
Polyhistor: Parameter-Efficient Multi-Task
Adaptation for Dense Vision Tasks

Appendix

1 Additional analyses

1.1 Feature backbones with different pretraining data.

Comparison to baselines. We also experiment with other baseline methods on SwinTransformer-
Base pretrained on ImageNet-1k and ImageNet-22k. As shown in Table 1 and 2, we find that
the trend of all methods are similar to the results on SwinTransformer-Tiny. Specifically, most
baseline methods have a performance gap with Hyperformer and our Polyhistor-Lite. Compared to
Hyperformer, our Polyhistor-Lite use less than 5% of their trainable parameters in the encoder to
achieve similar or even better results. By tuning the adapter down-projection ratio and using fewer
trainable parameters, our Polyhistor-Lite still obtains a higher performance gain against the baseline
methods with low trainable parameters (e.g., Compacter++, Bitfit, VPT, PHM layer, LoRA, Adapter).
These results show that our proposed Polyhistor-Lite can derive a better trade-off against all existing
parameter-efficient works in different pretrained feature backbones.

1.2 Ranks of hyper-network output.

Another important hyper-parameter in our model is ranks of hyper-network outputs. We thus
experiment Polyhistor and vary the rank of output matrices, and, as shown in Table 3, we find the
model can derive a better results with a large rank.

1.3 Experiment results of tuning baseline methods.

In Fig. 3b of the main paper, we presented the results of different baseline methods with different
hyper-parameters. For a clearer comparison between baseline methods, We also provide the exact
values of all results in Table 4. It is worth noting that simply tuning the baseline methods only leads
to limited improvements of baseline methods, and our proposed Polyhistor and Polyhistor-Lite still
achieve a better trade-off between performance gain and trainable parameters.

1.4 Experiment results of other hierarchical vision transformers.

As shown in Table 5, we further apply our method and other baseline methods to the Pyramid
Vision Transformer [9]. We find our Polyhistor can achieve comparable results to Hyperformer while
using much fewer trainable parameters. Polyhistor-Lite can further reduce trainable parameters and
achieves higher accuracy than all other methods using a similar amount of trainable parameters (e.g.,
BitFit, PHM layer, Compacter, LoRA, and Low-rank Adapter). This trend is aligned with what we
found in Swin Transformer. We show that our method generalizes to different backbones.
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Table 1: Experimental results on Multi-Task Adaptation. We use SwinTransformer-Base pretrained on
ImageNet-1k as the feature backbone. ∆up represents relative improvement or gap to the Single-task
Full Fine-tuning. Results with the symbol ↑ / ↓ indicate higher/lower is better. ρ represents the
down-projection ratio of adapters (i.e.,. the ratio of adapter input d to hidden vectors n, ρ = d/n).

Number of Trainable Parameters Performance of Each Downstream Task Averaged Results
Encoder/All Seg. ↑ H.Part ↑ Sal. ↑ Normals ↓ ∆up

Single-task Full Fine-tuning 346.96 / 350.01 67.88 64.47 61.26 18.85 0.00%
Fine-tuning Decoders 0.00 / 3.04 68.98 55.57 58.37 21.36 -7.55%

Bitfit [1] 0.20 / 3.24 71.93 59.12 60.67 20.08 -2.46%
Relative bias [2] 0.06 / 3.11 68.44 55.70 57.27 21.63 -8.51%

VPT-deep [3] 2.41 / 5.45 68.80 55.85 58.25 21.37 -7.57%
PHM layer [4] 1.89 / 4.94 71.93 59.11 59.71 20.35 -3.21%

Compacter++ [4] 0.25 / 3.29 72.00 59.11 59.73 20.41 -3.25%
LoRA [5] 0.87 / 4.31 74.10 61.57 63.87 18.55 2.63%

Adapter [6] 3.64 / 6.68 73.29 60.30 62.42 18.66 1.10%
Low-rank adapter 0.34 / 2.89 72.13 59.10 59.81 20.28 -3.01%
Hyperformer [7] 60.88 / 63.92 73.60 63.82 67.31 16.90 6.91%

