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This supplementary material is organized as follows:

• Section A provides more implementation details of the proposed DeVRF.
• Section B presents additional results of the per-scene evaluation as well as evaluations on

an additional forward-facing real-world deformable scene.
• Section C conducts additional ablations to further verify the effectiveness of our low-cost

data capture process and the proposed DeVRF model.

In addition to this supplementary material, it is worth noting that we also provide a supplementary
video to better visualize and compare our results to other SOTA approaches on all synthetic and
real-world deformable scenes.

A Implementation Details

We use the PyTorch [6] deep learning framework to conduct all our experiments on a single NVIDIA
GeForce RTX3090 GPU.

3D canonical space optimization. During training, we set the voxel resolution of 3D canonical
space, i.e., density grid Vdensity and color grid Vcolor, to 160× 160× 160 for inward-facing scenes
and 256× 256× 128 for forward-facing scenes, and we use a shallow MLP with 2 hidden layers (128
channels for inward-facing scenes, and 64 channels for forward-facing scenes). The 3D canonical
space is optimized using a standard Adam optimizer [1] for 20k with a batch size of 8192 rays for
inward-facing scenes and 4096 rays for forward-facing scenes. The learning rate of Vdensity, Vcolor,
and the designed MLP are set to 10−1, 10−1, and 10−3, respectively.

4D voxel deformation field optimization. The dense 4D voxel deformation field is modeled in
Nt × C × Nx × Ny × Nz resolution, which corresponds to 50 × 3 × 160 × 160 × 160. In our
proposed coarse-to-fine optimization, we progressively upscale the (x-y-z) resolution of the 4D voxel
deformation field Vmotion as (10× 10× 10)→ (20× 20× 20)→ (40× 40× 40)→ (80× 80× 80)
→ (160× 160× 160). Such an optimization strategy can estimate the fine-grained voxels motion
from a cascaded learning sequence. The base learning rate of the 4D voxel deformation field is
10−3, which is progressively decayed to 10−4 during coarse-to-fine optimization. For loss weights,
we set ωRender = 1, ωCycle = 100, ωFlow = 0.005, and ωTV = 1 across all scenes. The 4D voxel
deformation field is optimized using Adam optimizer [1] for 25k iterations with a batch size of 8192
rays.
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B Additional Results

B.1 Per-scene Evaluation on Inward-facing Synthetic Deformable Scenes.

For quantitative comparison, Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index
(SSIM) [9], and Learned Perceptual Image Patch Similarity (LPIPS) [10] with VGG [8] are employed
as evaluation metrics. PSNR and SSIM are simple and shallow functions, while LPIPS measures the
perceptual similarity of deep visual representations and is more representative of visual quality. We
report the per-scene comparisons on five inward-facing synthetic dynamic scenes - Lego, Floating
robot, Daisy, Glove, Kuka - in Tab. 1 and Tab. 2. DeVRF achieves the best performance in terms of
LPIPS in five scenes, and almost the second- or third-best in terms of PSNR and SSIM among all
approaches. For the floating robot, daisy, and kuka, DeVRF achieves the best performance in terms of
both the PSNR and LPIPS. Most importantly, our per-scene optimization only takes less than 10mins
with less than 5.0GB GPU memory on a single NVIDIA GeForce RTX3090 GPU, which is about
two orders of magnitude faster than other approaches.

Table 1: Per-scene quantitative evaluation on inward-facing synthetic scenes (Lego, Floating robot,
and Daisy) against baselines and ablations of our method. We color code each cell as best ,
second best , and third best .

