
A Proof of Proposition 1

Proof. Jensen’s inequality:

>
ROC(t) =

√
2

∫ √
f2+(τ)

2
+
f2−(τ)

2
dτ ≥

√
2

∫
|f+(τ)|

2
+

|f−(τ)|
2

dτ =
√
2.

Triangle inequality:
>
ROC ≤

∫
|f+(τ)|+ |f−(τ)|dτ = 2.

B Geometric Properties of ROC∗

Here we prove a result regarding some other geometric properties of ROC∗.

Proposition 6. ROC∗ is a convex curve and
>
ROC∗ is the longest among all convex ROC curves.

Proof. First, we show ROC∗ is a convex curve. To show ROC∗ is convex, we only need to show
F̃+(F̃

−1
− (s)) is a concave function. This can be verified by checking the sign of ∂2s F̃+(F̃

−1
− (s)):

∂sF̃+(F̃
−1
− (s)) =

f+[F̃
−1
− (s)]

f−[F̃
−1
− (s)]

=
p+(x0)

p−(x0)
= γ−1

(
F̃−1
− (s)

)
,

where the second equality is due to (3) and x0 is any point in X that satisfies the equality
γ
(

p+(x0)
p−(x0)

)
= F̃−1

− (s). Further, we can show that,

∂2s F̃+(F̃
−1
− (s; t∗)) = − 1

∂sγ[γ−1(F̃−1
− (s))]

· 1

f−[(F̃
−1
− (s)]

.

Since γ is a strictly monotone increasing function, the first factor is non-negative and the sec-
ond factor is also strictly positive due to the our assumption on the positivity of f−. We have
∂2sF+(F

−1
− (s; t∗)) ≤ 0. Moreover, at any FPR level s ∈ [0, 1], the Neyman-Pearson lemma [27]

implies

F̃+(F̃
−1
− (s)) ≥ F̃ ′

+(F̃
′−1
− (s)),

where F̃ ′
+ and F̃ ′

− are TPR and FPR of any other score function. In words, ROC∗ dominates all
other ROC curves. Since ROC∗ is convex and encloses all other ROC curves, our claim follows
Archimedes’s Second Axiom: among all convex curves with the same endpoints, the one encloses all
other curves has the longest arc length.

C Proof of Proposition 2

Proof. Using the integral probability metric representation of TV(P+,P−) [34], we can write:

π

2
TV(P+,P−) = sup

∥v∥∞≤1

Ep+

[
π

2
· (v(x) + 1)

2

]
− Ep−

[
π

2
· (v(x) + 1)

2

]
= sup

v′∈[0,π/2]

Ep+
[v′(x)] + Ep− [−v′(x)]

Some algebra can show that z ≥ sin(z)
a +arccos(a)−

√
1−a2

a and −z ≥ cos(z)
a − arcsin(a)−

√
1−a2

a
for all a ∈ [0, 1] and z ∈ [0, π/2]. Therefore

π

2
TV(P+,P−) ≥ sup

v′∈[0,π/2]

Ep+

[
sin(x)

a

]
+ Ep−

[
cos(x)

a

]
+ arccos(a)− arcsin(a)− 2

√
1− a2

a

≥
>
ROC∗

a
+ arccos a− arcsin a− 2

√
1− a2

a
.
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Similarly, multiplying both sides of the second equality above by 2
π , we obtain

TV(P+,P−) = sup
v′∈[0,π/2]

Ep+

2

π
v′(x) + Ep−

[
− 2

π
v′(x)

]
≤ sup

v′∈[0,π/2]

Ep+
sin(v′(x)) + Ep− [cos v′(x)− 1]

=
>
ROC∗ − 1.

D Proof of Proposition 4

Proof. ∀v ∈ H∗, |⟨v, φ(x)⟩−⟨v∗, φ(x)⟩| ≤ ∥v−v∗∥H∥φ(x)∥H ≤ δnmin
. If δnmin

< min(R1,
π
2 −

R2) then ⟨v, φ(x)⟩ ∈ (0, π2 ) holds uniformly for every x ∈ X . As δnmin
is a decaying sequence,

there always exists an N such that δnmin
≤ min(R1,

π
2 −R2) holds for nmin ≥ N .