Polyhistor-Lite (Ours; ρ = 1) 1.29 / 4.34 73.70 63.32 66.50 16.93 6.38%
Polyhistor-Lite (Ours; ρ = 2) 0.62 / 3.67 73.69 63.04 66.56 17.30 5.80%
Polyhistor-Lite (Ours; ρ = 4) 0.39 / 3.43 73.57 62.04 65.84 17.70 4.55%
Polyhistor-Lite (Ours; ρ = 8) 0.29 / 3.34 73.92 62.15 65.37 17.70 4.53%

Polyhistor-Lite (Ours; ρ = 32) 0.24 / 3.28 73.80 61.32 64.64 17.92 3.57%

Table 2: Experimental results on Multi-Task Adaptation. We use SwinTransformer-Base pretrained
on ImageNet-22k as the feature backbone. ∆up represents relative improvement or gap to the Single-
task Full Fine-tuning. Results with the symbol ↑ / ↓ indicate higher/lower is better. ρ represents the
down-projection ratio of adapters (i.e.,. the ratio of adapter input d to hidden vectors n, ρ = d/n).

Number of Trainable Parameters Performance of Each Downstream Task Averaged Results
Encoder/All Seg. ↑ H.Part ↑ Sal. ↑ Normals ↓ ∆up

Single-task Full Fine-tuning 346.96 / 350.01 70.72 67.47 61.00 18.73 0.00%
Fine-tuning Decoders 0.00 / 3.04 73.33 60.56 59.13 21.38 -5.94%

Bitfit [1] 0.20 / 3.24 76.42 64.89 62.05 19.03 1.09%
Relative bias [2] 0.06 / 3.11 72.86 60.64 58.44 21.51 -6.53%

VPT-deep [3] 2.41 / 5.45 74.21 61.41 58.80 21.61 -5.90%
PHM layer [4] 1.89 / 4.94 76.33 64.59 60.43 20.23 -1.32%

Compacter++ [4] 0.25 / 3.29 75.99 64.65 60.42 20.01 -1.13%
LoRA [5] 0.87 / 4.31 78.24 66.95 64.70 18.07 4.86%

Adapter [6] 3.64 / 6.68 77.22 65.95 63.80 18.38 3.35%
Low-rank adapter 0.34 / 2.89 75.65 64.75 60.50 20.03 -1.21%
Hyperformer [7] 60.88 / 63.92 78.41 68.94 67.50 16.80 6.91%

Polyhistor-Lite (Ours; ρ = 1) 1.29 / 4.34 77.91 68.02 66.89 16.54 8.08%
Polyhistor-Lite (Ours; ρ = 32) 0.24 / 3.28 77.74 66.33 65.03 17.65 5.15%

1.5 Experiment results of self-supervised models.

We conduct an experiment using the self-supervised Swim Transformer-Tiny (MoBY-Tiny [10]), and,
for a fair comparison, we also run all baseline with MoBY-Tiny and report the results in the Table 6.
We find our proposed method can achieve similar or even better results compared to the Hyperformer
[2] while using much less trainable parameters.

1.6 Discussion on difference to Visual Prompt Tuning [3]

We summarize the difference between Visual Prompt Tuning and our method in the following points.

Different Problem Settings: Visual Prompt Tuning focuses on single-task parameter-efficient
adaptation, while our proposed method focuses on multi-task parameter-efficient adaptation. Our goal
is to perform a parameter-efficient adaptation for multiple tasks and share the beneficial information
across multiple vision tasks.
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Table 3: Ablation study on the sizes of ranks in hypernetwork output matrices. We vary the dimensions
of ranks r from 1 to n

2 on our Polyhistor. Note that n is the dimension of hidden vectors in adapters.
All results in this table are based on SwinTransformer-Tiny pretrained on ImageNet-1k.

Dimension of Num. of Trainable Parameters Performance of Each Downstream Task Averaged Results
Ranks r Encoder/ All Seg. ↑ H.Seg. ↑ Sal. ↑ Normals ↓ ∆up

Single-task Full Fine-tuning - 110.07 / 112.62 67.21 61.93 62.35 17.97 0.00%

Polyhistor 1 2.38 / 4.93 70.31 58.61 64.14 17.98 0.52%
Polyhistor n/8 4.08 / 6.63 71.18 59.52 65.04 17.81 1.70%
Polyhistor n/4 6.41 / 8.96 70.87 59.54 65.47 17.47 2.34%
Polyhistor n/2 11.08 / 13.63 71.31 60.15 65.46 17.40 2.84%

Table 4: Limited improvements from tuning hyper-parameters on baseline method. ∆up represents
relative improvement or gap to the Single-task Full Fine-tuning. Results with the symbol ↑ / ↓
indicate higher/lower is better. Results with the symbol ↑ / ↓ indicate higher/lower is better. ρ
represents the down-projection ratio of adapters (i.e.,. the ratio of adapter input d to hidden vectors n,
ρ = d/n).

