since W̃ (l) are non-zero then there is i ∈ [n]

such that 1 = yiΦ(θ̃;xi) = yiũ
>xi = yiC

mu>xi. Likewise, since θ̃ satisfies the constraints of
Problem 2, then for every i ∈ [n] we have 1 ≤ yiΦ(θ̃;xi) = yiC

mu>xi. Since, u is a unit vector
that maximized the margin, then we have

‖ũ‖ = Cm = min ‖u′‖ s.t. yiu′>xi ≥ 1 for all i ∈ [n] . (6)

Assume toward contradiction that there is θ′ with ‖θ′‖ < ‖θ̃‖ that satisfies the constraints in
Problem 2. Let u′ = W ′(m) · . . . ·W ′(1). By Eq. 6 we have ‖u′‖ ≥ ‖ũ‖ = Cm. Moreover, we have
‖u′‖ =

∥∥W ′(m) · . . . ·W ′(1)
∥∥ ≤ ∏l∈[m]

∥∥W ′(l)∥∥
F

due to the submultiplicativity of the Frobenius
norm. Hence

∏
l∈[m]

∥∥W ′(l)∥∥
F
≥ Cm. The following lemma implies that∥∥θ′∥∥2

=
∑
l∈[m]

∥∥∥W ′(l)∥∥∥2

F
≥ m · C2 =

∑
l∈[m]

∥∥∥W̃ (l)
∥∥∥2

F
=
∥∥∥θ̃∥∥∥2

in contradiction to our assumption, and thus completes the proof.
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Lemma C.5. Let a1, . . . , am be real numbers such that
∏
j∈[m] aj ≥ Cm for some C ≥ 0. Then∑

j∈[m] a
2
j ≥ m · C2.

Proof. It suffices to prove the claim for the case where
∏
j∈[m] aj = Cm. Indeed, if

∏
j∈[m] aj >

Cm then we can replace some aj with an appropriate a′j such that |a′j | < |aj | and we only decrease∑
j∈[m] a

2
j . Consider the following problem

min
1

2

∑
j∈[m]

a2
j s.t.

∏
j∈[m]

aj = Cm .

Using the Lagrange multipliers we obtain that there is some λ ∈ R such that for every l ∈ [m]
we have al = λ ·

∏
j 6=l aj . Thus, a2

l = λ ·
∏
j∈[m] aj . It implies that a2

1 = . . . = a2
m. Since∏

j∈[m] aj = Cm then |aj | = C for every j ∈ [m]. Hence,
∑
j∈[m] a

2
j = mC2.

C.3 Proof of Theorem 3.2

Consider an initialization θ(0) is such that w1(0) satisfies 〈w1(0),x1〉 > 0 and 〈w1(0),x2〉 > 0,
and w2(0) satisfies 〈w2(0),x1〉 < 0 and 〈w2(0),x2〉 < 0. Moreover, assume that v1(0) > 0.

Note that for every θ such that 〈w2,x1〉 < 0 and 〈w2,x2〉 < 0 we have

∇w2L(θ) =

2∑
i=1

`′(yiΦ(θ;xi)) · yi∇w2Φ(θ;xi)

=

2∑
i=1

`′(yiΦ(θ;xi)) · yi∇w2

[
v1σ(w>1 xi) + v2σ(w>2 xi)

]
=

2∑
i=1

`′(yiΦ(θ;xi)) · yiv2σ
′(w>2 xi)xi = 0 .

and

∇v2L(θ) =

2∑
i=1

`′(yiΦ(θ;xi)) · yi∇v2Φ(θ;xi)

=

2∑
i=1

`′(yiΦ(θ;xi)) · yi∇v2
[
v1σ(w>1 xi) + v2σ(w>2 xi)

]
=

2∑
i=1

`′(yiΦ(θ;xi)) · yiσ(w>2 xi) = 0 .

Hence, w2 and v2 get stuck in their initial values. Moreover, we have

∇v1L(θ) =

2∑
i=1

`′(yiΦ(θ;xi)) · yi∇v1
[
v1σ(w>1 xi) + v2σ(w>2 xi)

]
=

2∑
i=1

`′(yiΦ(θ;xi)) · σ(w>1 xi) ≤ 0 .

Therefore, for every t ≥ 0 we have v1(t) ≥ v1(0) > 0.

We denote w1 = (w1[1], w1[2]). Since 〈w1(0),xj〉 > 0 for j ∈ {1, 2} then w1[2](0) > 0. Assume
w.l.o.g. that w1[1](0) ≥ 0 (the case where w1[1](0) ≤ 0 is similar). For every w1 that satisfies

18



w1[2] ≥ 0 and 0 ≤ w1[1] ≤ w1[1](0) we have 〈w1,x1〉 > 〈w1,x2〉 > 0. Thus,

∇w1
L(θ) =

2∑
i=1

`′(yiΦ(θ;xi)) · yi∇w1

[
v1σ(w>1 xi) + v2σ(w>2 xi)

]
=

2∑
i=1

`′(yi(v1σ(w>1 xi) + 0)) · yiv1σ
′(w>1 xi)xi

=

2∑
i=1

`′(v1w
>
1 xi) · v1xi .

Since `′ is negative and monotonically increasing, and since v1w
>
1 x1 > v1w

>
1 x2, then dw1[1]

dt ≤ 0.
Also, dw1[2]

dt > 0. Moreover, if w1[1] = 0 then v1w
>
1 x1 = v1w

>
1 x2 and thus dw1[1]

dt = 0. Hence, for
every t we have w1[2](t) ≥ w1[2](0) > 0 and 0 ≤ w1[1](t) ≤ w1[1](0).

If L(θ) ≥ 1 then for some i ∈ {1, 2} we have `(yiΦ(θ;xi)) ≥ 1
2 and hence `′(yiΦ(θ;xi)) ≤ c for

some constant c < 0. Since we also have v1 ≥ v1(0) > 0, we have

dw1[2]

dt
≥ −c · v1(0) · 1

4
.