E Proof of Theorem 1

To reduce the visual clutter, in this section, ∥v∥ represents the Hilbert space norm of v, defined as√
⟨v, v⟩. We simplify Ep+

[v(x)] as E+[v(x)] whenever it does not lead to confusion. For ease, we
write

∑n+

i=1 f(x
+
i ) as

∑n+

i=1 f(xi), a convention which will adopted henceforth.

Proof. Define H∗ := {v ∈ H|∥v − v∗∥2 ≤ δ2}. Consider an optimization that is similar to (8):

ṽ := argmin
v∈H∗

ℓ(v) +
λ

2
∥v∥2 (15)

Define ũ := ṽ − v∗ and we have the following equality due to the KKT conditions of (15)

∇vℓ(ṽ) + λṽ + 2νũ = 0,

where ν is a Lagrangian multiplier and ν ≥ 0. Multiplying both sides by s̃ = (Σv∗ + λI)
−1
ũ, we

have

⟨s̃,∇vℓ(ṽ) + λṽ + 2νũ⟩ = 0.

Let g(v) := ⟨s̃,∇vℓ(v) + λv + 2ν(v − v∗)⟩, we can applying Mean Value Theorem (MVT) on the
scalar valued function g(v):

g(ṽ)− g(v∗) = ∇vg(v̄)ũ, (16)

where v̄ = av∗ +(1− a)v̂ for some a ∈ [0, 1]. Knowing g(ṽ) = 0 and g(v∗) = ⟨s̃,∇vℓ(v
∗)+λv∗⟩,

we can translate (16) into

⟨s̃,−∇vℓ(v
∗)− λv∗⟩ = ⟨s̃, [∇2

f ℓ(v̄) + λI + 2ν̃I]ũ⟩, (17)

where I is the identify matrix. Focusing on the RHS, we have

⟨s̃, [∇2
f ℓ(v̄) + λI + 2νI]ũ⟩ ≥⟨s̃, [∇2

f ℓ(v̄) + λI]ũ⟩
≥ ⟨(Σv∗ + λI)−1ũ, [Σv∗ + λI]ũ⟩︸ ︷︷ ︸

∥ũ∥2

−⟨s̃, [Σv∗ −Σv̄]ũ⟩︸ ︷︷ ︸
a

− ⟨s̃, [Σv̄ −∇2
f ℓ(v̄)]ũ⟩︸ ︷︷ ︸

b

≥∥ũ∥2 − a− b. (18)

The first line is due to the fact that ⟨2νs̃, ũ⟩ ≥ 0. Use the inequality (18) on (17), we get the inequality

⟨s̃,−∇vℓ(v
∗)− λv∗⟩ ≥ ∥ũ∥2 − a− b. (19)

First, let us inspect a. Using MVT on sin⟨v, φ(x)⟩, v ∈ H∗ and applying Hölder’s inequality, we get

sin⟨v∗, φ(x)⟩ − sin⟨v∗ + δ′, φ(x)⟩ ≤ ∥δ′∥ · ∥φ(x)∥ ≤ δ · ∥φ(x)∥. (20)
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Define Σ+
v := E+ [sin⟨v, φ(x)⟩φ(x)⊗ φ(x)] and Σ̂

+

v as its empirical counterpart approximated
using X+. We can see that a = ⟨s̃, [Σ+

v∗ −Σ+
v̄ ]ũ⟩+ ⟨s̃, [Σ−

v∗ −Σ−
v̄ ]ũ⟩. Moreover,

⟨s̃, [Σ+
v∗ −Σ+

v̄ ]ũ⟩
i
≤ E+ {δ · ∥φ(x)∥ · ⟨s̃, φ(x)⊗ φ(x)ũ⟩}
≤ δ⟨ũ,E+

{
(Σv∗ + λI)−1φ(x)⟩ · ∥φ(x)∥

}
· ∥ũ∥

≤ δ∥ũ∥ · ∥(Σv∗ + λI)−1E+φ(x)∥ · ∥ũ∥

(i) is due to (20). Following a similar line of reasoning, we can see

⟨s̃, [Σ−
v∗ −Σ−

v̄ ]ũ⟩ ≤ δ∥ (Σv∗ + λI)
−1 E−[φ(x)]∥ · ∥ũ∥2.

