
Data-Efficient Structured Pruning via
Submodular Optimization

Marwa El Halabi⇤
Samsung - SAIT AI Lab, Montreal

Suraj Srinivas†
Harvard University

Simon Lacoste-Julien
Mila, Université de Montreal

Samsung - SAIT AI Lab, Montreal
Canada CIFAR AI Chair

Abstract

Structured pruning is an effective approach for compressing large pre-trained
neural networks without significantly affecting their performance. However, most
current structured pruning methods do not provide any performance guarantees,
and often require fine-tuning, which makes them inapplicable in the limited-data
regime. We propose a principled data-efficient structured pruning method
based on submodular optimization. In particular, for a given layer, we select
neurons/channels to prune and corresponding new weights for the next layer, that
minimize the change in the next layer’s input induced by pruning. We show that
this selection problem is a weakly submodular maximization problem, thus it
can be provably approximated using an efficient greedy algorithm. Our method
is guaranteed to have an exponentially decreasing error between the original model
and the pruned model outputs w.r.t the pruned size, under reasonable assumptions.
It is also one of the few methods in the literature that uses only a limited-number of
training data and no labels. Our experimental results demonstrate that our method
outperforms state-of-the-art methods in the limited-data regime.

1 Introduction

As modern neural networks (NN) grow increasingly large, with some models reaching billions of
parameters [McGuffie and Newhouse, 2020], they require an increasingly large amount of memory,
power, hardware, and inference time, which makes it necessary to compress them. This is especially
important for models deployed on resource-constrained devices like mobile phones and smart speakers,
and for latency-critical applications such as self-driving cars.

Several approaches exist to compress NNs. Some methods approximate model weights using
quantization and hashing [Gong et al., 2014, Courbariaux et al., 2015], or low-rank approximation
and tensor factorization [Denil et al., 2013, Lebedev et al., 2015, Su et al., 2018]. In another
class of methods called knowledge distillation, a small network is trained to mimic a much larger
network [Bucila et al., 2006, Hinton et al., 2015]. Other methods employ sparsity and group-sparsity
regularisation during training, to induce sparse weights [Collins and Kohli, 2014, Voita et al., 2019].

In this work, we follow the network pruning approach, where the redundant units (weights, neurons
or filters/channels) of a pre-trained NN are removed; see [Kuzmin et al., 2019, Blalock et al., 2020,

⇤work done partially at MIT, CSAIL.
†work done partially at Idiap Research Institute, Switzerland.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Hoefler et al., 2021] for recent surveys. We also focus on the limited-data regime, where only few
training data is available and data labels are unavailable. The advantage of pruning approaches is
that, unlike weights approximation-based methods, they preserve the network structure, allowing
retraining after compression, and unlike training-based approaches, they do not require training from
scratch, which is costly and requires large training data. It is also possible to combine different
compression approaches to compound their benefits, see e.g., [Kuzmin et al., 2019, Section 4.3.4].

Existing pruning methods fall into two main categories: unstructured pruning methods which prune
individual weights leading to irregular sparsity patterns, and structured pruning methods which prune
regular regions of weights, such as neurons, channels, or attention heads. Structured pruning methods
are generally preferable as the resulting pruned models can work with off-the-shelf hardware or
kernels, as opposed to models pruned with unstructured pruning which require specialized ones.

The majority of existing structured pruning methods are heuristics that do not offer any theoretical
guarantees. Moreover, most pruning methods are inapplicable in the limited-data regime, as they rely
on fine-tuning with large training data for at least a few epochs to recover some of the accuracy lost
with pruning. Mariet and Sra [2015] proposed a “reweighting" procedure applicable to any pruning
method, which optimize the remaining weights of the next layer to minimize the change in the input
to the next layer. Their empirical results on pruning single linear layers suggest that reweighting
can provide a similar boost to performance as fine-tuning, without the need for data labels.