Therefore, if the initialization θ(0) is such that L(θ) ≥ 1 then w1[2](t) increases at rate at least
(−c)·v1(0)

4 while w1[1](t) remains in [0, w1[1](0)]. Note that for such w1[1] and v1 ≥ v1(0) > 0, if
w1[2] is sufficiently large then we have v1〈w1,xi〉 ≥ 1 for i ∈ {1, 2}. Hence, there is some t0 such
that L(θ(t0)) ≤ 2`(1) < 1 for both the exponential loss and the logistic loss.

Therefore, by Theorem 2.1 GF converges in direction to a KKT point of Problem 2, and we have
limt→∞ L(θ(t)) = 0 and limt→∞ ‖θ(t)‖ = ∞. It remains to show that it does not converge in
direction to a local optimum of Problem 2.

Let θ̄ = limt→∞
θ(t)
‖θ(t)‖ . We denote θ̄ = [w̄1, w̄2, v̄1, v̄2]. We show that w̄1 = 1√

2
(0, 1)>, v̄1 = 1√

2
,

w̄2 = 0 and v̄2 = 0. By Lemma C.1, we have for every t ≥ 0 that v1(t)2 − ‖w1(t)‖2 =

v1(0)2 − ‖w1(0)‖2 := ∆. Since for every t we have w2(t) = w2(0) and v2(t) = v2(0), and since
limt→∞ ‖θ(t)‖ = ∞ then we have limt→∞ ‖w1(t)‖ = ∞ and limt→∞ |v1(t)| = ∞. Also, since
limt→∞ ‖w1(t)‖ =∞ and w1[1](t) ∈ [0, w1[1](0)] then limt→∞ w1[2](t) =∞. Note that

‖θ(t)‖ =

√
‖w1(t)‖2 + v1(t)2 + ‖w2(0)‖2 + v2(0)2 =

√
∆ + 2 ‖w1(t)‖2 + ‖w2(0)‖2 + v2(0)2 .

Since w1[1](t) ∈ [0, w1[1](0)] and ‖θ(t)‖ → ∞, we have

w̄1[1] = lim
t→∞

w1[1](t)

‖θ(t)‖
= 0 .

Moreover,

w̄1[2] = lim
t→∞

w1[2](t)

‖θ(t)‖
= lim
t→∞

√
(w1[2](t))2

∆ + 2(w1[1](t))2 + 2(w1[2](t))2 + ‖w2(0)‖2 + v2(0)2
=

1√
2
,

and

w̄2 = lim
t→∞

w2(t)

‖θ(t)‖
= lim
t→∞

w2(0)

‖θ(t)‖
= 0 .

Finally, by Lemma C.4 and since v1(t) > 0, we have v̄1 = ‖w̄1‖ = 1√
2

. By Lemma C.4 we also
have |v̄2| = ‖w̄2‖ = 0.

Next, we show that θ̄ does not point at the direction of a local optimum of Problem 2. Let θ̃ =
[w̃1, w̃2, ṽ1, ṽ2] be a KKT point of Problem 2 that points at the direction of θ̄. Such θ̃ exists since
θ(t) converges in direction to a KKT point. Thus, we have w̃2 = 0, ṽ2 = 0, w̃1 = α(0, 1)> and
ṽ1 = α for some α > 0. Since θ̃ satisfies the KKT conditions, we have

w̃1 =

2∑
i=1

λi∇w1

(
yiΦ(θ̃;xi)

)
=

2∑
i=1

λiyi
(
ṽ1σ
′(w̃>1 xi)xi

)
,
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where λi ≥ 0 and λi = 0 if yiΦ(θ̃;xi) 6= 1. Note that the KKT condition should be w.r.t. the Clarke
subdifferential, but since w̃>1 xi > 0 for i ∈ {1, 2} then we use here the gradient. Hence, there is
i ∈ {1, 2} such that yiΦ(θ̃;xi) = 1. Thus,

1 = yiΦ(θ̃;xi) = ṽ1σ(w̃>1 xi) + ṽ2σ(w̃>2 xi) = α · α
4

+ 0 =
α2

4
.

Therefore, α = 2 and we have w̃1 = (0, 2)> and ṽ1 = 2.

In order to show that θ̃ is not a local optimum, we show that for every 0 < ε′ < 1 there exists some
θ′ such that

∥∥∥θ′ − θ̃
∥∥∥ ≤ ε′, θ′ satisfies Φ(θ′;xi) ≥ 1 for every i ∈ {1, 2}, and ‖θ′‖ < ‖θ̃‖. Let

ε = ε′2

9 < 1
2 . Let θ′ = [w′1,w

′
2, v
′
1, v
′
2] be such that w′1 = ( ε2 , 2− 2ε)>, w′2 = (−

√
2ε, 0)>, v′1 = 2

and v′2 =
√

2ε. Note that

Φ(θ′;x1) = 2 · σ
(

(
ε

2
, 2− 2ε)(1,

1

4
)>
)

+
√

2ε · σ
(

(−
√

2ε, 0)(1,
1

4
)>
)

= 2 · σ
(
ε

2
+

1

2
− ε

2

)
+
√

2ε · σ
(
−
√

2ε
)

= 1 ,

and

Φ(θ′;x2) = 2 · σ
(

(
ε

2
, 2− 2ε)(−1,

1

4
)>
)

+
√

2ε · σ
(

(−
√

2ε, 0)(−1,
1

4
)>
)

= 2 · σ
(
− ε

2
+

1

2
− ε

2

)
+
√

2ε · σ
(√

2ε
)

= 1− 2ε+ 2ε = 1 .