By setting δ ≤ 4max
(
∥ (Σv∗ + λI)

−1 E+[φ(x)]∥, ∥ (Σv∗ + λI)
−1 E−[φ(x)]∥

)−1

, we have

a ≤ ∥ũ∥2

2
. (21)

Now we inspect b. We can see |b| ≤
∣∣∣s̃Σ̂+

v̄ ũ− E+

[
s̃Σ̂

+

v̄ ũ
]∣∣∣ + ∣∣∣s̃Σ̂−

v̄ ũ− E−

[
s̃Σ̂

−
v̄ ũ

]∣∣∣. Define a
scalar random variable

Z
(i)
f := sin⟨v, φ(xi)⟩ · ⟨s̃, φ(xi)⊗ φ(xi)ũ⟩.

By definition 1
n+

∑n+

i=1 Z
(i)
f = s̃⊤Σ̂

+

f ũ. Therefore∣∣∣∣∣ 1

n+

n+∑
i=1

Z
(i)
v̄ − EZv̄

∣∣∣∣∣ ≤ sup
v

∣∣∣∣∣ 1

n+

n+∑
i=1

Z(i)
v − EZv

∣∣∣∣∣ .
Since 0 ≤ Z

(i)
v ≤ ∥s̃∥ · ∥ũ∥ · ∥φ(x)∥2 ≤ ∥ (Σv∗ + λI)

−1
ũ∥∥ũ∥ ≤ ∥ũ∥2

λ , using Uniform Law of
Large Number for bounded random variable (Theorem 4.10, [38]),

sup
v

∣∣∣∣∣ 1

n+

n+∑
i=1

Z(i)
v − EZv

∣∣∣∣∣ ≤ 2Rn+(FZ) +
∥ũ∥2 · ∥φ(x)∥2

λ
√
n+

,

with high probability, where Rn+
(FZ) is the Rademacher complexity of the function class of Zv . It

remains to bound Rn+
(FZ). It can be seen that Zf = h[⟨v, φ(x)⟩] where h is a Lipschitz continuos

function with Lipschitz constant ∥ũ∥2

λ . Hence, due to Ledoux–Talagrand contraction inequality (see,
e.g., (5.61) in [38]), Rn+(FZ) is upperbounded by,

Rn+
(FZ) ≤

2∥ũ∥2

λ
· Rn+

(H∗) ≤ C0 · ∥ũ∥2

λ
√
n+

,

where C0 is a universal constant. The last inequality is due to Corollary 14.5 in [38]. Therefore∣∣∣s̃Σ̂+

v̄ ũ− E+

[
s̃Σ̂

+

v̄ ũ
]∣∣∣ ≤ C0 · ∥ũ∥2

λ
√
n+

+
∥ũ∥2 · ∥φ(x)∥2

λ
√
n+

and similarly, ∣∣∣s̃Σ̂−
v̄ ũ− E−

[
s̃Σ̂

−
v̄ ũ

]∣∣∣ ≤ C0 · ∥ũ∥2

λ
√
n−

+
∥ũ∥2 · ∥φ(x)∥2

λ
√
n−

.

Therefore,

|b| ≤ C0 · ∥ũ∥2

λ
√
nmin

+
∥ũ∥2 · ∥φ(x)∥2

λ
√
nmin

, (22)

with high probability. Substituting (21)and (22) into (19), we get

⟨s̃⊤,−∇vℓ(v
∗)− λv∗⟩+

max
(
C0, ∥φ(x)∥2

)
· ∥ũ∥2

λ
√
nmin

≥ ∥ũ∥2 − 1

2
∥ũ∥2.
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Using triangle inequality and Hölder’s inequality, we have

−⟨s̃,∇vℓ(v
∗)⟩+ ∥ũ∥∥(Σv∗ + λI)−1λv∗∥+ max (C0, 1) ∥ũ∥2

λ
√
nmin

≥1

2
∥ũ∥2. (23)

Due to Assumption 1, E[∇vℓ(v
∗)] = 0. Hence,

−⟨s̃,∇vℓ(v
∗)⟩ =− ⟨s̃,E[∇vℓ(v

∗)]⟩ − ⟨s̃,∇vℓ(v
∗)− E[∇vℓ(v

∗)]⟩
=0− ⟨s̃,∇vℓ(v

∗)− E[∇vℓ(v
∗)]⟩.