Our contributions We propose a principled data-efficient structured pruning method based on
submodular optimization. In each layer, our method simultaneously selects neurons to prune and new
weights for the next layer, that minimize the change in the next layer’s input induced by pruning. The
optimization with respect to the weights, for a fixed selection of neurons, is the same one used for
reweighting in [Mariet and Sra, 2015]. The resulting subset selection problem is intractable, but we
show that it can be formulated as a weakly submodular maximization problem (see Definition 2.1).
We can thus use the standard greedy algorithm to obtain a (1� e��)-approximation to the optimal
solution, where � is non-zero if we use sufficient training data. We further adapt our method to prune
any regular regions of weights; we focus in particular on pruning channels in convolution layers. To
prune multiple layers in the network, we apply our method to each layer independently or sequentially.

We show that the error induced by pruning with our method on the model output decays with an
O(e��k) rate w.r.t the number k of neurons/channels kept, under reasonable assumptions. Our
method uses only limited training data and no labels. Similar to [Mariet and Sra, 2015], we observe
that reweighting provides a significant boost in performance not only to our method, but also to other
baselines we consider. However unlike [Mariet and Sra, 2015], we only use a small fraction of the
training data, around⇠ 1% in our experiments. Our experimental results demonstrate that our method
outperforms state-of-the-art pruning methods, even when reweighting is applied to them too, in the
limited-data regime, and it is among the best performing methods in the standard setting.

Related work A large variety of structured pruning approaches has been proposed in the
literature, based on different selection schemes and algorithms to solve them. Some works prune
neurons/channels individually based on some importance score [He et al., 2014, Li et al., 2017,
Liebenwein et al., 2020, Mussay et al., 2020, 2021, Molchanov et al., 2017, Srinivas and Babu, 2015].
Such methods are efficient and easy to implement, but they fail to capture higher-order interactions
between the pruned parameters. Most do not provide any performance guarantee. One exception
are the sampling-based methods of [Liebenwein et al., 2020, Mussay et al., 2020, 2021], who show
an O(1/k) error rate, under some assumptions on the model activations.

Closer to our approach are methods that aim to prune neurons/channels that minimize the change
induced by pruning in the output of the layer being pruned, or its input to the next layer [Luo et al.,
2017, He et al., 2017, Zhuang et al., 2018, Ye et al., 2020b]. These criteria yield an intractable
combinatorial problem. Existing methods either use a heuristic greedy algorithm to solve it [Luo
et al., 2017, Zhuang et al., 2018], or they solve instead its `1-relaxation using alternating minimization
[He et al., 2017], or a greedy algorithm with Frank-Wolfe like updates [Ye et al., 2020b]. Among
these works only [Ye et al., 2020b] provides theoretical guarantees, showing an O(e�ck) error rate.
Their method is more expensive than ours, and only optimize the scaling of the next layer weights
instead of the weights themselves. A global variant of this method is proposed in Ye et al. [2020a,b],
which aim to prune neurons/channels that directly minimize the loss of the pruned network. A similar
greedy algorithm with Frank-Wolfe like updates is used to solve the `1-relaxation of the selection
problem. This method has an O(1/k2) error rate and is very expensive, as it requires a full forward

2

pass through the network at each iteration. See Appendix A for a more detailed comparison of our
method with those of [Ye et al., 2020a,b].

Mariet and Sra [2015] depart from the usual strategy of pruning parameters whose removal influences
the network the least. They instead select a subset of diverse neurons to keep in each layer by sampling
from a Determinantal Point Process, then they apply their reweighting procedure. Their experimental
results show that the advantage of their method is mostly due to reweighting (see Figure 4 therein).

2 Preliminaries

We begin by introducing our notation and some relevant background from submodular optimization.