We also have ∥∥∥θ′ − θ̃
∥∥∥2

= ‖w′1 − w̃1‖
2

+ ‖w′2 − w̃2‖
2

+ (v′1 − ṽ1)2 + (v′2 − ṽ2)2

=

(
ε2

4
+ 4ε2

)
+ 2ε+ 0 + 2ε < 9ε = ε′2 .

Finally, we have∥∥θ′∥∥2
=
ε2

4
+ 4− 8ε+ 4ε2 + 2ε+ 4 + 2ε = 8− 4ε+

17ε2

4
< 8− 4ε+

17ε

8
< 8 =

∥∥∥θ̃∥∥∥2

.

Thus, ‖θ′‖ < ‖θ̃‖.

C.4 Proof of Theorem 4.1

Let x = (1, 2)> and y = 1. Let θ(0) such that w1(0) = w2(0) = (1, 0)>. Note that L(θ(0)) =
`(1) < 1 for both linear and ReLU networks with the exponential loss or the logistic loss, and
therefore by Theorem 2.1 GF converges in direction to a KKT point θ̃ of Problem 2, and we
have limt→∞ L(θ(t)) = 0 and limt→∞ ‖θ(t)‖ = ∞. We denote w1 = (w1[1],w1[2])> and
w2 = (w2[1],w2[2])>. Note that the initialization θ(0) is such that the second hidden neuron has 0
in both its incoming and outgoing weights. Hence, the gradient w.r.t. w1[2] and w2[2] is zero, and the
second hidden neuron remains inactive during the training. Moreover, w1[1] and w2[1] are strictly
increasing. Also, by Lemma C.3 we have for every t ≥ 0 that w1[1](t)2 = w2[1](t)2. Overall, θ̃
is such that w̃1 = w̃2 = (1, 0)>. Note that since the dataset is of size 1, then every KKT point of
Problem 2 must label the input x with exactly 1.

It remains to show that θ̃ is not local optimum. Let 0 < ε < 1, and let θ′ = [w′1,w
′
2] with

w′1 = w′2 =
(√

1− ε,
√

ε
2

)>
. Note that θ′ satisfies the constraints of Problem 2, since y ·Φ(θ′;x) =

1− ε+ 2 · ε2 = 1. Moreover, we have ‖θ̃‖2 = 2 and ‖θ′‖2 = 2
(
1− ε+ ε

2

)
= 2− ε and therefore

‖θ′‖ < ‖θ̃‖.
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C.5 Proof of Theorem 4.2

C.5.1 Proof of part 1

We assume w.l.o.g. that the second layer is fully-connected, namely, all hidden neurons are connected
to the output neuron, since otherwise we can ignore disconnected neurons. For the network Φ we
use the parameterization θ = [w1, . . . ,wk,v] introduced in Section C.1. Thus, we have Φ(θ;x) =∑
l∈[k] vlw

>
l x

l.

By Theorem 2.1, GF converges in direction to θ̃ = [w̃1, . . . , w̃k, ṽ] which satisfies the KKT
conditions of Problem 2. Thus, there are λ1, . . . , λn such that for every j ∈ [k] we have

w̃j =
∑
i∈[n]

λi∇wj

(
yiΦ(θ̃;xi)

)
=
∑
i∈[n]

λiyiṽjx
j
i , (7)

and we have λi ≥ 0 for all i, and λi = 0 if yiΦ(θ̃;xi) = yi
∑
l∈[k] ṽlw̃

>
l x

l
i 6= 1. By Theorem 2.1,

we also have limt→∞ ‖θ(t)‖ =∞. Hence, by Lemma C.4 we have ‖w̃j‖ = |ṽj | for all j ∈ [k].

Consider the following problem

min
∑
l∈[k]

‖ul‖ s.t. ∀i ∈ [n] yi
∑
l∈[k]

u>l x
l
i ≥ 1 . (8)

For every l ∈ [k] we denote ũl = ṽl · w̃l. Since we assume that w̃l 6= 0 for every l ∈ [k], and
since ‖w̃l‖ = |ṽl|, then ũl 6= 0 for all l ∈ [k]. Note that since w̃1, . . . , w̃k, ṽ satisfy the constraints
in Problem 2, then ũ1, . . . , ũk satisfy the constraints in the above problem. In order to show that
ũ1, . . . , ũk satisfy the KKT condition of the problem, we need to prove that for every j ∈ [k] we
have

ũj
‖ũj‖

=
∑
i∈[n]

λ′iyix
j
i (9)

for some λ′i ≥ 0 such that λ′i = 0 if yi
∑
l∈[k] ũ

>
l x

l
i 6= 1. From Eq. 7 and since ‖w̃l‖ = |ṽl| for

every l ∈ [k], we have

ũj = ṽj · w̃j = ṽj
∑
i∈[n]

λiyiṽjx
j
i = ṽ2

j

∑
i∈[n]

λiyix
j
i = ‖ṽjw̃j‖

∑
i∈[n]

λiyix
j
i = ‖ũj‖

∑
i∈[n]

λiyix
j
i .

Note that we have λi ≥ 0 for all i, and λi = 0 if yi
∑
l∈[k] ũ

>
l x

l
i = yi

∑
l∈[k] ṽlw̃

>
l x

l
i 6= 1. Hence

Eq. 9 holds with λ′1, . . . , λ
′
n that satisfy the requirement. Since the objective in Problem 8 is convex

and the constraints are affine functions, then its KKT condition is sufficient for global optimality.
Namely, ũ1, . . . , ũk are a global optimum for problem 8.

We now deduce that θ̃ is a global optimum for Problem 2. Assume toward contradiction that there
is a solution θ′ = [w′1, . . . ,w

′
k,v
′] for the constraints in Problem 2 such that ‖θ′‖2 < ‖θ̃‖2. Let

u′l = v′lw
′
l. Note that the vectors u′l satisfy the constraints in Problem 8. Moreover, we have∑
l∈[k]

‖u′l‖ =
∑
l∈[k]

|v′l| · ‖w′l‖ ≤
∑
l∈[k]

1

2

(
|v′l|2 + ‖w′l‖

2
)

=
1

2

∥∥θ′∥∥2
<

1

2

∥∥∥θ̃∥∥∥2

=
∑
l∈[k]

1

2

(
|ṽl|2 + ‖w̃l‖2

)
.