We can see

|⟨s̃,∇vℓ(v
∗)− E[∇vℓ(v

∗)]⟩| ≤ ∥ũ∥
λ

∥∇vℓ(v
∗)− E[∇vℓ(v

∗)]∥ ≤ C1∥ũ∥
λ
√
nmin

(24)

holds with high probability and C1 is a universal constant (due to Lemma 2).

Moreover, since v∗ ∈ R(Σβ
v∗), there exists g ∈ H, v∗ = Σβ

v∗g. Notice Σv∗ is a bounded,
compact, self-adjoint linear operator (see Section G). Therefore, Hilbert-Schmidt Theorem indicates,
Σv∗ =

∑
i αiψi⟨ψi, ·⟩, where ψi, αi are eigenfunctions and eigenvalues of Σv∗ respectively. Hence,

∥(Σv∗ + λI)−1v∗λ∥ = ∥(Σv∗ + λI)−1Σβ
v∗gλ∥ ≤

∥∥∥∥∥∑
i

⟨ψi, g⟩ψi ·
αβ
i λ

αi + λ

∥∥∥∥∥
≤λβ

∥∥∥∥∥∑
i

⟨ψi, g⟩

∥∥∥∥∥ ≤ ∥Σv∗
−βv∗∥ · λβ . (25)

Combine (23), (24) and (25) and cancel ∥ũ∥, we can conclude that

C1

λ
√
nmin

+ ∥Σv∗
−βv∗∥ · λβ +

max
(
C0, ∥φ(x)∥2

)
λ
√
nmin

≥ 1

2
∥ũ∥,

with high probability. Set λ = max(C1,C0,1)

n
1/4
min

, we have

2

n
1/4
min

+
max(C1, C0, 1)

β∥Σ−β
v∗ v∗∥

n
β/4
min

≥ 1

2
∥ũ∥,

holds with high probability. Therefore, ∃N2, when nmin > N2, ∥ũ∥ = Op(n
−β/4
min ).

Since ∥ũ∥ = op(1), as long as δ ≥ K · n−β/4
min where K > 0 is a constant, there exists a constant N

such that, when nmin > N , ṽ is in the interior of H∗ with high probability. When this happens, the
constraint v ∈ H∗ is no longer active. This means ṽ is a stationary point of the objective function in
(15). Moreover, ṽ ∈ H∗, so it is in the feasible region of (8) thanks to Assumption 2. This further
indicates that ṽ is also a solution to (8). As (8) is a strictly convex optimization problem, ṽ is also its
only solution. Therefore ṽ = v̂ and ∥v̂ − v∗∥ = ∥ṽ − v∗∥ = Op(n

−β/4
min ).

Lemma 2. Given any v∗ ∈ H such that E[∇vℓ(v
∗)] = 0, if ∥φ(x)∥H ≤ B then

P (∥∇vℓ(v
∗)∥H > δ) ≤ 4 exp

(
−nminδ

2

B2

)
.

Proof. Write down the definition of ∇vℓ(v
∗). Notice

∇vℓ(v
∗) = − 1

n+

n+∑
i=1

cos⟨v, φ(xi)⟩φ(xi)︸ ︷︷ ︸
a

+
1

n−

n−∑
i=1

sin⟨v, φ(xi)⟩φ(xi)︸ ︷︷ ︸
b

.