Notation: Given a ground set V = {1, 2, · · · , d} and a set function F : 2V ! R+, we denote
the marginal gain of adding a set I ✓ V to another set S ✓ V by F (I | S) = F (S [I) � F (S),
which quantifies the change in value when adding I to S. The cardinality of a set S is written as |S|.
Given a vector x 2 Rd, we denote its support set by supp(x) = {i 2 V |xi 6= 0}, and its `2-norm
by kxk2. Given a matrix X 2 Rd0⇥d, we denote its i-th column by Xi, and its Frobenius norm by
kXkF . Given a set S ✓ V , XS is the matrix with columns Xi for all i 2 S, and 0 otherwise, and 1S

is the indicator vector of S, with [1S]i = 1 for all i 2 S, and 0 otherwise.

Algorithm 1 GREEDY

1: Input: Ground set V , set function F : 2V ! R+, budget k 2 N+

2: S ;
3: while |S| < k do
4: i⇤ argmaxi2V \S F (i | S)
5: S S [{i⇤}
6: end while
7: Output: S

Weakly submodular maximization: A set function F is submodular if it has diminishing marginal
gains: F (i | S) � F (i | T) for all S ✓ T , i 2 V \ T . We say that F is normalized if F (;) = 0, and
non-decreasing if F (S) F (T) for all S ✓ T .
Given a non-decreasing submodular function F , selecting a set S ✓ V with cardinality |S| k
that maximize F (S) can be done efficiently using the GREEDY algorithm (Alg. 1). The returned
solution is guaranteed to satisfy F (Ŝ) � (1 � 1/e)max|S|k F (S) [Nemhauser et al., 1978]. In
general though maximizing a non-submodular function over a cardinality constraint is NP-Hard
[Natarajan, 1995]. However, Das and Kempe [2011] introduced a notion of weak submodularity
which is sufficient to obtain a constant factor approximation with the GREEDY algorithm.
Definition 2.1. Given a set function F : 2V ! R, U ✓ V, k 2 N+, we say that F is �U,k-weakly
submodular, with �U,k > 0 if

�U,kF (S|L)
X

i2S

F (i|L),

for every two disjoint sets L, S ✓ V , such that L ✓ U, |S| k.

The parameter �U,k is called the submodularity ratio of F . It characterizes how close a set function
is to being submodular. If F is non-decreasing then �U,k 2 [0, 1], and F is submodular if and only
if �U,k = 1 for all U ✓ V, k 2 N+. Given a non-decreasing �Ŝ,k-weakly submodular function F , the
Greedy algorithm is guaranteed to return a solution Ŝ satisfying F (Ŝ) � (1�e��Ŝ,k)max|S|k F (S)
[Elenberg et al., 2016, Das and Kempe, 2011]. Hence, the closer F is to being submodular, the better
is the approximation guarantee.

3 Reweighted input change pruning

In this section, we introduce our approach for pruning neurons in a single layer. Given a large pre-
trained NN, n training data samples, and a layer ` with n` neurons, our goal is to select a small number

3

k out of the n` neurons to keep, and prune the rest, in a way that influences the network the least. One
way to achieve this is by minimizing the change in input to the next layer `+ 1, induced by pruning.
However, simply throwing away the activations from the dropped neurons is wasteful. Instead, we
optimize the weights of the next layer to reconstruct the inputs from the remaining neurons.

Formally, let A` 2 Rn⇥n` be the activation matrix of layer ` with columns a`1, · · · , a`n`
, where

a`i 2 Rn is the vector of activations of the ith neuron in layer ` for each training input, and let
W `+1 2 Rn`⇥n`+1 be the weight matrix of layer ` + 1 with columns w`+1

1 , · · · , w`+1
n`+1

, where
w`+1

i 2 Rn` is the vector of weights connecting the ith neuron in layer `+ 1 to the neurons in layer
`. When a neuron is pruned in layer `, the corresponding column of weights in W ` and row in W `+1

are removed. Pruning n` � k neurons in layer ` reduces the number of parameters and computation
cost by (n` � k)/n` for both layer ` and `+ 1.