Since ‖w̃l‖ = |ṽl|, the above equals∑
l∈[k]

‖w̃l‖2 =
∑
l∈[k]

|ṽl| · ‖w̃l‖ =
∑
l∈[k]

‖ũl‖ ,

which contradicts the global optimality of ũ1, . . . , ũk.
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C.5.2 Proof of part 2

Let {(xi, yi)}4i=1 be a dataset such that yi = 1 for all i ∈ [4] and we have x1 = (0, 1)>,
x2 = (1, 0)>, x3 = (0,−1) and x4 = (−1, 0). Consider the initialization θ(0) =
[w1(0),w2(0),w3(0),w4(0),v(0)] such that wi(0) = 2xi and vi(0) = 2 for every i ∈ [4]. Note
that L(θ(0)) = 4`(4) < 1 for both the exponential loss and the logistic loss, and therefore by Theo-
rem 2.1 GF converges in direction to a KKT point θ̃ of Problem 2, and we have limt→∞ L(θ(t)) = 0
and limt→∞ ‖θ(t)‖ =∞.

We now show that for all t ≥ 0 we have wi(t) = α(t)xi and vi(t) = α(t) where α(t) > 0 and
limt→∞ α(t) =∞. Indeed, for such θ(t), for every j ∈ [4] we have

−dwj

dt
= ∇wjL(θ) =

4∑
i=1

`′(yiΦ(θ;xi)) · yi∇wjΦ(θ;xi)

=

4∑
i=1

`′

(
4∑
l=1

vlσ(w>l xi)

)
·
(
vjσ
′(w>j xi)xi

)
= `′(α2) · α ·

4∑
i=1

σ′(w>j xi)xi = `′(α2) · αxj ,

and

−dvj
dt

= ∇vjL(θ) =

4∑
i=1

`′(yiΦ(θ;xi)) · yi∇vjΦ(θ;xi) =

4∑
i=1

`′

(
4∑
l=1

vlσ(w>l xi)

)
· σ(w>j xi)

= `′(α2) ·
4∑
i=1

σ(w>j xi) = `′(α2) · α .

Moreover, since limt→∞ ‖θ(t)‖ =∞ then limt→∞ α(t) =∞.

Hence, the KKT point θ̃ is such that for every j ∈ [4] the vector w̃j points at the direction xj , and
we have ṽj = ‖w̃j‖. Also, the vectors w̃1, w̃2, w̃3, w̃4 have equal norms. That is, w̃j = α̃xj and
ṽj = α̃ for some α̃ > 0. Moreover, since it satisfies the KKT condition of Problem 2, then we have

w̃j =

4∑
i=1

λiyi∇wjΦ(θ̃;xi) ,

where λi ≥ 0 and λi = 0 if yiΦ(θ̃;xi) 6= 1. Hence, there is i such that yiΦ(θ̃;xi) = 1.Therefore,
α̃2 = 1. Thus, we conclude that for all j ∈ [4] we have w̃j = xj and ṽj = 1. Note that w̃j 6= 0 for
all j ∈ [4] as required.

Next, we show that θ̃ is not a local optimum of Problem 2. We show that for every 0 < ε < 1 there
exists some θ′ such that

∥∥∥θ′ − θ̃
∥∥∥ ≤ ε, θ′ satisfies the constraints of Problem 2, and ‖θ′‖ < ‖θ̃‖.

Let ε′ = ε
2
√

2
. Let θ′ be such that v′j = ṽj = 1 for all j ∈ [4], and we have w′1 = (ε′, 1 − ε′)>,

w′2 = (1 − ε′,−ε′)>, w′3 = (−ε′,−1 + ε′)> and w′4 = (−1 + ε′, ε′)>. It is easy to verify that θ′

satisfies the constraints. Indeed, we have Φ(θ′;xi) = ((1− ε′) + ε′ + 0 + 0) = 1. Also, we have∥∥∥θ′ − θ̃
∥∥∥ =
√

4 · 2ε′2 = 2
√

2ε′ = ε. Finally,

‖θ′‖2 = 4 ·
(
ε′2 + (1− ε′)2

)
+ 4 = 8 + 8ε′ (ε′ − 1) < 8 = ‖θ̃‖2 .

C.6 Proof of Theorem 4.3

We assume w.l.o.g. that the second layer is fully-connected, namely, all hidden neurons are connected
to the output neuron, since otherwise we can ignore disconnected neurons. For the network Φ we
use the parameterization θ = [w1, . . . ,wk,v] introduced in Section C.1. Thus, we have Φ(θ;x) =∑
l∈[k] vlσ(w>l x

l).
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We denote θ̃ = [w̃1, . . . , w̃k, ṽ]. Since θ̃ is a KKT point of Problem 2, then there are λ1, . . . , λn
such that for every j ∈ [k] we have

w̃j =
∑
i∈[n]

λi∇wj

(
yiΦ(θ̃;xi)

)
=
∑
i∈[n]

λiyiṽjσ
′(w̃>j x

j
i )x

j
i , (10)

and we have λi ≥ 0 for all i, and λi = 0 if yiΦ(θ̃;xi) = yi
∑
l∈[k] ṽlσ(w̃>l x

l
i) 6= 1. Note

that the KKT condition should be w.r.t. the Clarke subdifferential, but since for all i, j we have
w̃>j x

j
i 6= 0 by our assumption, then we can use here the gradient. By Theorem 2.1, we also have

limt→∞ ‖θ(t)‖ =∞. Hence, by Lemma C.4 we have ‖w̃j‖ = |ṽj | for all j ∈ [k].