By using Hilbert-space Hoeffding’s inequality [32], we know for all δa, δb > 0

P (∥a− E[a]∥H > δa) ≤ 2 exp

(
−Cn+δ

2
a

B2

)
and P (∥b− E[b]∥H > δb) ≤ 2 exp

(
−Cn−δ

2
b

B2

)
,
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where C is a constant. Let δ = δa = δb,

P (∥a+ b∥H > 2δ) =P (∥a+ b− (E[a] + E[b])∥H > 2δ)

≤P (∥a− E[a]∥H + ∥b− E[b]∥H > δa + δb)

≤P (∥a− E[a]∥H > δa) + P (∥b− E[b]∥H > δb)

≤4 exp

(
−Cnminδ

2

B2

)
,

where the first equality used the condition that E[∇vℓ(v
∗)] = E[a] + E[b] = 0. This completes the

proof.

F Proof of Proposition 3

Proof. We start from the definition of E[∇vℓ(v
∗)]:

−E[∇vℓ(v
∗)] =E+

[
1

n+

n∑
i=1

cos⟨v∗, φ(xi)⟩φ(xi)

]
− E−

[
1

n−

n∑
i=1

sin⟨v∗, φ(xi)⟩φ(xi)

]

=E+ [cos⟨v∗, φ(x)⟩φ(x)]− E−

[
sin⟨v∗, φ(x)⟩
cos⟨v∗, φ(x)⟩

cos⟨v∗, φ(x)⟩φ(x)
]

=E+ [cos⟨v∗, φ(x)⟩φ(x)]− E−

[
p+(x)

p−(x)
cos⟨v∗, φ(x)⟩φ(x)

]
=E+ [cos⟨v∗, φ(x)⟩φ(x)]− E+[cos⟨v∗, φ(x)⟩φ(x)] = 0,

where the third equality is due to the fact that ⟨v∗, φ(x)⟩ = atan p+(x)
p−(x) . Since p+/p− ∈ [0,∞) ,

⟨v, φ(x)⟩ ∈ [0, π/2). As v∗ is unique by assumption, Assumption 1 holds.

G Properties of Operator Σv0

By construction, it is easy to verify that Σv0 is self-adjoint.

First, we prove that the integral operator

Σv0u = E+[sin⟨v0, φ(x)⟩φ(x) · u(x)] + E−[cos⟨v0, φ(x)⟩φ(x) · u(x)],

is a bounded operator. For all u ∈ Ball(0, 1), where Ball(0, 1) is the unit ball in ∥ · ∥H,

∥Σv0u∥H ≤ ∥E+[sin⟨v0, φ(x)⟩φ(x) · u(x)]∥H + ∥E−[cos⟨v0, φ(x)⟩φ(x) · u(x)]∥H
≤ E+[∥ sin⟨v0, φ(x)⟩φ(x)∥H · ∥u(x)∥H] + E−[∥ cos⟨v0, φ(x)⟩φ(x)∥H · ∥u(x)∥H]

≤ E+[∥φ(x)∥H · ∥u(x)∥H] + E−[∥φ(x)∥H · ∥u(x)∥H]

≤ E+[∥φ(x)∥H] + E−[∥φ(x)∥H].

Hence, Σv0 is a bounded operator as long as ∥φ(x)∥H is bounded.

Second, we show Σv0 is trace class hence compact. Let ψi, i ∈ N be an orthonormal basis in H, then∑
i

⟨ψi,Σv0ψi⟩

=E+[sin⟨v0, φ(x)⟩
∑
i∈N

⟨ψi, φ(x)⊗ φ(x)ψi⟩] + E−[cos⟨v0, φ(x)⟩
∑
i∈N

⟨ψi, φ(x)⊗ φ(x)ψi⟩]

=E+[sin⟨v0, φ(x)⟩
∑
i∈N

⟨ψi, φ(x)⟩2] + E−[cos⟨v0, φ(x)⟩
∑
i∈N

⟨ψi, φ(x)⟩2]

=E+[sin⟨v0, φ(x)⟩ · ∥φ(x)∥2H] + E−[cos⟨v0, φ(x)⟩ · ∥φ(x)∥2H] <∞

holds as long as ∥φ(x)∥H is bounded. This shows Σv0 is trace-class and therefore, compact.
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H Proof of Proposition 5

Proof. Let us define for α ∈ [0, .5],

F̃ ∗
−(·, α) := 1− [(1− α)F ∗

−(·) + αF ∗
+(·)], F̃ ∗

+(·, α) := 1− [αF ∗
−(·) + (1− α)F ∗

+(·)].

