
On Margin Maximization in Linear and
ReLU Networks

Gal Vardi
TTI-Chicago and Hebrew University∗

galvardi@ttic.edu

Ohad Shamir
Weizmann Institute of Science

ohad.shamir@weizmann.ac.il

Nathan Srebro
TTI-Chicago

nati@ttic.edu

Abstract

The implicit bias of neural networks has been extensively studied in recent years.
Lyu and Li [2019] showed that in homogeneous networks trained with the exponen-
tial or the logistic loss, gradient flow converges to a KKT point of the max margin
problem in parameter space. However, that leaves open the question of whether
this point will generally be an actual optimum of the max margin problem. In this
paper, we study this question in detail, for several neural network architectures
involving linear and ReLU activations. Perhaps surprisingly, we show that in many
cases, the KKT point is not even a local optimum of the max margin problem. On
the flip side, we identify multiple settings where a local or global optimum can be
guaranteed.

1 Introduction

A central question in the theory of deep learning is how neural networks generalize even when
trained without any explicit regularization, and when there are far more learnable parameters than
training examples. In such optimization problems there are many solutions that label the training data
correctly, and gradient descent seems to prefer solutions that generalize well [Zhang et al., 2016].
Hence, it is believed that gradient descent induces an implicit bias [Neyshabur et al., 2014, 2017],
and characterizing this bias has been a subject of extensive research in recent years.

A main focus in the theoretical study of implicit bias is on homogeneous neural networks. These are
networks where scaling the parameters by any factor α > 0 scales the predictions by αL for some
constant L. For example, fully-connected and convolutional ReLU networks without bias terms are
homogeneous. Lyu and Li [2019] proved that in linear and ReLU homogeneous networks trained
with the exponential or the logistic loss, if gradient flow (GF) converges to a sufficiently small loss2,
then the direction to which the parameters of the network converge can be characterized as a first
order stationary point (KKT point) of the maximum margin problem in parameter space. Namely,
the problem of minimizing the `2 norm of the parameters under the constraints that each training
example is classified correctly with margin at least 1. They also showed that this KKT point satisfies
necessary conditions for optimality. However, the conditions are not known to be sufficient even for
local optimality. It is analogous to showing that some unconstrained optimization problem converges
to a point with gradient zero, without proving that it is either a global or a local minimum. Thus, the

∗Work done while the author was at the Weizmann Institute of Science
2They also assumed directional convergence, but [Ji and Telgarsky, 2020] later showed that this assumption

is not required.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Table 1: Results on depth-2 networks
Linear ReLU

Fully-connected Global
(Thm. 3.1)

Not local
(Thm. 3.2)

Nno-share
Not local
(Thm. 4.1)

Not local
(Thm. 3.2)

Nno-share assuming non-
zero weights vectors

Global
(Thm. 4.2)

Not local
(Thm. 4.2)

Nno-share assuming non-
zero inputs to all neurons

Global
(Thm. 4.2)

Local,
Not global
(Thm. 4.3)

N assuming non-zero in-
puts to all neurons

Not local
(Thm. 4.4)

Not local
(Thm. 4.4)

question of when GF maximizes the margin remains open. Understanding margin maximization may
be crucial for explaining generalization in deep learning, and it might allow us to utilize margin-based
generalization bounds for neural networks.

In this work we consider several architectures of homogeneous neural networks with linear and ReLU
activations, and study whether the aforementioned KKT point is guaranteed to be a global optimum
of the maximum margin problem, a local optimum, or neither. Perhaps surprisingly, our results imply
that in many cases, such as depth-2 fully-connected ReLU networks and depth-2 diagonal linear
networks, the KKT point may not even be a local optimum of the maximum-margin problem. On the
flip side, we identify multiple settings where a local or global optimum can be guaranteed.

We now describe our results in a bit more detail. We denote by N the class of neural networks
without bias terms, where the weights in each layer might have an arbitrary sparsity pattern, and
weights might be shared3. The class N contains, for example, convolutional networks. Moreover, we
denote by Nno-share the subclass of N that contains only networks without shared weights, such as
fully-connected networks and diagonal networks (cf. Gunasekar et al. [2018b], Yun et al. [2020]). We
describe our main results below, and also summarize them in Tables 1 and 2.

Fully-connected networks:

• In linear fully-connected networks of any depth the KKT point is a global optimum4.
• In fully-connected depth-2 ReLU networks the KKT point may not even be a local optimum.

Moreover, this negative result holds with constant probability over the initialization, i.e., there is
a training dataset such that GF with random initialization converges with positive probability to
the direction of a KKT point which is not a local optimum.

Depth-2 networks in N :

• In linear networks with sparse weights, and specifically in diagonal networks, we show that the
KKT point may not be a local optimum.

• In our proof of the above negative result, the KKT point contains a neuron whose weights vector
is zero. However, in practice gradient descent often converges to networks that do not contain
such zero neurons. We show that for linear networks in Nno-share, if the KKT point has only
non-zero weights vectors, then it is a global optimum. Thus, despite the above negative result, a
reasonable assumption on the KKT point allows us to obtain a strong positive result. We also
show some implications of our results on margin maximization in predictor space for depth-2
diagonal linear networks (see Remark 4.1).

• For ReLU networks inNno-share, in order to obtain a positive result we need a stronger assumption.
We show that if the KKT point is such that for every input in the dataset the input to every hidden

3See Section 2 for the formal definition.
4We note that margin maximization for such networks in predictor space is already known [Ji and Telgarsky,

2020]. However, margin maximization in predictor space does not necessarily imply margin maximization in
parameter space.