For i ∈ [n] and j ∈ [k] let Aij = 1(w̃>j x
j
i ≥ 0). Consider the following problem

min
∑
l∈[k]

‖ul‖ s.t. ∀i ∈ [n] yi
∑
l∈[k]

Ailu
>
l x

l
i ≥ 1 . (11)

For every l ∈ [k] let ũl = ṽl · w̃l. Since we assume that the inputs to all neurons in the computations
Φ(θ̃;xi) are non-zero, then we must have w̃l 6= 0 for every l ∈ [k]. Since we also have ‖w̃l‖ = |ṽl|,
then ũl 6= 0 for all l ∈ [k]. Note that since w̃1, . . . , w̃k, ṽ satisfy the constraints in Probelm 2, then
ũ1, . . . , ũk satisfy the constraints in the above problem. Indeed, for every i ∈ [n] we have

yi
∑
l∈[k]

Ailũ
>
l x

l
i = yi

∑
l∈[k]

1(w̃>l x
l
i ≥ 0)ṽlw̃

>
l x

l
i = yi

∑
l∈[k]

ṽlσ(w̃>l x
l
i) ≥ 1 .

In order to show that ũ1, . . . , ũk satisfy the KKT condition of Probelm 11, we need to prove that for
every j ∈ [k] we have

ũj
‖ũj‖

=
∑
i∈[n]

λ′iyiAijx
j
i (12)

for some λ′1, . . . , λ
′
n such that for all i we have λ′i ≥ 0, and λ′i = 0 if yi

∑
l∈[k]Ailũ

>
l x

l
i 6= 1. From

Eq. 10 and since ‖w̃l‖ = |ṽl| for every l ∈ [k], we have

ũj = ṽj · w̃j = ṽj
∑
i∈[n]

λiyiṽjAijx
j
i = ṽ2

j

∑
i∈[n]

λiyiAijx
j
i = ‖ṽjw̃j‖

∑
i∈[n]

λiyiAijx
j
i

= ‖ũj‖
∑
i∈[n]

λiyiAijx
j
i .

Note that we have λi ≥ 0 for all i, and λi = 0 if

yi
∑
l∈[k]

Ailũ
>
l x

l
i = yi

∑
l∈[k]

ṽl1(w̃>l x
l
i ≥ 0)w̃>l x

l
i = yi

∑
l∈[k]

ṽlσ(w̃>l x
l
i) 6= 1 .

Hence Eq. 12 holds with λ′1, . . . , λ
′
n that satisfy the requirement. Since the objective in Problem 11

is convex and the constraints are affine functions, then its KKT condition is sufficient for global
optimality. Namely, ũ1, . . . , ũk are a global optimum for Problem 11.

We now deduce that θ̃ is a local optimum for Problem 2. Since for every i ∈ [n] and l ∈ [k] we
have w̃>l x

l
i 6= 0, then there is ε > 0, such that for every i, l and every w′l with ‖w′l − w̃l‖ ≤ ε

we have 1(w̃>l x
l
i ≥ 0) = 1(w′>l xli ≥ 0). Assume toward contradiction that there is a solution

θ′ = [w′1, . . . ,w
′
k,v
′] for the constraints in Problem 2 such that ‖θ′ − θ̃‖ ≤ ε and ‖θ′‖2 < ‖θ̃‖2.

Note that we have ‖w′l − w̃l‖ ≤ ε for every l ∈ [k]. We denote u′l = v′lw
′
l. The vectors u′1, . . . ,u

′
k

satisfy the constraints in Problem 11, since we have

yi
∑
l∈[k]

Ailu
′>
l xli = yi

∑
l∈[k]

1(w̃>l x
l
i ≥ 0)v′lw

′>
l xli = yi

∑
l∈[k]

1(w′>l xli ≥ 0)v′lw
′>
l xli

= yi
∑
l∈[k]

v′lσ(w′>l xli) ≥ 1 ,
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where the last inequality is since θ′ satisfies the constraints in Probelm 2. Moreover, we have∑
l∈[k]

‖u′l‖ =
∑
l∈[k]

|v′l| · ‖w′l‖ ≤
∑
l∈[k]

1

2

(
|v′l|2 + ‖w′l‖

2
)

=
1

2

∥∥θ′∥∥2
<

1

2

∥∥∥θ̃∥∥∥2

=
∑
l∈[k]

1

2

(
|ṽl|2 + ‖w̃l‖2

)
.

Since ‖w̃l‖ = |ṽl|, the above equals∑
l∈[k]

‖w̃l‖2 =
∑
l∈[k]

|ṽl| · ‖w̃l‖ =
∑
l∈[k]

‖ũl‖ ,

which contradicts the global optimality of ũ1, . . . , ũk.

It remains to show that θ̃ may not be a global optimum of Problem 2, even if the network Φ is fully
connected. The following lemma concludes the proof.
Lemma C.6. Let Φ be a depth-2 fully-connected ReLU network with input dimension 2 and two
hidden neurons. Consider minimizing either the exponential or the logistic loss using GF. Then,
there exists a dataset {(xi, yi)}ni=1 and an initialization θ(0), such that GF converges to zero loss,
converges in direction to a KKT point θ̃ = [w̃1, w̃2, ṽ] of Problem 2 such that 〈w̃j ,xi〉 6= 0 for all
j ∈ {1, 2} and i ∈ [n], and θ̃ is not a global optimum.

Proof. Let x1 =
(
1, 1

4

)>
, x2 =

(
−1, 1

4

)>
, x3 = (0,−1), y1 = y2 = y3 = 1. Let

{(x1, y1), (x2, y2), (x3, y3)} be a dataset. Consider the initialization θ(0) such that w1(0) = (0, 3),
v1(0) = 3, w2(0) = (0,−2) and v2(0) = 2. Note that L(θ(0)) = 2`

(
9
4

)
+ `(4) < 1 for both the

exponential loss and the logistic loss, and therefore by Theorem 2.1 GF converges in direction to a
KKT point θ̃ of Problem 2.