Num. of Trainable Parameters Performance of Each Downstream Task Averaged Results
Encoder / All Seg. ↑ H.Seg. ↑ Sal. ↑ Normals ↓ ∆up

Single-task Full Fine-tuning 110.07 / 112.62 67.21 61.93 62.35 17.97 0.00%
Fine-tuning Decoders 0.00 / 2.55 63.14 52.37 58.39 20.89 -11.02%

Compacter++ (ρ = 1) [4] 0.14 / 2.69 67.33 55.68 59.50 19.66 -5.98%
Compacter++ (ρ = 2) [4] 0.11 / 2.66 67.26 55.69 59.47 19.54 -5.84%
Compacter++ (ρ = 8) [4] 0.09 / 2.64 67.19 55.85 59.48 19.56 -5.96%

Compacter (ρ = 1) [4] 0.28 / 2.83 67.94 56.23 60.18 19.25 -4.69%
Compacter (ρ = 2) [4] 0.23 / 2.78 68.08 56.41 60.08 19.22 -4.55%
Compacter (ρ = 8) [4] 0.19 / 2.74 68.15 56.16 60.12 19.37 -4.83%

Adapter (ρ = 1) [6] 17.32 / 19.87 69.13 57.35 61.17 18.79 -2.75%
Adapter (ρ = 2) [6] 8.69 / 11.24 69.21 57.38 61.28 18.83 -2.71%
Adapter (ρ = 4) [6] 4.37 / 6.92 68.93 57.33 61.24 18.95 -3.03%
Adapter (ρ = 8) [6] 2.21 / 4.76 69.04 57.34 61.25 18.86 -2.86%
Adapter (ρ = 16) [6] 1.13 / 3.68 69.03 57.22 61.17 18.91 -3.01%

Shared Adapter (ρ = 1) [8] 4.35 / 6.89 70.57 59.43 62.54 19.07 -1.21%
Shared Adapter (ρ = 2) [8] 2.20 / 4.74 70.21 59.15 62.29 19.26 -1.83%
Shared Adapter (ρ = 4) [8] 1.12 / 3.66 70.02 58.87 62.09 19.35 -2.22%
Shared Adapter (ρ = 8) [8] 0.58 / 3.12 69.63 58.54 61.74 19.61 -2.99%

Hyperformer (ρ = 8) [7] 72.77 / 75.32 71.43 60.73 65.54 17.77 2.64%
Hyperformer (ρ = 16) [7] 37.69 / 40.24 71.28 60.19 65.82 17.89 2.31%
Hyperformer (ρ = 32) [7] 20.15 / 22.70 71.12 59.71 64.41 19.06 -0.14%

Polyhistor(Ours) 6.41 / 8.96 70.87 59.54 65.47 17.47 2.34%
Polyhistor-Lite(Ours) 0.41 / 2.96 70.24 59.12 64.75 17.40 1.74%

Different types of parameter-efficient methods: Visual Prompt Tuning adds learnable parameters
along with the visual embeddings, while our proposed method utilizes a shared hyper-network to
produce the adapter weights for different tasks. Also, the insertion locations of learnable parameters
are different (VPT: input space, Ours: parallel to fully-connected layers).

2 Implementation Details

For a fair comparison between different methods, we use batch size 12 and train for 60 epochs for
each task. We use Adam optimizer [11] with the learning rate 1e− 4 and the weight decay 1e− 4,
and the learning rate is linearly decreased with respect to the training iteration.

We followed the prior multi-tasking learning work [12] to use task-wise weighting on different losses,
while we found that using the uniform weights on the losses has similar results as the task-wise
weighting. We also applied the same data augmentations, RandomHorizontalFlip, RandomScale
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Table 5: Experimental results on Multi-Task Adaptation. We use Pryramid Vision Transformer-Small
as the feature backbone. ∆up represents relative improvement or gap to the Single-task Full Fine-
tuning. Results with the symbol ↑ / ↓ indicate higher/lower is better. ρ represents the down-projection
ratio of adapters (i.e.,. the ratio of adapter input d to hidden vectors n, ρ = d/n).