2



Table 2: Results on deep networks
Linear ReLU

Fully-connected Global
(Thm. 3.1)

Not local
(Thm. 3.2)

Nno-share assuming non-zero in-
puts to all neurons

Not local
(Thm. 5.1)

Not local
(Thm. 5.1)

N - max margin for each layer
separately

Global
(Thm. 5.2)

Not local
(Thm. 5.3)

N - max margin for each layer
separately, assuming non-zero
inputs to all neurons

Global
(Thm. 5.2)

Local,
Not global
(Thm. 5.4)

neuron in the network is non-zero, then it is guaranteed to be a local optimum (but not necessarily
a global optimum).

• We prove that assuming the network does not have shared weights is indeed required in the above
positive results, since for networks with shared weights (such as convolutional networks) they no
longer hold.

Deep networks in N :

• We discuss the difficulty in extending our positive results to deeper networks. Then, we study a
weaker notion of margin maximization: maximizing the margin for each layer separately. For
linear networks of depth m ≥ 2 inN (including networks with shared weights), we show that the
KKT point is a global optimum of the per-layer maximum margin problem. For ReLU networks
the KKT point may not even be a local optimum of this problem, but under the assumption on
non-zero inputs to all neurons it is a local optimum.

As detailed above, we consider several different settings, and the results vary dramatically between
the settings. Thus, our results draw a somewhat complicated picture. Overall, our negative results
show that even in very simple settings GF does not maximize the margin even locally, and we believe
that these results should be used as a starting point for studying which assumptions are required
for proving margin maximization. Our positive results indeed show that under certain reasonable
assumptions GF maximizes the margin (either locally or globally). Also, the notion of per-layer
margin maximization which we consider suggests another path for obtaining positive results on the
implicit bias.

In the paper, our focus is on understanding what can be guaranteed for the KKT convergence points
specified in Lyu and Li [2019]. Accordingly, in most of our negative results, the construction
assumes some specific initialization of GF, and does not quantify how “likely” they are to be reached
under some random initialization. An exception is our negative result for depth-2 fully-connected
ReLU networks (Theorem 3.2), which holds with constant probability under reasonable random
initializations. Understanding whether this can be extended to the other settings we consider is an
interesting problem for future research.

Our paper is structured as follows: In Section 2 we provide necessary notations and definitions, and
discuss relevant prior results. Additional related works are discussed in Appendix A. In Sections 3, 4
and 5 we state our results on fully-connected networks, depth-2 networks in N and deep networks in
N respectively, and provide some proof ideas. All formal proofs are deferred to Appendix C.

2 Preliminaries

Notations. We use bold-faced letters to denote vectors, e.g., x = (x1, . . . , xd). For x ∈ Rd we
denote by ‖x‖ the Euclidean norm. We denote by 1(·) the indicator function, for example 1(t ≥ 5)
equals 1 if t ≥ 5 and 0 otherwise. For an integer d ≥ 1 we denote [d] = {1, . . . , d}.

Neural networks. A fully-connected neural network Φ of depth m ≥ 2 is parameterized by a
collection θ = [W (l)]ml=1 of weight matrices, such that for every layer l ∈ [m] we have W (l) ∈
Rdl×dl−1 . Thus, dl denotes the number of neurons in the l-th layer (i.e., the width of the layer). We

3



assume that dm = 1 and denote by d := d0 the input dimension. The neurons in layers [m− 1] are
called hidden neurons. A fully-connected network computes a function Φ(θ; ·) : Rd → R defined
recursively as follows. For an input x ∈ Rd we set h′0 = x, and define for every j ∈ [m − 1]
the input to the j-th layer as hj = W (j)h′j−1, and the output of the j-th layer as h′j = σ(hj),
where σ : R → R is an activation function that acts coordinate-wise on vectors. Then, we define
Φ(θ;x) = W (m)h′m−1. Thus, there is no activation function in the output neuron. When considering
depth-2 fully-connected networks we often use a parameterization θ = [w1, . . . ,wk,v] where
w1, . . . ,wk are the weights vectors of the k hidden neurons (i.e., correspond to the rows of the first
layer’s weight matrix) and v are the weights of the second layer.

We also consider neural networks where some weights can be missing or shared. We define a
class N of networks that may contain sparse and shared weights as follows. A network Φ in N
is parameterized by θ = [u(l)]ml=1 where m is the depth of Φ, and u(l) ∈ Rpl are the parameters
of the l-th layer. We denote by W (l) ∈ Rdl×dl−1 the weight matrix of the l-th layer. The matrix
W (l) is described by the vector u(l), and a function gl : [dl] × [dl−1] → [pl] ∪ {0} as follows:
W

(l)
ij = 0 if gl(i, j) = 0, and W (l)

ij = uk if gl(i, j) = k > 0. Thus, the function gl represents the
sparsity and weight-sharing pattern of the l-th layer, and the dimension pl of u(l) is the number of
free parameters in the layer. We denote by d := d0 the input dimension of the network and assume
that the output dimension dm is 1. The function Φ(θ; ·) : Rd → R computed by the neural network
is defined recursively by the weight matrices as in the case of fully-connected networks. For example,
convolutional neural networks are in N . Note that the networks in N do not have bias terms and do
not allow weight sharing between different layers. Moreover, we define a subclassNno-share ofN , that
contains networks without shared weights. Formally, a network Φ is in Nno-share if for every layer l
and every k ∈ [pl] there is at most one (i, j) ∈ [dl]× [dl−1] such that gl(i, j) = k. Thus, networks in
Nno-share might have sparse weights, but do not allow shared weights. For example, diagonal networks
(defined below) and fully-connected networks are in Nno-share.