Note that for θ such that w1 = α · (0, 1)> and w2 = β · (0,−1)> for some α, β > 0, and v1, v2 > 0,
we have

∇w1
L(θ) =

3∑
i=1

`′(yiΦ(θ;xi)) · yi∇w1
Φ(θ;xi)

=

3∑
i=1

`′
(
v1σ(w>1 xi) + v2σ(w>2 xi)

)
· v1σ

′(w>1 xi)xi

=

2∑
i=1

`′(v1σ(w>1 xi)) · v1xi = v1`
′
(
v1
α

4

) 2∑
i=1

xi ,

and

∇v1L(θ) =

3∑
i=1

`′(yiΦ(θ;xi)) · yi∇v1Φ(θ;xi) =

3∑
i=1

`′(yiΦ(θ;xi)) · σ(w>1 xi) .

Hence, −∇w1
L(θ) points in the direction (0, 1)> and −∇v1L(θ) > 0. Moreover, we have

∇w2
L(θ) =

3∑
i=1

`′(yiΦ(θ;xi)) · yi∇w2
Φ(θ;xi)

=

3∑
i=1

`′(v1σ(w>1 xi) + v2σ(w>2 xi)) · v2σ
′(w>2 xi)xi

= `′(v2σ(w>2 x3)) · v2x3 = v2`
′(v2β)x3 ,

and

∇v2L(θ) =

3∑
i=1

`′(yiΦ(θ;xi)) · yi∇v2Φ(θ;xi) =

3∑
i=1

`′(v1σ(w>1 xi) + v2σ(w>2 xi)) · σ(w>2 xi)

= `′(v2σ(w>2 x3))σ(w>2 x3) = `′(v2β) · β .
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Therefore, −∇w2L(θ) points in the direction (0,−1)> and −∇v2L(θ) > 0. Hence for every t
we have w1(t) = α(t) · (0, 1)> for some α(t) > 0 and v1(t) > 0. Also, we have w2(t) =
β(t) · (0,−1)> for some β(t) > 0 and v2(t) > 0. By Lemma C.1, we have for every t ≥ 0 that
‖w1(t)‖2 − v1(t)2 = ‖w1(0)‖2 − v1(0)2 = 0 and ‖w2(t)‖2 − v2(t)2 = ‖w2(0)‖2 − v2(0)2 = 0.
Hence, we have v1(t) = α(t) and v2(t) = β(t). Therefore, we have w̃1 = α̃ · (0, 1)> and ṽ1 = α̃

for some α̃ ≥ 0. Likewise, we have w̃2 = β̃ · (0,−1)> and ṽ2 = β̃ for some β̃ ≥ 0. Since θ̃ satisfies
the constraints in Probelm 2, then α̃ ≥ 2 and β̃ ≥ 1. Note that 〈w̃j ,xi〉 6= 0 for all j ∈ {1, 2} and
i ∈ {1, 2, 3}.

We now show that there exists a solution θ′ to Problem 2 with a smaller norm, and hence θ̃ is not
a global optimum. Let θ′ = [w′1,w

′
2,v
′] such that w′1 = x1

α̃‖x1‖ , v′1 = α̃, w′2 = 1
β̃
·
(
− 5

4 ,−1
)
, and

v′2 = β̃. It is easy to verify that θ′ satisfies the constraints in Problem 2, and we have

‖θ′‖2 =
1

α̃2
+ α̃2 +

1

β̃2

(
25

16
+ 1

)
+ β̃2 <

1

4
+ α̃2 + 1 · 3 + β̃2 < β̃2 + α̃2 + α̃2 + β̃2 = ‖θ̃‖2 .

C.7 Proof of Theorem 4.4

Let x =
(

4, 1√
2
,−4, 1√

2

)>
and y = 1. Let θ(0) = [w(0),v(0)] where w(0) = (0, 1)> and

v(0) =
(

1√
2
, 1√

2

)>
. Note that Ψ(θ(0);x) = 1 and hence L(θ(0)) < 1 for both the exponential

loss and the logistic loss. Therefore, by Theorem 2.1 GF converges in direction to a KKT point θ̃ of
Problem 2, and we have limt→∞ L(θ(t)) = 0 and limt→∞ ‖θ(t)‖ =∞.

The symmetry of the input x and the initialization θ(0) implies that the direction of w does not
change during the training, and that we have v1(t) = v2(t) > 0 for all t ≥ 0. More formally, this
claim follows from the following calculation. For j ∈ {1, 2} we have

∇vjL(θ) = `′(yΦ(θ;x)) · y∇vjΦ(θ;x) = `′(yΦ(θ;x)) · σ(w>x(j)) .

Moreover,

∇wL(θ) = `′(yΦ(θ;x))·y∇wΦ(θ;x) = `′(yΦ(θ;x))·
(
v1σ
′(w>x(1))x(1) + v2σ

′(w>x(2))x(2)
)
.

Hence, if v1 = v2 > 0 and w points in the direction (0, 1)>, then it is easy to verify that∇v1L(θ) =

∇v1L(θ) < 0 and that∇wL(θ) points in the direction of−(x(1)+x(2)) = −(0,
√

2)>. Furthermore,
by Lemma C.2, for every t ≥ 0 we have ‖w(t)‖2 − ‖v(t)‖2 = ‖w(0)‖2 − ‖v(0)‖2 = 0.