Let V` = {1, · · · , n`}. Given a set S ✓ V`, we denote by A`
S the matrix with columns a`i for all

i 2 S, and 0 otherwise. That is, A`
S is the activation matrix of layer ` after pruning. We choose a set

of neurons S ✓ V` to keep and new weights W̃ `+1 2 Rn`⇥n`+1 that minimize:

min
|S|k,W̃ `+12Rn`⇥n`+1

kA`W `+1 �A`
SW̃

`+1k2F (1)

Note that A`W `+1 are the original inputs of layer l + 1, and A`
SW̃

`+1 are the inputs after pruning
and reweighting, i.e., replacing the weights W `+1 of layer `+ 1 with the new weights W̃ `+1.

3.1 Greedy selection

Solving Problem (1) exactly is NP-Hard [Natarajan, 1995]. However, we show below that it can be
formulated as a weakly submodular maximization problem, hence it can be efficiently approximated.
Let

F (S) = kA`W `+1k2F � min
W̃ `+1

kA`W `+1 �A`
SW̃

`+1k2F , (2)

then Problem (1) is equivalent to max|S|k F (S).
Proposition 3.1. Given U ✓ V, k 2 N+, F is a normalized non-decreasing �U,k-weakly submodular
function, with

�U,k �
minkzk2=1,kzk0|U |+k kA`zk22
maxkzk2=1,kzk0|U |+1 kA`zk22

.

The proof of Proposition 3.1 follows by writing F as the sum of n`+1 sparse linear regression
problems F (S) =

Pn`+1

m=1 kA`w`+1
m k22�minsupp(w̃m)✓S kA`w`+1

m �A`w̃mk22, and from the relation
established in [Elenberg et al., 2016, Das and Kempe, 2011] between weak submodularity and sparse
eigenvalues of the covariance matrix (see Appendix B.1).

We use the GREEDY algorithm to select a set Ŝ ✓ V` of k neurons to keep in layer `. As discussed in
Section 2, the returned solution is guaranteed to satisfy

F (Ŝ) � (1� e��Ŝ,k) max
|S|k

F (S) (3)

Computing the lower bound on the submodularity ratio �Ŝ,k in Proposition 3.1 is NP-Hard [Das and
Kempe, 2011]. It is non-zero if any min{2k, n`} columns of A` are linearly independent. If the
number of training data is larger than the number of neurons, i.e., n > n`, this is likely to be satisfied.
We verify that this is indeed the case in our experiments in Appendix E. We also discuss the tightness
of the lower bound in Appendix F.

We show in Appendix D that F satisfies an even stronger notion of approximate submodularity than
weak submodularity, which implies a better approximation guarantee for GREEDY than the one
provided in Eq. (3). Though, this requires a stronger assumption: any k+ 1 columns of A` should be
linearly independent and all rows of W `+1 should be linearly independent. In particular, we would
need that n` n`+1, which is not always satisfied.

In Section 6, we show that the approximation guarantee of Greedy implies an exponentially decreasing
bound on the layerwise error, and on the final output error under a mild assumption.

4

3.2 Reweighting

For a fixed S ✓ V`, the reweighted input change kA`W `+1 �A`
SW̃

`+1k2F is minimized by setting

W̃ `+1 = xS(A`)W `+1, (4)
where xS(A`) 2 Rn`⇥n` is the matrix with columns xS(a`j) such that

xS(a`j) 2 argmin
supp(x)✓S

ka`j �Axk22 for all j 2 V`. (5)

Note that the new weights are given by w̃`+1
im = w`+1

im +
P

j 62S [x
S(A`)]ijw

`+1
jm for all i 2 S, and

w̃`+1
im = 0 for all i 62 S,m 2 V`+1. Namely, the new weights merge the weights from the dropped neu-

rons into the kept ones. This is the same reweighting procedure introduced in [Mariet and Sra, 2015].
But instead of applying it only at the end to the selected neurons Ŝ, it is implicitly done at each iteration
of our pruning method, as it is required to evaluate F . We discuss next how this can be done efficiently.