A diagonal neural network is a network in Nno-share such that the weight matrix of each layer is
diagonal, except for the last layer. Thus, the network is parameterized by θ = [w1, . . . ,wm] where
wj ∈ Rd for all j ∈ [m], and it computes a function Φ(θ; ·) : Rd → R defined recursively as
follows. For an input x ∈ Rd set h0 = x. For j ∈ [m − 1], the output of the j-th layer is
hj = σ(diag(wj)hj−1). Then, we have Φ(θ;x) = w>mhm−1.

In all the above definitions the parameters θ of the neural networks are given by a collection of
matrices or vectors. We often view θ as the vector obtained by concatenating the matrices or vectors
in the collection. Thus, ‖θ‖ denotes the `2 norm of the vector θ.

The ReLU activation function is defined by σ(z) = max{0, z}, and the linear activation is σ(z) = z.
In this work we focus on ReLU networks (i.e., networks where all neurons have the ReLU activation)
and on linear networks (where all neurons have the linear activation). We say that a network Φ
is homogeneous if there exists L > 0 such that for every α > 0 and θ,x we have Φ(αθ;x) =
αLΦ(θ;x). Note that in our definition of the classN we do not allow bias terms, and hence all linear
and ReLU networks in N are homogeneous, where L is the depth of the network. All networks
considered in this work are homogeneous.

Optimization problem and gradient flow (GF). Let S = {(xi, yi)}ni=1 ⊆ Rd × {−1, 1} be a
binary classification training dataset. Let Φ be a neural network parameterized by θ ∈ Rm. For a
loss function ` : R→ R the empirical loss of Φ(θ; ·) on the dataset S is

L(θ) :=

n∑
i=1

`(yiΦ(θ;xi)) . (1)

We focus on the exponential loss `(q) = e−q and the logistic loss `(q) = log(1 + e−q).

We consider GF on the objective given in Eq. 1. This setting captures gradient descent with an
infinitesimally small step size. Let θ(t) be the trajectory of GF. Starting from an initial point θ(0),
the dynamics of θ(t) is given by the differential equation dθ(t)

dt = −∇L(θ(t)). Note that the ReLU
function is not differentiable at 0. Practical implementations of gradient methods define the derivative
σ′(0) to be some constant in [0, 1]. We note that the exact value of σ′(0) has no effect on our results.

4



Convergence to a KKT point of the maximum-margin problem. We say that a trajectory θ(t)

converges in direction to θ̃ if limt→∞
θ(t)
‖θ(t)‖ = θ̃

‖θ̃‖ . In this work we rely on the following theorem:

Theorem 2.1 (Paraphrased from Lyu and Li [2019], Ji and Telgarsky [2020]). Let Φ be a homoge-
neous linear or ReLU neural network. Consider minimizing either the exponential or the logistic
loss over a binary classification dataset {(xi, yi)}ni=1 using GF. Assume that there exists time t0 such
that L(θ(t0)) < 1, namely, Φ classifies every xi correctly. Then, GF converges in direction to a first
order stationary point (KKT point) of the following maximum margin problem in parameter space:

min
θ

1

2
‖θ‖2 s.t. ∀i ∈ [n] yiΦ(θ;xi) ≥ 1 . (2)

Moreover, L(θ(t))→ 0 and ‖θ(t)‖ → ∞ as t→∞.

In the case of ReLU networks, Problem 2 is non-smooth. Hence, the KKT conditions are defined
using the Clarke subdifferential, which is a generalization of the derivative for non-differentiable
functions. See Appendix B for a formal definition. We note that Lyu and Li [2019] proved the above
theorem under the assumption that θ converges in direction, and Ji and Telgarsky [2020] showed that
such a directional convergence occurs and hence this assumption is not required.

Lyu and Li [2019] also showed that the KKT conditions of Problem 2 are necessary for optimality. In
convex optimization problems, necessary KKT conditions are also sufficient for global optimality.
However, the constraints in Problem 2 are highly non-convex. Moreover, the standard method for
proving that necessary KKT conditions are sufficient for local optimality, is by showing that the KKT
point satisfies certain second order sufficient conditions (SOSC) (cf. Ruszczynski [2011]). However,
even when Φ is a linear neural network it is not known when such conditions hold. Thus, the KKT
conditions of Problem 2 are not known to be sufficient even for local optimality.

A linear network with weight matrices W (1), . . . ,W (m) computes a linear predictor x 7→ 〈β,x〉
where β = W (m) · . . . ·W (1). Some prior works studied the implicit bias of linear networks in
predictor space. Namely, characterizing the vector β from the aforementioned linear predictor.
Gunasekar et al. [2018b] studied the implications of margin maximization in parameter space on
the implicit bias in predictor space. They showed that minimizing ‖θ‖ (under the constraints in
Problem 2) implies: (1) Minimizing ‖β‖2 for fully-connected networks; (2) Minimizing ‖β‖2/L
for depth-L diagonal networks; (3) Minimizing ‖β̂‖2/L for depth-L convolutional networks with
full-dimensional filters, where β̂ are the Fourier coefficients of β. However, these implications may
not hold if GF converges to a KKT point which is not a global optimum of Problem 2.

For some classes of linear networks, positive results were obtained directly in predictor space, without
assuming convergence to a global optimum of Problem 2 in parameter space. Most notably, for fully-
connected linear networks (of any depth), Ji and Telgarsky [2020] showed that under the assumptions
of Theorem 2.1, GF maximizes the `2 margin in predictor space. Note that margin maximization in
predictor space does not necessarily imply margin maximization in parameter space. Moreover, some
results on the implicit bias in predictor space of linear convolutional networks with full-dimensional
convolutional filters are given in Gunasekar et al. [2018b]. However, the architecture and set of
assumptions are different than what we focus on. See Appendix A for a discussion on additional
related work.