We can see that r(τ, α) := (F̃ ∗
−(τ, α), F̃

∗
+(τ, α)) is a parameterization for the space between ROC∗

and the diagonal from (0, 0) to (1, 1). We can compute the surface area using the surface integral
formula:

A0 :=

∫
dom(τ)

∫
[0,.5]

∥∂τr(τ, α)× ∂αr(τ, α)∥ dαdτ,

where ∂τr(τ, α) =

∂τ F̃ ∗
−(τ, α)

∂τ F̃
∗
+(τ, α)
0

 and ∂αr(τ, α) =

∂αF̃ ∗
−(τ, α)

∂αF̃
∗
+(τ, α)
0

. It can be seen that

∂αr(τ, α) =

[
F ∗
−(τ)− F ∗

+(τ)
F ∗
+(τ)− F ∗

−(τ)
0

]
for all α. Rewrite A0:

A0 =

∫
dom(τ)

∫
[0,.5]

∣∣∣[F ∗
−(τ)− F ∗

+(τ)
]
∂τ F̃

∗
+(τ, α)−

[
F ∗
+(τ)− F ∗

−(τ)
]
∂τ F̃

∗
−(τ, α)

∣∣∣ dαdτ,

=

∫
dom(τ)

∫
[0,.5]

∣∣[F ∗
−(τ)− F ∗

+(τ)
]
(∂τF

∗
+(τ) + ∂τF

∗
−(τ))

∣∣ dαdτ,

=

∫
dom(τ)

∫
[0,.5]

∥a(τ)× b(τ)∥ dαdτ, (26)

where a(τ) =

[
F ∗
−(τ)− F ∗

+(τ)
F ∗
+(τ)− F ∗

−(τ)
0

]
and b(τ) =

[
∂τF

∗
−(τ)

∂τF
∗
+(τ)
0

]
. Both a and b are free from α. Rewriting

the cross product in (26) in a different form, we obtain

A0 =
√
2

∫
dom(τ)

∫
[0,.5]

sin(θ(τ))
∣∣F ∗

−(τ)− F ∗
+(τ)

∣∣√∂τF ∗
+(τ)

2 + ∂τF ∗
−(τ)

2 dαdτ,

=

√
2

2

∫
dom(τ)

sin(θ(τ))
∣∣F ∗

−(τ)− F ∗
+(τ)

∣∣√∂τF ∗
+(τ)

2 + ∂τF ∗
−(τ)

2 dτ,

=

√
2

2

∫
dom(τ)

sin(θ(τ))f∗−(τ)
∣∣F ∗

−(τ)− F ∗
+(τ)

∣∣√(
f∗+(τ)

f∗−(τ)

)2

+ 1 dτ, (27)

where θ(τ) is the angle between a(τ) and b(τ). b(τ) is the tangent vector of the ROC∗. Knowing
the slope of ROC∗ is the likelihood ratio (see Section 4.1) and a(τ) points at the 45 degree downward
regardless of τ , we can see θ(τ) =

[
atan p(x)

q(x)

]
+ π

4 . Using the fact that f∗
+(t(x))

f∗
−(t(x)) =

p+(x)
p−(x) and the

law of unconscious statistician:

A0 =

√
2

2
Ep−

sin

[(
atan

p+(x)

p−(x)

)
+
π

4

] ∣∣F ∗
−(t

∗(x))− F ∗
+(t

∗(x))
∣∣√(

p+(x)

p−(x)

)2

+ 1


Replacing

√
p+(x)
p−(x)

2
+ 1 with its Fenchel dual as introduced in Section 4.1 and pulling the sup out of

the expectation yields the desired result.

Differentiating the objective (12) with respect to v and setting the derivative to zero, we can see that
superemum is attained at v∗ = atan p+

p−
.
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Figure 7: The time comparison over different sample sizes n = n+ = n−.