Therefore, the KKT point θ̃ = [w̃, ṽ] is such that w̃ points at the direction (0, 1)>, ṽ1 = ṽ2 > 0, and
‖w̃‖ = ‖ṽ‖. Since θ̃ satisfies the KKT conditions of Problem 2, then we have

w̃ = λ∇w

(
yΦ(θ̃;x)

)
,

where λ ≥ 0 and λ = 0 if yΦ(θ̃;x) 6= 1. Hence, we must have yΦ(θ̃;x) = 1. Letting z := ṽ1 = ṽ2

and using 2z2 = ‖ṽ‖2 = ‖w̃‖2 = w̃2
2 , we have

1 = ṽ1σ(w̃>x(1)) + ṽ2σ(w̃>x(2)) = zw̃>x(1) + zw̃>x(2) = zw̃>
(
x(1) + x(2)

)
= z · w̃2

√
2

=
w̃2√

2
· w̃2

√
2 = w̃2

2 .

Therefore, w̃ = (0, 1)> and ṽ =
(

1√
2
, 1√

2

)
. Note that we have 〈w̃,x(1)〉 6= 0 and 〈w̃,x(2)〉 6= 0.

It remains to show that θ̃ is not a local optimum of Problem 2. We show that for every 0 < ε′ < 1

there exists some θ′ = [w′,v′] such that
∥∥∥θ′ − θ̃

∥∥∥ ≤ ε′, θ′ satisfies the constrains in Problem 2, and
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‖θ′‖ < ‖θ̃‖. Let ε = ε′2

2 ∈ (0, 1/2), and let w′ = (
√
ε, 1− ε)> and v′ =

(
1√
2

+
√
ε

2 ,
1√
2
−
√
ε

2

)>
.

Note that∥∥θ′∥∥2
= ‖w′‖2 + ‖v′‖2 = ε+ (1− ε)2 +

(
1√
2

+

√
ε

2

)2

+

(
1√
2
−
√
ε

2

)2

= ε+ 1 + ε2 − 2ε+ 1 +
ε

2
= 2− ε

2
+ ε2 < 2− ε

2
+
ε

2
= 2 = ‖w̃‖2 + ‖ṽ‖2 =

∥∥∥θ̃∥∥∥2

.

Moreover, ∥∥∥θ′ − θ̃
∥∥∥2

= ε+ ε2 +
ε

4
+
ε

4
= ε2 +

3ε

2
=
ε′4

4
+

3ε′2

4
<
ε′2

4
+

3ε′2

4
= ε′2 .

Finally, we show that θ′ satisfies the constraints:

Φ(θ′;x) = v′1σ(w′>x(1)) + v′2σ(w′>x(2))

=

(
1√
2

+

√
ε

2

)(
4
√
ε+

1√
2
· (1− ε)

)
+

(
1√
2
−
√
ε

2

)(
−4
√
ε+

1√
2
· (1− ε)

)
=

1√
2
· (1− ε)

(
1√
2

+

√
ε

2
+

1√
2
−
√
ε

2

)
+ 4
√
ε

(
1√
2

+

√
ε

2
− 1√

2
+

√
ε

2

)
= 1− ε+ 4ε = 1 + 3ε ≥ 1 .

C.8 Proof of Theorem 5.1

Let x = (1, 1)> and y = 1. Consider the initialization θ(0) = [w1(0), . . . ,wm(0)], where wj(0) =
(1, 1)> for every j ∈ [m]. Note that L(θ(0)) = `(2) < 1 for both linear and ReLU networks with
the exponential loss or the logistic loss, and therefore by Theorem 2.1 GF converges in direction to a
KKT point θ̃ of Problem 2, and we have limt→∞ L(θ(t)) = 0 and limt→∞ ‖θ(t)‖ =∞. It remains
to show that it does not converge in direction to a local optimum of Problem 2.

From the symmetry of the network Φ and the initialization θ(0), it follows that for all t the network
Φ(θ(t); ·) remains symmetric, namely, there are αj(t) such that wj(t) = (αj(t), αj(t)). Moreover,
by Lemma C.2, for every t ≥ 0 and j, l ∈ [m] we have αj(t) = αl(t) := α(t). Thus, GF converges

in direction to the KKT point θ̃ = [w̃1, . . . , w̃m] such that w̃j =
(
2−1/m, 2−1/m

)>
for all j ∈ [m].

Note that since the dataset is of size 1, then every KKT point of Problem 2 must label the input x
with exactly 1.

We now show that θ̃ is not a local optimum of Problem 2. The following arguments hold for both
linear and ReLU networks. Let 0 < ε < 1

2 . Let θ′ = [w′1, . . . ,w
′
m] such that for every j ∈ [m] we

have w′j =
((

1+ε
2

)1/m
,
(

1−ε
2

)1/m)>
. We have

y · Φ(θ′;x) =

(
1 + ε

2

)
+

(
1− ε

2

)
= 1 .

Hence, θ′ satisfies the constraints in Problem 2. We now show that for every sufficiently small ε > 0
we have ‖θ′‖2 < ‖θ̃‖2. We need to show that

m

(
1 + ε

2

)2/m

+m

(
1− ε

2

)2/m

< 2m

(
1

2

)2/m

.

Therefore, it suffices to show that

(1 + ε)
2/m

+ (1− ε)2/m
< 2 .

Let g : R→ R such that g(s) = (1 + s)
2/m

+ (1− s)2/m. We have g(0) = 2. The derivatives of g
satisfy

g′(s) =
2

m
(1 + s)

2
m−1 − 2

m
(1− s)

2
m−1

,
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and

g′′(s) =
2

m

(
2

m
− 1

)
(1 + s)

2
m−2

+
2

m

(
2

m
− 1

)
(1− s)

2
m−2

.

Since m ≥ 3 we have g′(0) = 0 and g′′(0) < 0. Hence, 0 is a local maximum of g. Therefore for
every sufficiently small ε > 0 we have g(ε) < 2 and thus ‖θ′‖2 < ‖θ̃‖2.

Finally, note that the inputs to all neurons in the computation Φ(θ̃;x) are positive.