3 Fully-connected networks

First, we show that fully-connected linear networks converge to a global optimum of Problem 2.

Theorem 3.1. Let m ≥ 2 and let Φ be a depth-m fully-connected linear network parameterized by
θ. Consider minimizing either the exponential or the logistic loss over a dataset {(xi, yi)}ni=1 using
GF. Assume that there exists time t0 such that L(θ(t0)) < 1. Then, GF converges in direction to a
global optimum of Problem 2.

Proof idea (for the complete proof see Appendix C.2). Building on results from Ji and Telgarsky
[2020] and Du et al. [2018], we show that GF converges in direction to a KKT point θ̃ =
[W̃ (1), . . . , W̃ (m)] such that for every l ∈ [m] we have W̃ (l) = C · vlv>l−1, where C > 0 and

5



−1.0 −0.5 0.5 1.0

−1.0

−0.5

0.5

1.0

1.5

Figure 1: For time t we denote
ui(t) = vi(t)wi(t). Above we illus-
trate u1(t),u2(t) for times t1 < t2. As
t → ∞ we have ‖u1(t)‖ → ∞ and
u1 converges in direction to (0, 1). The
vector u2 remains constant during the
training. Hence u2(t)

‖θ(t)‖ → 0.

v0, . . . ,vm are unit vectors (with vm = 1). Also, we have ‖W̃ (m) · . . . · W̃ (1)‖ = Cm =
min ‖u‖ s.t. yiu>xi ≥ 1 for all i ∈ [n]. Then, we show that every θ that satisfies these prop-
erties, and satisfies the constraints of Problem 2, is a global optimum. Intuitively, the most “efficient"
way (in terms of minimizing the parameters) to achieve margin 1 with a linear fully-connected
network, is by using a network such that the direction of its corresponding linear predictor maximizes
the margin, the layers are balanced (i.e., have equal norms), and the weight matrices of the layers are
aligned.

We now prove that the positive result in Theorem 3.1 does not apply to ReLU networks. We show
that in depth-2 fully-connected ReLU networks GF might converge in direction to a KKT point of
Problem 2 which is not even a local optimum. Moreover, it occurs under conditions holding with
constant probability over reasonable random initializations.
Theorem 3.2. Let Φ be a depth-2 fully-connected ReLU network with input dimension 2 and two
hidden neurons. Namely, for θ = [w1,w2,v] and x ∈ R2 we have Φ(θ;x) =

∑2
l=1 vlσ(w>l x).

Consider minimizing either the exponential or the logistic loss using GF. Consider the dataset
{(x1, y1), (x2, y2)} where x1 =

(
1, 1

4

)>
, x2 =

(
−1, 1

4

)>
, and y1 = y2 = 1. Assume that the

initialization θ(0) is such that for every i ∈ {1, 2} we have 〈w1(0),xi〉 > 0 and 〈w2(0),xi〉 < 0.
Also, assume that v1(0) > 0. Then, GF converges to zero loss, and converges in direction to a KKT
point of Problem 2 which is not a local optimum.

Proof idea (for the complete proof see Appendix C.3). By analyzing the dynamics of GF on the
given dataset, we show that it converges to zero loss, and converges in direction to a KKT point
θ̃ such that w̃1 = (0, 2)>, ṽ1 = 2, w̃2 = 0, and ṽ2 = 0. Note that w̃2 = 0 and ṽ2 = 0 since
w2(t), v2(t) remain constant during the training and limt→∞ ‖θ(t)‖ = ∞. See Figure 1 for an
illustration. Then, we show that for every 0 < ε < 1 there exists some θ′ such that ‖θ′ − θ̃‖ ≤ ε,
θ′ satisfies yiΦ(θ′;xi) ≥ 1 for every i ∈ {1, 2}, and ‖θ′‖ < ‖θ̃‖. Such θ′ is obtained from θ̃ by
slightly changing w̃1, w̃2, and ṽ2. Thus, by using the second hidden neuron, which is not active in θ̃,
we can obtain a solution θ′ with smaller norm.

We note that the assumption on the initialization in the above theorem holds with constant probability
for standard initialization schemes (e.g., Xavier initialization).
Remark 3.1 (Unbounded sub-optimality). By choosing appropriate inputs x1,x2 in the setting of
Theorem 3.2, it is not hard to show that the sub-optimality of the KKT point w.r.t. the global optimum
can be arbitrarily large. Namely, for every large M > 0 we can choose a dataset where the angle
between x1 and x2 is sufficiently close to π, such that ‖θ̃‖‖θ∗‖ ≥M , where θ̃ is a KKT point to which
GF converges, and θ∗ is a global optimum of Problem 2. Indeed, as illustrated in Figure 1, if one
neuron is active on both inputs and the other neuron is not active on any input, then the active
neuron needs to be very large in order to achieve margin 1, while if each neuron is active on a single
input then we can achieve margin 1 with much smaller parameters. We note that such unbounded
sub-optimality can be obtained also in other negative results in this work (in Theorems 4.1, 4.3, 4.4
and 5.4).
Remark 3.2 (Robustness to small perturbations). Theorem 3.2 holds even if we slightly perturb the
inputs x1,x2. Thus, it is not sensitive to small changes in the dataset. We note that such robustness
to small perturbations can be shown also for the negative results in Theorems 4.1, 4.3, 5.1 and 5.4.