3.3 Cost

Each iteration of GREEDY requires O(n`) function evaluations of F . Computing F (S) from scratch
needs O(k ·(n` ·n`+1+n ·(n`+n`+1)) time, so a naive implementation of GREEDY is too expensive.
The following Proposition outlines how we can efficiently evaluate F (S + i) given that F (S) was
computed in the previous iteration.
Proposition 3.2. Given S ✓ V` such that |S| k, i 62 S, let projS(a`j) = A`

Sx
S(a`j) be the

projection of a`j onto the column space of A`
S , RS(a`i) = a`i � projS(a

`
i) and projRS(a`

i)
(a`j) 2

argminz=RS(a`
i)�,�2R ka`j � zk22 the corresponding residual and the projection of a`j onto it. We can

write

F (i|S) =
n`+1X

m=1

kprojRS(a`
i)
(A`

V \S)w
`+1
m k22,

where projRS(ai)(A
`
V \S) is the matrix with columns projRS(ai)(a

`
j) for all j 62 S, 0 otherwise.

Assuming F (S), projS(a
`
j) and xS(a`j) for all j 62 S were computed in the previous iteration, we

can compute F (S + i), projS+i(a
`
j) and xS+i(a`j) for all j 62 (S + i) in

O(n` · (n`+1 + n+ k)) time.
The optimal weights in Eq. (4) can then be computed in O(k · n` · n`+1) time, at the end of GREEDY.

The proof is given in Appendix B.2, and relies on using optimality conditions to construct the least
squares solution xS+i(a`j) from xS(a`j).
In total GREEDY’s runtime is then O(k · (n`)2 · (n`+1 +n+ k)). In other words, our pruning method
costs as much as O(k) forward passes in layer `+1 with a batch of size n (assuming n`+1 = O(n`)).
Using a faster variant of GREEDY, called STOCHASTIC-GREEDY [Mirzasoleiman et al., 2015],
further reduces the cost to O(log(1/✏) · (n`)2 · (n`+1+n+k)), or equivalently O(log(1/✏)) forward
passes in layer ` + 1 with a batch of size n, while maintaining almost the same approximation
guarantee (1� e��Ŝ,k � ✏) in expectation. 3

Note also that computing the solutions for different budgets k0 k can be done at the cost of one by
running GREEDY with budget k. Our method is more expensive than methods which prune neurons
individually [He et al., 2014, Li et al., 2017, Liebenwein et al., 2020, Mussay et al., 2020, 2021,
Molchanov et al., 2017, Srinivas and Babu, 2015], but much less expensive than a loss-based method
like [Ye et al., 2020a,b], which requires O(k) forward passes in the full network, for each layer.

4 Pruning regular regions of neurons

In this section, we discuss how to adapt our approach to pruning regular regions of neurons. This
is easily achieved by mapping any set of regular regions to the corresponding set of neurons, then
applying the same method in Section 3. In particular, we focus on pruning channels in CNNs.

3Mirzasoleiman et al. [2015] only consider submodular functions, but it is straighforward to extend their
result to weakly submodular functions Appendix B.3.

5

Given a layer ` with n` output channels, let X` 2 Rn·p`⇥n`⇥rh⇥rw be its activations for each output
channel and training input, where p` is number of patches obtained by applying a filter of size rh⇥rw,
and let F `+1 2 Rn`+1⇥n`⇥rh⇥rw be the weights of layer ` + 1, corresponding to n` filters of size
rh⇥rw for each of its output channels. When an output channel is pruned in layer `, the corresponding
weights in F ` and F `+1 are removed. Pruning n` � k output channels in layer ` reduces the number
of parameters and computation cost by (n` � k)/n` for both layer ` and `+ 1. If layer ` is followed
by a batch norm layer, the weights therein corresponding to the pruned channels are also removed.