Number of Trainable Parameters Performance of Each Downstream Task Averaged Results
Encoder/All Seg. ↑ H.Part ↑ Sal. ↑ Normals ↓ ∆up

Single-task Full Fine-tuning 95.88 / 97.99 68.81 61.27 62.67 17.55 0.00%
Fine-tuning Decoders 0.00 / 2.11 64.86 51.18 61.54 19.55 -8.85%

Bitfit [1] 0.22 / 2.34 71.41 55.71 64.08 18.69 -2.38%
Adapter [6] 0.79 / 2.90 71.94 56.38 64.16 18.75 -1.97%
LoRA [5] 0.30 / 2.41 71.89 56.90 64.27 18.48 -1.35%

Low-rank adapter 0.25 / 2.36 70.72 55.34 63.39 18.70 -3.08%
PHM layer [4] 0.42 / 2.53 70.81 55.02 63.51 18.75 -3.20%

Compacter++ [4] 0.09 / 2.20 70.29 54.80 63.16 18.82 -3.71%
Hyperformer [7] 14.03 / 16.14 70.81 57.76 65.49 17.75 0.14%

Polyhistor-Lite (Ours; ρ = 1) 5.21 / 7.32 71.00 57.52 65.83 17.83 0.13%
Polyhistor-Lite (Ours; ρ = 32) 0.29 / 2.40 70.93 56.71 65.00 17.95 -0.73%

Table 6: Experimental results on Multi-Task Adaptation. We use MoBY-Tiny [10] as the feature
backbone. ∆up represents relative improvement or gap to the Single-task Full Fine-tuning. Results
with the symbol ↑ / ↓ indicate higher/lower is better. ρ represents the down-projection ratio of
adapters (i.e.,. the ratio of adapter input d to hidden vectors n, ρ = d/n).

Number of Trainable Parameters Performance of Each Downstream Task Averaged Results
Encoder/All Seg. ↑ H.Part ↑ Sal. ↑ Normals ↓ ∆up

Single-task Full Fine-tuning 110.07 / 112.62 65.52 61.78 62.05 18.14 0.00%
Fine-tuning Decoders 0.00 / 2.55 59.64 52.97 59.60 19.88 -9.21%

Bitfit [1] 0.30 / 2.85 63.43 54.90 59.50 19.80 -6.90%
VPT-shallow [3] 0.02 / 2.57 59.50 52.84 59.48 19.88 -9.36%

VPT-deep [3] 0.88 / 3.43 56.15 50.30 57.22 20.71 -13.72%
Adapter [6] 8.69 / 11.24 65.00 56.66 60.84 18.64 -3.45%
LoRA [5] 0.32 / 2.87 65.64 57.66 62.29 18.47 -1.99%

Low-rank adapter 0.34 / 2.89 63.30 55.24 59.72 19.14 -5.82%

PHM layer [4] 0.59 / 3.14 63.21 54.99 59.70 19.13 -5.95%
Compacter++ [4] 0.11 / 2.66 62.31 54.69 59.43 19.58 -7.14%
Hyperformer [7] 19.29 / 44.25 66.50 58.97 66.02 17.61 1.56%

Polyhistor (Ours) 6.41 / 8.96 67.69 59.32 65.15 17.43 2.05%
Polyhistor-Lite (Ours) 0.41 / 2.96 67.23 58.90 64.62 17.72 1.09%

with the range [0.75, 1.25], RandomRotate with the range [−20, 20], and Resize to (512, 512),
which are used in the prior work [12].

For the hyper-parameters of Polyhistor, we set the input dimension of adapter d as the dimension of
hidden vectors in SwinTransformers, and the down-projection ratio is set as ρ = d/n = 16. For the
low-rank output matrix of hyper-networks, we set the rank as n/4, where n is bottleneck size. We set
the size of task embeddings as 64.

As for the hyper-parameters of Polyhistor-Lite, we also set the input dimension of adapter d as
the dimension of hidden vectors in SwinTransformers, and the down-projection ratio is set as
ρ = d/n = 2. For the low-rank output matrix of hyper-networks, we set the rank as n/4, where n is
bottleneck size. We set the size of task embeddings as 64.
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