6



4 Depth-2 networks in N

In this section we study depth-2 linear and ReLU networks inN . We first show that already for linear
networks in Nno-share (more specifically, for diagonal networks) GF may not converge even to a local
optimum.

Theorem 4.1. Let Φ be a depth-2 linear or ReLU diagonal neural network parameterized by
θ = [w1,w2]. Consider minimizing either the exponential or the logistic loss using GF. There exists
a dataset {(x, y)} ⊆ R2 × {−1, 1} of size 1 and an initialization θ(0), such that GF converges to
zero loss, and converges in direction to a KKT point θ̃ of Problem 2 which is not a local optimum.

Proof idea (for the complete proof see Appendix C.4). Let x = (1, 2)> and y = 1. Let θ(0) such
that w1(0) = w2(0) = (1, 0)>. Recalling that the diagonal network computes the function x 7→
(w1 ◦w2)>x (where ◦ is the entry-wise product), we see that the second coordinate remains inactive
during training. It is not hard to show that GF converges to the KKT point θ̃ with w̃1 = w̃2 = (1, 0)>.
However, it is not a local optimum, since for small ε > 0 the parameters θ′ = [w′1,w

′
2] with

w′1 = w′2 =
(√

1− ε,
√

ε
2

)>
satisfy the constraints of Problem 2, and we have ‖θ′‖ < ‖θ̃‖.

By Theorem 3.2 fully-connected ReLU networks may not converge to a local optimum, and by
Theorem 4.1 linear (and ReLU) networks with sparse weights may not converge to a local optimum.
In the proofs of both of these negative results, GF converges to a KKT point such that one of the
weights vectors of the hidden neurons is zero. However, in practice gradient descent often converges
to a network that does not contain such disconnected neurons. Hence, a natural question is whether
the negative results hold also in networks that do not contain neurons whose weights vector is zero.
In the following theorem we show that in linear networks such an assumption allows us to obtain a
positive result. Namely, in depth-2 linear networks in Nno-share, if GF converges to a KKT point of
Problem 2 that satisfies this condition, then it is guaranteed to be a global optimum. However, we
also show that in ReLU networks assuming that all neurons have non-zero weights is not sufficient.

Theorem 4.2. We have:

1. Let Φ be a depth-2 linear neural network in Nno-share parameterized by θ. Consider minimizing
either the exponential or the logistic loss over a dataset {(xi, yi)}ni=1 using GF. Assume that
there exists time t0 such that L(θ(t0)) < 1, and let θ̃ be the KKT point of Problem 2 such that
θ(t) converges to θ̃ in direction (such θ̃ exists by Theorem 2.1). Assume that in the network
parameterized by θ̃ all hidden neurons have non-zero incoming weights vectors. Then, θ̃ is a
global optimum of Problem 2.

2. Let Φ be a fully-connected depth-2 ReLU network with input dimension 2 and 4 hidden neurons
parameterized by θ. Consider minimizing either the exponential or the logistic loss using GF.
There exists a dataset and an initialization θ(0), such that GF converges to zero loss, and
converges in direction to a KKT point θ̃ of Problem 2, which is not a local optimum, and in the
network parameterized by θ̃ all hidden neurons have non-zero incoming weights.

Proof idea (for the complete proof see Appendix C.5). We give here the proof idea for part (1). Let
k be the width of the network. For every j ∈ [k] we denote by wj the incoming weights vector to the
j-th hidden neuron, and by vj the outgoing weight. Let uj = vjwj . We consider an optimization
problem over the variables u1, . . . ,uk where the objective is to minimize

∑
j∈[k] ‖uj‖ and the

constrains correspond to the constraints of Problem 2. Let θ̃ = [w̃1, . . . , w̃k, ṽ] be the KKT point of
Problem 2 to which GF converges in direction. For every j ∈ [k] we denote ũj = ṽjw̃j . We show
that ũ1, . . . , ũk satisfy the KKT conditions of the aforementioned problem. Since the objective there
is convex and the constrains are affine, then it is a global optimum. Finally, we show that it implies
global optimality of θ̃.

Remark 4.1 (Implications on margin maximization in predictor space for diagonal linear networks).
Theorems 4.1 and 4.2 imply analogous results on diagonal linear networks also in predictor space.
As we discussed in Section 2, Gunasekar et al. [2018b] showed that in depth-2 diagonal linear
networks, minimizing ‖θ‖2 under the constraints in Problem 2 implies minimizing ‖β‖1, where β is
the corresponding linear predictor. Theorem 4.1 can be easily extended to predictor space, namely,

7



GF on depth-2 linear diagonal networks might converge to a KKT point θ̃ of Problem 2, such that the
corresponding linear predictor β̃ is not an optimum of the following problem:

argmin
β
‖β‖1 s.t. ∀i ∈ [n] yi〈β,xi〉 ≥ 1 . (3)

Moreover, by combining part (1) of Theorem 4.2 with the result from Gunasekar et al. [2018b], we
deduce that if GF on a depth-2 diagonal linear network converges to a KKT point θ̃ of Problem 2 with
non-zero weights vectors, then the corresponding linear predictor is a global optimum of Problem 3.

We argue that since in practice gradient descent often converges to networks without zero-weight
neurons, then part (1) of Theorem 4.2 gives a useful positive result for depth-2 linear networks.
However, by part (2) of Theorem 4.2, this assumption is not sufficient for obtaining a positive result
in the case of ReLU networks. Hence, we now consider a stronger assumption, namely, that the KKT
point θ̃ is such that for every xi in the dataset the inputs to all hidden neurons in the computation
Φ(θ̃;xi) are non-zero. In the following theorem we show that in depth-2 ReLU networks, if the KKT
point satisfies this condition then it is guaranteed to be a local optimum of Problem 2. However, even
under this condition it is not necessarily a global optimum. The proof is given in Appendix C.6 and
uses ideas from the previous proofs, with some required modifications.