LEGO FLOATING ROBOT DAISY

PSNR↑ SSIM↑ LPIPS↓ GPU (GB)↓ Time↓ PSNR↑ SSIM↑ LPIPS↓ GPU (GB)↓ Time↓ PSNR↑ SSIM↑ LPIPS↓ GPU (GB)↓ Time↓
Neural Volumes [3] 5.958 0.369 0.8314 19.4 22.4hrs 6.403 0.405 0.7127 19.4 22.4hrs 13.47 0.679 0.4429 19.4 22.4hrs
D-NeRF [7] 28.41 0.935 0.0582 10.3 18.8hrs 31.98 0.978 0.0251 10.3 18.4hrs 33.51 0.990 0.0137 9.8 17.9hrs
D-NeRF [7]-2 stage 24.34 0.885 0.1020 9.7 18.5hrs 28.79 0.973 0.0289 9.7 18.5hrs 31.40 0.985 0.0225 9.7 17.8hrs
D-NeRF [7]-dynamic 20.29 0.852 0.1360 10.0 22.0hrs 14.22 0.821 0.2720 10.0 21.6hrs 22.76 0.947 0.0873 9.5 21.7hrs
Nerfies [4] 30.34 0.986 0.0303 22.5 19.3hrs 27.07 0.973 0.0773 22.5 18.4hrs 38.26 0.998 0.0056 22.5 18.5hrs
Nerfies [4]-2 stage 29.27 0.984 0.0449 22.4 15.8hrs 30.05 0.991 0.0286 22.4 15.8hrs 35.81 0.997 0.0100 22.4 15.8hrs
Nerfies [4]-dynamic 21.15 0.911 0.1410 22.5 18.7hrs 19.84 0.859 0.1400 22.5 19.3hrs 23.71 0.864 0.1450 22.4 19.4hrs
HyperNeRF [5] 30.99 0.963 0.0360 22.5 21.3hrs 33.15 0.930 0.0511 22.5 19.8hrs 36.31 0.994 0.0080 22.5 20.8hrs
HyperNeRF [5]-2stage 27.28 0.933 0.0758 22.5 21.3hrs 28.28 0.955 0.0554 22.3 18.9hrs 31.63 0.983 0.0238 22.3 18.5hrs
HyperNeRF [5]-dynamic 14.41 0.774 0.2910 22.4 19.8hrs 14.88 0.835 0.2700 22.4 21.0hrs 22.73 0.946 0.0957 22.4 21.0hrs
NSFF [2] 25.44 0.912 0.0941 23.6 12.7hrs 25.27 0.935 0.0944 20.9 13.2hrs 28.71 0.967 0.0493 20.9 12.8hrs
NSFF [2]-dynamic 15.14 0.762 0.2732 12.5 14.8hrs 16.66 0.878 0.1769 15.7 16.0hrs 24.02 0.937 0.1069 15.7 16.0hrs
Ours (base) 17.83 0.799 0.2060 4.1 8mins 21.74 0.907 0.1040 4.5 8mins 25.91 0.950 0.0637 4.2 7mins
Ours w/ c2f 27.55 0.952 0.0342 4.1 7mins 32.04 0.983 0.0108 4.5 7mins 37.89 0.996 0.0055 4.2 6mins
Ours w/ c2f, tv 28.44 0.958 0.0301 4.1 8mins 32.78 0.985 0.0101 4.5 7mins 38.55 0.950 0.0048 4.2 6mins
Ours w/ c2f, tv, cycle 29.11 0.963 0.0254 4.1 8mins 34.12 0.988 0.0084 4.5 8mins 39.00 0.996 0.0044 4.2 7mins
Ours w/ c2f, tv, cycle, flow 29.25 0.964 0.0250 4.1 9mins 35.20 0.989 0.0074 4.5 9mins 38.39 0.996 0.0046 4.2 7mins

Table 2: Per-scene quantitative evaluation on inward-facing synthetic scenes (Glove and Kuka)
against baselines and ablations of our method. We color code each cell as best , second best , and
third best .

GLOVE KUKA

PSNR↑ SSIM↑ LPIPS↓ GPU(GB)↓ Time↓ PSNR↑ SSIM↑ LPIPS↓ GPU(GB)↓ Time↓
Neural Volumes [3] 6.371 0.449 0.6101 19.4 22.4hrs 15.92 0.757 0.1645 19.4 22.4hrs
D-NeRF [7] 34.24 0.927 0.0455 9.8 18.5hrs 31.03 0.975 0.0349 9.8 18.4hrs
D-NeRF [7]-2 stage 30.86 0.922 0.0494 9.7 18.3hrs 26.05 0.959 0.0614 9.6 18.8hrs
D-NeRF [7]-dynamic 15.71 0.801 0.2660 10.3 22.1hrs 14.97 0.777 0.2679 9.5 22.4hrs
Nerfies [4] 36.37 0.993 0.0328 18.9 18.9hrs 33.40 0.996 0.0193 22.5 18.5hrs
Nerfies [4]-2 stage 34.96 0.991 0.0549 22.4 15.9hrs 31.79 0.994 0.0227 22.4 15.8hrs
Nerfies [4]-dynamic 15.67 0.636 0.1740 22.5 18.5hrs 16.86 0.698 0.2372 22.5 19.3hrs
HyperNeRF [5] 35.33 0.956 0.0471 22.5 20.0hrs 32.88 0.983 0.0255 22.5 20.8hrs
HyperNeRF [5]-2stage 31.47 0.935 0.0694 22.3 18.8hrs 27.12 0.959 0.0532 22.3 18.6hrs
HyperNeRF [5]-dynamic 22.04 0.850 0.1870 22.4 20.6hrs 15.97 0.856 0.2429 22.4 20.8hrs
NSFF [2] 27.66 0.902 0.1050 20.7 12.7hrs 28.24 0.962 0.0574 20.9 12.7hrs
NSFF [2]-dynamic 16.51 0.846 0.2091 15.7 16.0hrs 18.59 0.865 0.1986 15.7 14.8hrs
Ours (base) 25.14 0.867 0.1080 4.6 7mins 21.59 0.914 0.1050 4.5 8mins
Ours w/ c2f 30.69 0.959 0.0274 4.6 7mins 31.70 0.985 0.0147 4.5 7mins
Ours w/ c2f, tv 31.38 0.963 0.0234 4.6 8mins 32.48 0.987 0.0176 4.5 8mins
Ours w/ c2f, tv, cycle 33.67 0.970 0.0183 4.6 8mins 33.95 0.989 0.0147 4.5 8mins
Ours w/ c2f, tv, cycle, flow 34.67 0.973 0.0168 4.6 8mins 33.96 0.989 0.0147 4.5 9mins

B.2 Per-scene Video Comparisons on Synthetic and Real-world Deformable Scenes.