We arrange the activations X`
c 2 Rn·p`⇥rh·rw of each channel c into rhrw columns of

A` 2 Rn·p`⇥n`·rh·rw , i.e., A` = [X`
1, · · · , X`

n`
]. Similarly, we arrange the weights F `+1

c 2
Rn`+1⇥rh⇥rw of each channel c into rh · rw rows of W `+1 2 Rn`·rh·rw⇥n`+1 , i.e., (W `+1)> =
[(F `

1)
>, · · · , (F `

n`
)>]. Recall that V` = {1, · · · , n`}, and let V 0

` = {1, · · · , rhrwn`}. We define
a function M : 2V` ! 2V

0
` which maps every channel c to its corresponding rhrw columns in

A`. Let G(S) = F (M(S)), with F defined in Eq. (2), then minimizing the reweighted input
change kA`W `+1�A`

M(S)W̃
`+1k2F with a budget k is equivalent to max|S|k G(S). The following

proposition shows that this remains a weakly submodular maximization problem.
Proposition 4.1. Given U ✓ V`, k 2 N+, G is a normalized non-decreasing �U,k-weakly submodular
function, with

�U,k �
minkzk2=1,kzk0rhrw(|U |+k) kA`zk22
maxkzk2=1,kzk0rhrw(|U |+1) kA`zk22

.

Proof sketch. G is �U,k-weakly submodular iff F satisfies �U,kF (M(S)|M(L)) P
i2S F (M(i)|M(L)), for every two disjoint sets L, S ✓ V`, such that L ✓ U, |S| k.

The proof follows by extending the relation established in [Elenberg et al., 2016, Das and Kempe,
2011] between weak submodularity and sparse eigenvalues of the covariance matrix to this case.

As before, we use the GREEDY algorithm, with function G, to select a set Ŝ ✓ V` of k channels to
keep in layer `. We get the same approximation guarantee G(Ŝ) � (1�e��Ŝ,k)max|S|k G(S). The
submodularity ratio �Ŝ,k is non-zero if any min{2k, n`}rhrw columns of A` are linearly independent.
In our experiments, we observe that in certain layers linear independence only holds for k very
small, e.g., k 0.01n`. This is due to the correlation between patches which overlap. To remedy
this, we experimented with using only rhrw random patches from each image, instead of using all
patches. This indeed raises the rank of A`, but certain layers have a very small feature map size so
that even the small number of random patches have significant overlap, resulting in still a very small
range where linear independence holds, e.g., k 0.08n` (see Appendix E for more details). The
results obtained with random patches were worst than the ones with all patches, we thus omit them.
Note that our lower bounds on �Ŝ,k are not necessarily tight (see Appendix F). Hence, having linear
dependence does not necessarily imply that �Ŝ,k = 0; our method still performs well in these cases.

For a fixed S ✓ V`, the optimal weights are again given by W̃ `+1 = xM(S)(A`)W `+1. The cost of
running GREEDY and reweighting is the same as before (see Appendix B.2).

5 Pruning multiple layers

In this section, we explain how to apply our pruning method to prune multiple layers of a NN.

5.1 Reweighted input change pruning variants

We consider three variants of our method: LAYERINCHANGE, SEQINCHANGE, and ASYMIN-
CHANGE. In LAYERINCHANGE, we prune each layer independently, i.e., we apply exactly the
method in Section 3 or 4, according to the layer’s type. This is the fastest variant; it has the same cost
as pruning a single layer, as each layer can be pruned in parallel, and it only requires one forward
pass to get the activations of all layers. However, it does not take into account the effect of pruning
one layer on subsequent layers.