Theorem 4.3. Let Φ be a depth-2 ReLU network in Nno-share parameterized by θ. Consider min-
imizing either the exponential or the logistic loss over a dataset {(xi, yi)}ni=1 using GF. Assume
that there exists time t0 such that L(θ(t0)) < 1, and let θ̃ be the KKT point of Problem 2 such that
θ(t) converges to θ̃ in direction (such θ̃ exists by Theorem 2.1). Assume that for every i ∈ [n] the
inputs to all hidden neurons in the computation Φ(θ̃;xi) are non-zero. Then, θ̃ is a local optimum of
Problem 2. However, it may not be a global optimum, even if the network Φ is fully connected.

Note that in all the above theorems we do not allow shared weights. We now consider the case of
depth-2 linear or ReLU networks in N , where the first layer is convolutional with disjoint patches
(and hence has shared weights), and show that GF does not always converge in direction to a local
optimum, even when the inputs to all hidden neurons are non-zero (and hence there are no zero
weights vectors).

Theorem 4.4. Let Φ be a depth-2 linear or ReLU network in N , parameterized by θ = [w,v] for
w,v ∈ R2, such that for x ∈ R4 we have Φ(θ;x) =

∑2
j=1 vjσ(w>x(j)) where x(1) = (x1, x2) and

x(2) = (x3, x4). Thus, Φ is a convolutional network with two disjoint patches. Consider minimizing
either the exponential or the logistic loss using GF. Then, there exists a dataset {(x, y)} of size 1, and
an initialization θ(0), such that GF converges to zero loss, and converges in direction to a KKT point
θ̃ = [w̃, ṽ] of Problem 2 which is not a local optimum. Moreover, 〈w̃,x(j)〉 6= 0 for j ∈ {1, 2}.

Proof idea (for the complete proof see Appendix C.7). Let x =
(

4, 1√
2
,−4, 1√

2

)>
and y = 1. Let

θ(0) such that w(0) = (0, 1)> and v(0) =
(

1√
2
, 1√

2

)>
. Since x(1) and x(2) are symmetric w.r.t.

w(0), and v(0) does not break this symmetry, then w keeps its direction throughout the training. Thus,

we show that GF converges in direction to a KKT point θ̃ where w̃ = (0, 1)> and ṽ =
(

1√
2
, 1√

2

)>
.

Then, we show that it is not a local optimum, since for every small ε > 0 the parameters θ′ = [w′,v′]

with w′ = (
√
ε, 1− ε)> and v′ =

(
1√
2

+
√
ε

2 ,
1√
2
−
√
ε

2

)>
satisfy the constraints of Problem 2, and

we have ‖θ′‖ < ‖θ̃‖.

5 Deep networks in N

In this section we study the more general case of depth-m neural networks inN , where m ≥ 2. First,
we show that for networks of depth at least 3 in Nno-share, GF may not converge to a local optimum of
Problem 2, for both linear and ReLU networks, and even where there are no zero weights vectors
and the inputs to all hidden neurons are non-zero. More precisely, we prove this claim for diagonal
networks.

8



Theorem 5.1. Let m ≥ 3. Let Φ be a depth-m linear or ReLU diagonal neural network parame-
terized by θ. Consider minimizing either the exponential or the logistic loss using GF. There exists
a dataset {(x, y)} ⊆ R2 × {−1, 1} of size 1 and an initialization θ(0), such that GF converges to
zero loss, and converges in direction to a KKT point θ̃ of Problem 2 which is not a local optimum.
Moreover, all inputs to neurons in the computation Φ(θ̃;x) are non-zero.

Proof idea (for the complete proof see Appendix C.8). Let x = (1, 1)> and y = 1. Consider the
initialization θ(0) where wj(0) = (1, 1)> for every j ∈ [m]. We show that GF converges in

direction to a KKT point θ̃ = [w̃1, . . . , w̃m] such that w̃j =
(
2−1/m, 2−1/m

)>
for all j ∈ [m].

Then, we consider the parameters θ′ = [w′1, . . . ,w
′
m] such that for every j ∈ [m] we have w′j =((

1+ε
2

)1/m
,
(

1−ε
2

)1/m)>
, and show that if ε > 0 is sufficiently small, then θ′ satisfies the constraints

in Problem 2 and we have ‖θ′‖ < ‖θ̃‖.

Note that in the case of linear networks, the above result is in contrast to networks with sparse weights
of depth 2 that converge to a global optimum by Theorem 4.2, and to fully-connected networks of any
depth that converge to a global optimum by Theorem 3.1. In the case of ReLU networks, the above
result is in contrast to the case of depth-2 networks studied in Theorem 4.3, where it is guaranteed to
converge to a local optimum.

In light of our negative results, we now consider a weaker notion of margin maximization, namely,
maximizing the margin for each layer separately. Let Φ be a neural network of depth m in N ,
parameterized by θ = [u(l)]ml=1. The maximum margin problem for a layer l0 ∈ [m] w.r.t. θ0 =

[u
(l)
0 ]ml=1 is the following:

min
u(l0)

1

2

∥∥∥u(l0)
∥∥∥2

s.t. ∀i ∈ [n] yiΦ(θ′;xi) ≥ 1 , (4)

where θ′ = [u
(1)
0 , . . . ,u

(l0−1)
0 ,u(l0),u

(l0+1)
0 , . . . ,u

(m)
0 ]. For linear networks we have the following:

Theorem 5.2. Let m ≥ 2. Let Φ be any depth-m linear neural network in N , parameterized
by θ = [u(l)]ml=1. Consider minimizing either the exponential or the logistic loss over a dataset
{(xi, yi)}ni=1 using GF. Assume that there exists time t0 such that L(θ(t0)) < 1. Then, GF converges
in direction to a KKT point θ̃ = [ũ(l)]ml=1 of Problem 2, such that for every layer l ∈ [m] the
parameters vector ũ(l) is a global optimum of Problem 4 w.r.t. θ̃.