We also provide a supplementary video to better visualize and compare our results to SOTA ap-
proaches on all five synthetic and three real-world deformable scenes. As can be seen from the video,
our DeVRF achieves on-par high-fidelity dynamic novel view synthesis results on all scenes and
synthesizes the cleanest depth maps compared to other approaches.
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Table 3: Additional quantitative evaluation on a forward-facing real-world scene against baselines
and ablations of our system. We color code each cell as best , second best , and third best .

PIG TOY

PSNR↑ SSIM↑ LPIPS↓ GPU (GB)↓ Time↓
D-NeRF [7] 31.23 0.974 0.0381 12.4 22.1hrs
Nerfies [4] 30.66 0.986 0.0487 22.0 20.5hrs
HyperNeRF [5] 25.92 0.942 0.1037 22.0 22.3hrs
NSFF [2] 28.39 0.957 0.0654 20.5 14.5hrs
Ours (base) 22.84 0.942 0.0739 10.8 8mins
Ours w/ c2f 21.11 0.956 0.0595 10.8 8mins
Ours w/ c2f, tv 21.62 0.957 0.0578 10.8 8mins
Ours w/ c2f, tv, cycle 30.56 0.967 0.0447 10.8 9mins
Ours w/ c2f, tv, cycle, flow 30.85 0.967 0.0447 10.8 10mins

Significant quality enhancements of our DeVRF can be observed in the video examples for floating
robot, kuka, flower-360°, plant, and rabbit. Notably, clear differences can be observed in the plant
and rabbit scenes, where D-NeRF [7] and NSFF [2] generate intermittent motions. In contrast, the
quadruple interpolation of the 4D voxel deformation field in our DeVRF allows us to synthesize
smooth motions at novel time steps.

In addition, the quadruple interpolation of the 4D voxel deformation field in DeVRF allows us to
conveniently and efficiently synthesize novel views at novel time steps, while existing approaches
(i.e., Nerfies [4] and HyperNeRF [5]) cannot synthesize the views at novel time steps that have not
been seen during model training [4, 5]. Thus, when rendering video examples, we generate results
for Nerfies [4] and HyperNeRF [5] only on the training and testing time steps. This makes their
videos’ duration shorter than ours.

B.3 Additional Forward-facing Real-world Deformable Scene Evaluation.

D-NeRF Nerfies HyperNeRFOursGroundtruth

For the red box region of each scene, we show its zoom-in at the upper of each picture

NSFF

Figure 1: Qualitative comparisons of baselines and DeVRF on the additional real-world scene.

We additionally collected another forward-facing real-world deformable scene where a human rotated
and squeezed a toy pig in 540 × 960 pixels using 4 cameras, and we chose 3 views of them as training
data and the other view as test data. As shown in Tab. 3, DeVRF achieves two orders of magnitude
speedup compared to other approaches, and the second-best result in terms of PSNR and LPIPS
metrics and the third-best result in terms of SSIM metric. Fig. 1 visualizes qualitative comparisons of
DeVRF and baselines on this scene.

C Additional Ablations

To further evaluate the influence of the number of dynamic training views, we conduct additional
ablations for DeVRF on four real-world dynamic scenes and report the per-scene metrics as well
as the average metrics with respect to the number of dynamic training views. As shown in Fig.
2, given the same multi-view static images, the performance of DeVRF largely improves with the
increment of dynamic training views and achieves the best performance at three dynamic views. We
additionally visualize the qualitative results of DeVRF with different numbers of dynamic training
views in Fig. 3. Therefore, in our static → dynamic learning paradigm, with static multi-view data
as a supplement, only a few dynamic views are required to significantly boost the performance of
dynamic neural radiance fields reconstruction. This further demonstrates the effectiveness of our
low-cost data capture process and the DeVRF model.
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(a) (b)(b)(a)

Figure 2: Ablation evaluation on the number of dynamic training views on real-world dataset: (a)
PSNR, (b) LPIPS.
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For the red box region of each scene, we show its zoom-in at the bottom-right of each picture

Groundtruth

Figure 3: Qualitative results of DeVRF with different numbers of dynamic training views on real-
world dataset.
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