I Wall Clock Comparison

In this experiment, we evaluate the computation time of the our two-step algorithm and the naive
implementation of the offline AUC maximization (10) by plotting the wall clock time in Figure 7.
Both the AUC maximization and two-step procedure are implemented using MATLAB’s optimization
toolbox. See Section J for details. The two-step procedure’s computation time grows at a much slower
rate than the offline AUC maximization via a pairwise loss function. Note that as we explained in
Section 6.3, if the surrogate loss is decomposable, the objective can be computed with a computational
complexity O(n log(n)) [21]. If it the loss is squared loss, the offline algorithm can be performed
with a O(n) computational complexity [39].

In this experiment, both methods are written in fully vectorized code. The first order derivatives
are provided to the fmincon and fminunc to accelerate the computation. Code can be found in the
supplementary material.

J Experiment Setup

In Section 6.2, we reduce the dimension of CIFAR-10 dataset to 50. We first train a residual neu-
ral network [17] using logistic regression on all 10 classes. This 103-layer network structure was
borrowed from a MATLAB tutorial (https://www.mathworks.com/help/deeplearning/ug/
train-residual-network-for-image-classification.html). MATLAB provides a pre-
trained version of this network. To obtain bounded features, we append a fully connected linear layer
(output dimension 50) and a bounded activation layer (clipped-relu) to the last average pooling layer
in the network. We freeze the earlier layers and only train the last two layers for 5 epochs.

The dataset and the code that reproduces Figure 6 can be found in the supplementary materials. We
invite reviewers to reproduce our results.

K Estimating log
[
p+(x)
p−(x)

]
We can also leverage that v∗ is the arctangent of the likelihood ratio and introduce mild assumptions
on p+ and p−. When p+(x) and p−(x) are both members of the exponential family and share the
same sufficient statistic h(x) ∈ Rm, then ∃v∗ ∈ Rm such that log

[
p+(x)
p−(x)

]
= ⟨v∗,h(x)⟩ + C,

where C is a constant. If we choose to parameterize the log likelihood ratio using a linear model,
⟨v,h(x)⟩+ v0, then (7) becomes

(v̂, v̂0) := argmax
v∈Rm,
v0∈R

1

n+

n+∑
i=1

sin[atan exp(⟨v,h(xi)⟩+ v0)] +
1

n−

n−∑
i=1

cos[atan exp(⟨v,h(xi)⟩+ v0)].

(28)
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Figure 8: Estimation of the arctangent density ratio function.

Note we do not have to restrict the optimization to a bounded function family as log
[
p+(x)
p−(x)

]
∈ R,

and ⟨v̂,h(x)⟩+ v̂0 is an estimate of the likelihood ratio.

In this paper, we focus on (8) since the objective in (28) is non-convex with respect to v thus presents
extra challenges in the theoretical analysis, although (28) is easier to implement in practice due to its
unconstrained nature.

L Numerical Simulation of atan p+
p−

Estimation

We draw 100 samples from X+ ∼ N (1, 1) and X− ∼ N (−1, 1) and solve (8) to estimate the
arctangent density ratio. The estimated arctangent density ratio with standard deviation (over 72
runs) are plotted in Figure 8. We use Gaussian kernel and hyperparameters (kernel bandwidth and
regularization parameter) are tuned using cross validation.

We observe that the estimated arctangent ratio using the proposed method is very close to the ground
truth and has a small standard deviation.

M Comparison with Convergence Result in Nguyen et al. [28]

The convergence of (log) density ratio estimation have been developed for two KL divergence
based estimators [28]. However, these convergence theories are not general theories for arbitrary
f -divergences. Thus their proofs cannot be easily applied to our ROC divergence.

Moreover, Theorem 1 is not a minor modification of convergence theories in [28]. Specifically,
Nguyen et al. [28] prove the likelihood ratio converges in Hellinger distance, while we prove the
arctangent likelihood ratio converges in Hilbert space norm. The proofs rely on completely different
machinery and assumptions. These technical results depend on the variational objective functions the
estimators maximize and are not interchangeable.
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