The theorem follows by noticing that if Φ is a linear network, then the constraints in Problem 4 are
affine, and its KKT conditions are implied by the KKT conditions of Problem 2. See Appendix C.9
for the formal proof. Note that by Theorems 4.1, 4.4 and 5.1, linear networks in N might converge
in direction to a KKT point θ̃, which is not a local optimum of Problem 2. However, Theorem 5.2
implies that each layer in θ̃ is a global optimum of Problem 4. Hence, any improvement to θ̃ requires
changing at least two layers simultaneously.

While in linear networks GF maximize the margin for each layer separately, in the following theorem
(which we prove in Appendix C.10) we show that this claim does not hold for ReLU networks:
Already for fully-connected networks of depth-2 GF may not converge in direction to a local optimum
of Problem 4.

Theorem 5.3. Let Φ be a fully-connected depth-2 ReLU network with input dimension 2 and 4 hidden
neurons parameterized by θ. Consider minimizing either the exponential or the logistic loss using GF.
There exists a dataset and an initialization θ(0) such that GF converges to zero loss, and converges
in direction to a KKT point θ̃ of Problem 2, such that the weights of the first layer are not a local
optimum of Problem 4 w.r.t. θ̃.

Finally, we show that in ReLU networks in N of any depth, if the KKT point to which GF converges
in direction is such that the inputs to hidden neurons are non-zero, then it must be a local optimum
of Problem 4 (but not necessarily a global optimum). The proof follows the ideas from the proof of
Theorem 5.2, with some required modifications, and is given in Appendix C.11.

9



Theorem 5.4. Letm ≥ 2. Let Φ be any depth-m ReLU network inN parameterized by θ = [u(l)]ml=1.
Consider minimizing either the exponential or the logistic loss over a dataset {(xi, yi)}ni=1 using GF,
and assume that there exists time t0 such that L(θ(t0)) < 1. Let θ̃ = [ũ(l)]ml=1 be the KKT point of
Problem 2 such that θ(t) converges to θ̃ in direction (such θ̃ exists by Theorem 2.1). Let l ∈ [m] and
assume that for every i ∈ [n] the inputs to all neurons in layers ≥ l in the computation Φ(θ̃;xi) are
non-zero. Then, the parameters vector ũ(l) is a local optimum of Problem 4 w.r.t. θ̃. However, it may
not be a global optimum.

Acknowledgments and Disclosure of Funding

This research is supported in part by European Research Council (ERC) grant 754705.

References
S. Arora, N. Cohen, W. Hu, and Y. Luo. Implicit regularization in deep matrix factorization. In

Advances in Neural Information Processing Systems, pages 7413–7424, 2019.

S. Azulay, E. Moroshko, M. S. Nacson, B. Woodworth, N. Srebro, A. Globerson, and D. Soudry.
On the implicit bias of initialization shape: Beyond infinitesimal mirror descent. arXiv preprint
arXiv:2102.09769, 2021.

M. A. Belabbas. On implicit regularization: Morse functions and applications to matrix factorization.
arXiv preprint arXiv:2001.04264, 2020.

L. Chizat and F. Bach. Implicit bias of gradient descent for wide two-layer neural networks trained
with the logistic loss. arXiv preprint arXiv:2002.04486, 2020.

F. H. Clarke, Y. S. Ledyaev, R. J. Stern, and P. R. Wolenski. Nonsmooth analysis and control theory,
volume 178. Springer Science & Business Media, 2008.

S. S. Du, W. Hu, and J. D. Lee. Algorithmic regularization in learning deep homogeneous models:
Layers are automatically balanced. In Advances in Neural Information Processing Systems, pages
384–395, 2018.

J. Dutta, K. Deb, R. Tulshyan, and R. Arora. Approximate kkt points and a proximity measure for
termination. Journal of Global Optimization, 56(4):1463–1499, 2013.

A. Eftekhari and K. Zygalakis. Implicit regularization in matrix sensing: A geometric view leads to
stronger results. arXiv preprint arXiv:2008.12091, 2020.

T. Ergen and M. Pilanci. Convex geometry and duality of over-parameterized neural networks.
Journal of machine learning research, 2021a.

T. Ergen and M. Pilanci. Revealing the structure of deep neural networks via convex duality. In
International Conference on Machine Learning, pages 3004–3014. PMLR, 2021b.

G. Gidel, F. Bach, and S. Lacoste-Julien. Implicit regularization of discrete gradient dynamics in
linear neural networks. In Advances in Neural Information Processing Systems, pages 3202–3211,
2019.

S. Gunasekar, J. Lee, D. Soudry, and N. Srebro. Characterizing implicit bias in terms of optimization
geometry. arXiv preprint arXiv:1802.08246, 2018a.

S. Gunasekar, J. D. Lee, D. Soudry, and N. Srebro. Implicit bias of gradient descent on linear
convolutional networks. In Advances in Neural Information Processing Systems, pages 9461–9471,
2018b.

S. Gunasekar, B. Woodworth, S. Bhojanapalli, B. Neyshabur, and N. Srebro. Implicit regularization
in matrix factorization. In 2018 Information Theory and Applications Workshop (ITA), pages 1–10.
IEEE, 2018c.