C.9 Proof of Theorem 5.2

By Theorem 2.1 GF converge in direction to a KKT point θ̃ = [ũ(l)]ml=1 of Problem 2. We now show
that for every layer l ∈ [m] the parameters vector ũ(l) is a global optimum of Problem 4 w.r.t. θ̃.

Since θ̃ is a KKT point of Problem 2, then there are λ1, . . . , λn such that for every l ∈ [m] we have

ũ(l) =
∑
i∈[n]

λi
∂
(
yiΦ(θ̃;xi)

)
∂u(l)

,

where λi ≥ 0 for all i, and λi = 0 if yiΦ(θ̃;xi) 6= 1. Letting θ′(u(l)) =
[ũ(1), . . . , ũ(l−1),u(l), ũ(l+1), . . . , ũ(m)], the above equation can be written as

ũ(l) =
∑
i∈[n]

λi
∂
(
yiΦ(θ′(ũ(l));xi)

)
∂u(l)

,

where λi ≥ 0 for all i, and λi = 0 if yiΦ(θ′(ũ(l));xi) = yiΦ(θ̃;xi) 6= 1. Moreover, if the
constraints in Problem 2 are satisfies in θ̃, then the constrains in Problem 4 are also satisfied for every
l ∈ [m] in ũ(l) w.r.t. θ̃. Hence, for every l ∈ [m] the KKT conditions of Problem 4 w.r.t. θ̃ hold.
Since the constraints in Problem 4 are affine and the objective is convex, then this KKT point is a
global optimum.

C.10 Proof of Theorem 5.3

Let {(xi, yi)}4i=1 be a dataset such that yi = 1 for all i ∈ [4] and we have x1 = (0, 1)>, x2 = (1, 0)>,
x3 = (0,−1) and x4 = (−1, 0). In the proof of Theorem 4.2 (part 2) we showed that for an
appropriate initialization, for both the exponential loss and the logistic loss GF converges to zero loss,
and converges in direction to a KKT point θ̃ of Problem 2. Moreover, in the proof of Theorem 4.2 we
showed that the KKT point θ̃ is such that for all j ∈ [4] we have w̃j = xj and ṽj = 1.

We show that w̃1, w̃2, w̃3, w̃4 is not a local optimum of Problem 4 w.r.t. θ̃. It suffices to prove that
for every 0 < ε < 1 there exists some θ′ such that v′j = ṽj for all j ∈ [4], ‖θ′ − θ̃‖ ≤ ε, θ′ satisfies
the constraints, and ‖θ′‖ < ‖θ̃‖. The existence of such θ′ is shown in the proof of Theorem 4.2.
Hence, we conclude the proof of the theorem.

C.11 Proof of Theorem 5.4

By Theorem 2.1 GF converge in direction to a KKT point θ̃ = [ũ(l)]ml=1 of Problem 2. Let l ∈ [m]
and assume that for every i ∈ [n] the inputs to all neurons in layers l, . . . ,m− 1 in the computation
Φ(θ̃;xi) are non-zero. We now show that the parameters vector ũ(l) is a local optimum of Problem 4
w.r.t. θ̃.

For i ∈ [n] and k ∈ [m− 1] we denote by x
(k)
i ∈ Rdk the output of the k-th layer in the computation

Φ(θ̃;xi), and denote x
(0)
i = xi. If l ∈ [m − 1] then we define the following notations. We

denote by fl : Rdl → R the function computed by layers l + 1, . . . ,m of Φ(θ̃; ·). Thus, we have
Φ(θ̃;xi) = fl(x

(l)
i ) = fl ◦ σ

(
W̃ (l)x

(l−1)
i

)
, where W̃ (l) is the weight matrix that corresponds to

ũ(l). For i ∈ [n] we denote by hi the function u(l) 7→ fl ◦ σ(W (l)x
(l−1)
i ) where W (l) is the weights

27



matrix that corresponds to u(l). Thus, Φ(θ̃;xi) = hi(ũ
(l)). If l = m then we denote by hi the

function u(m) 7→W (m)x
(m−1)
i , thus we also have Φ(θ̃;xi) = hi(ũ

(m)).

Since θ̃ is a KKT point of Problem 2, then there are λ1, . . . , λn such that

ũ(l) =
∑
i∈[n]

λi
∂
(
yiΦ(θ̃;xi)

)
∂u(l)

=
∑
i∈[n]

λi
∂

∂u(l)

[
yi · hi(ũ(l))

]
,

where λi ≥ 0 for all i, and λi = 0 if yi ·hi(ũ(l)) 6= 1. Note that since the inputs to all neurons in layers
l, . . . ,m− 1 in the computation Φ(θ̃;xi) are non-zero, then the function hi is differentiable at ũ(l).
Therefore in the above KKT condition we use the derivative rather than the Clarke subdifferential.
Moreover, if the constraints in Problem 2 are satisfies in θ̃, then the constrains in Problem 4 are also
satisfied in ũ(l) w.r.t. θ̃. Hence, the KKT condition of Problem 4 w.r.t. θ̃ holds.

Also, note that since the inputs to all neurons in layers l, . . . ,m − 1 in the computation Φ(θ̃;xi)

are non-zero, then the function hi is locally linear near ũ(l). We denote this linear function by h̃i.
Therefore, ũ(l) is a KKT point of the following problem

min
u(l)

1

2

∥∥∥u(l)
∥∥∥2

s.t. ∀i ∈ [n] yih̃i(u
(l)) ≥ 1 .

Since the constrains here are affine and the objective is convex, then ũ(l) is a global optimum of the
above problem. Thus, there is a small ball near ũ(l) where ũ(l) is the optimum of Problem 4 w.r.t. θ̃,
namely, it is a local optimum.

Finally, note that in the proof of Lemma C.6 the parameters vector θ′ is obtained from θ̃ by changing
only the first layer. Hence, in ReLU networks GF might converge in direction to a KKT point of
Problem 2 which is not a global optimum of Problem 4, even if all inputs to neurons are non-zero.
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