10



N. Haim, G. Vardi, G. Yehudai, O. Shamir, and M. Irani. Reconstructing training data from trained
neural networks. arXiv preprint arXiv:2206.07758, 2022.

M. Jagadeesan, I. Razenshteyn, and S. Gunasekar. Inductive bias of multi-channel linear convolutional
networks with bounded weight norm. arXiv preprint arXiv:2102.12238, 2021.

Z. Ji and M. Telgarsky. Gradient descent aligns the layers of deep linear networks. arXiv preprint
arXiv:1810.02032, 2018a.

Z. Ji and M. Telgarsky. Risk and parameter convergence of logistic regression. arXiv preprint
arXiv:1803.07300, 2018b.

Z. Ji and M. Telgarsky. Directional convergence and alignment in deep learning. arXiv preprint
arXiv:2006.06657, 2020.

Z. Ji and M. Telgarsky. Characterizing the implicit bias via a primal-dual analysis. In Algorithmic
Learning Theory, pages 772–804. PMLR, 2021.

Z. Ji, M. Dudík, R. E. Schapire, and M. Telgarsky. Gradient descent follows the regularization path
for general losses. In Conference on Learning Theory, pages 2109–2136. PMLR, 2020.

Y. Li, T. Ma, and H. Zhang. Algorithmic regularization in over-parameterized matrix sensing and
neural networks with quadratic activations. In Conference On Learning Theory, pages 2–47.
PMLR, 2018.

Z. Li, Y. Luo, and K. Lyu. Towards resolving the implicit bias of gradient descent for matrix
factorization: Greedy low-rank learning. arXiv preprint arXiv:2012.09839, 2020.

K. Lyu and J. Li. Gradient descent maximizes the margin of homogeneous neural networks. arXiv
preprint arXiv:1906.05890, 2019.

K. Lyu, Z. Li, R. Wang, and S. Arora. Gradient descent on two-layer nets: Margin maximization and
simplicity bias. Advances in Neural Information Processing Systems, 34, 2021.

C. Ma, K. Wang, Y. Chi, and Y. Chen. Implicit regularization in nonconvex statistical estimation:
Gradient descent converges linearly for phase retrieval and matrix completion. In International
Conference on Machine Learning, pages 3345–3354. PMLR, 2018.

E. Moroshko, B. E. Woodworth, S. Gunasekar, J. D. Lee, N. Srebro, and D. Soudry. Implicit bias in
deep linear classification: Initialization scale vs training accuracy. Advances in Neural Information
Processing Systems, 33, 2020.

M. S. Nacson, J. Lee, S. Gunasekar, P. H. P. Savarese, N. Srebro, and D. Soudry. Convergence of
gradient descent on separable data. In The 22nd International Conference on Artificial Intelligence
and Statistics, pages 3420–3428. PMLR, 2019.

B. Neyshabur, R. Tomioka, and N. Srebro. In search of the real inductive bias: On the role of implicit
regularization in deep learning. arXiv preprint arXiv:1412.6614, 2014.

B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro. Exploring generalization in deep
learning. In Advances in Neural Information Processing Systems, pages 5947–5956, 2017.

M. Phuong and C. H. Lampert. The inductive bias of relu networks on orthogonally separable data.
In International Conference on Learning Representations, 2020.

N. Razin and N. Cohen. Implicit regularization in deep learning may not be explainable by norms.
arXiv preprint arXiv:2005.06398, 2020.

A. Ruszczynski. Nonlinear optimization. Princeton university press, 2011.

I. Safran, G. Vardi, and J. D. Lee. On the effective number of linear regions in shallow univariate relu
networks: Convergence guarantees and implicit bias. arXiv preprint arXiv:2205.09072, 2022.

R. Sarussi, A. Brutzkus, and A. Globerson. Towards understanding learning in neural networks with
linear teachers. In International Conference on Machine Learning, pages 9313–9322. PMLR,
2021.

11



O. Shamir. Gradient methods never overfit on separable data. arXiv preprint arXiv:2007.00028,
2020.

D. Soudry, E. Hoffer, M. S. Nacson, S. Gunasekar, and N. Srebro. The implicit bias of gradient
descent on separable data. The Journal of Machine Learning Research, 19(1):2822–2878, 2018.

N. Timor, G. Vardi, and O. Shamir. Implicit regularization towards rank minimization in relu networks.
arXiv preprint arXiv:2201.12760, 2022.

G. Vardi. On the implicit bias in deep-learning algorithms. arXiv preprint arXiv:2208.12591, 2022.

G. Vardi and O. Shamir. Implicit regularization in relu networks with the square loss. In Conference
on Learning Theory, pages 4224–4258. PMLR, 2021.

G. Vardi, G. Yehudai, and O. Shamir. Gradient methods provably converge to non-robust networks.
arXiv preprint arXiv:2202.04347, 2022.

B. Woodworth, S. Gunasekar, J. D. Lee, E. Moroshko, P. Savarese, I. Golan, D. Soudry, and N. Srebro.
Kernel and rich regimes in overparametrized models. arXiv preprint arXiv:2002.09277, 2020.

C. Yun, S. Krishnan, and H. Mobahi. A unifying view on implicit bias in training linear neural
networks. arXiv preprint arXiv:2010.02501, 2020.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires
rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A] The paper

is purely theoretical in nature, and we do not see any potential negative societal impacts
that should be discussed.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

12



(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13


	Introduction
	Preliminaries
	Fully-connected networks
	Depth-2 networks in N
	Deep networks in N