In SEQINCHANGE, we prune each layer sequentially, starting from the earliest layer to the latest
one. For each layer `, we apply our method with A` replaced by the updated activations B` after

6

having pruned previous layers, i.e., we solve min|S|k,W̃ `+12Rn`⇥n`+1 kB`W `+1 � B`
SW̃

`+1k2F .
In ASYMINCHANGE, we also prune each layer sequentially, but to avoid the accumulation of
error, we use an asymmetric formulation of the reweighted input change, where instead of approx-
imating the updated input B`W `+1, we approximate the original input A`W `+1, i.e., we solve
min|S|k,W̃ `+12Rn`⇥n`+1 kA`W `+1 �B`

SW̃
`+1k2F . This problem is still a weakly submodular max-

imization problem, with the same submodularity ratio given in Propositions 3.1 and 4.1, with A`

replaced by B` therein (see Appendix B.1). Hence, the same approximation guarantee as in the
symmetric formulation holds here. Moreover, a better approximation guarantee can again be obtained
under stronger assumptions (see Appendix D). The cost of running GREEDY with the asymmetric
formulation and reweighting is also the same as before (see Appendix B.2).

In Section 6, we show that the sequential variants of our method both have an exponential error rate,
which is faster for the asymmetric variant. We evaluate all three variants in our experiments. As
expected, ASYMINCHANGE usually performs the best, and LAYERINCHANGE the worst.

5.2 Per-layer budget selection

Another important design choice is how much to prune in each layer, given a desired global compres-
sion ratio (see Appendix I for the effect of this choice on performance). In our experiments, we use
the budget selection method introduced in [Kuzmin et al., 2019, Section 3.4.1], which can be applied
to any layerwise pruning method, thus enabling us to have a fair comparison.

Given a network with L layers to prune, let c = original size
pruned size be the desired compression ratio. We want

to select for each layer `, the number of neurons/channels k` = ↵`n` to keep, with ↵` chosen from
a fixed set of possible values, e.g., ↵` 2 {0.05, 0.1, · · · , 1}. We define a layerwise accuracy metric
P`(k`) as the accuracy obtained after pruning layer `, with a budget k`, while other layers are kept
intact, evaluated on a verification set. We set aside a subset of the training set to use as a verification
set. Let Porig be the original model accuracy, Corig the original model size, and C(k1, · · · , kL) the
pruned model size. We select the per-layer budgets that minimize the per-layer accuracy drop while
satisfying the required compression ratio:

min
k1,··· ,kL

{⌧ : 8` 2 [L], P`(k`) � Porig � ⌧, C(k1, · · · , kL) Corig/c}. (6)

We can solve the selection problem (6) using binary search, if the layerwise accuracy P`(k`) is a non-
decreasing function of k`. Empirically, this is not always the case, the general trend is non-decreasing,
but some fluctuations occur. In such cases, we use interpolation to ensure monotonicity.

Alternatively, another simple strategy is to prune each layer until the perlayer error (the reweighted
input change in our case) reaches some threshold ✏, and vary ✏ to obtain the desired compression
ratio, as done in [Zhuang et al., 2018, Ye et al., 2020a].

6 Error convergence rate

In this section, we provide the error rate of our proposed method. The omitted proofs are given in
Appendix C. We first show that the change in input to the next layer induced by pruning with our
method, with both the symmetric and asymmetric formulation, decays with exponentially fast rate.

Proposition 6.1. Let Ŝ be the output of the GREEDY algorithm and Ŵ `+1 the corresponding optimal
weights (Eq. (4)), then

kA`W `+1 �A`
Ŝ
Ŵ `+1k2F e��Ŝ,n`

k/n`kA`W `+1k2F ,
and

kA`W `+1�B`
Ŝ
Ŵ `+1k2F e��Ŝ,n`

k/n`kA`W `+1k2F+(1�e��Ŝ,n`
k/n`) min

W̃ `+12Rn`⇥n`+1

kA`W `+1�B`W̃ `+1k2F

This follows by extending the approximation guarantee of GREEDY in [Elenberg et al., 2016, Das
and Kempe, 2011] to F (Ŝ) � (1 � e��Ŝ,n`

k/n`)max|S|n`
F (S). Note that this bounds uses the

submodularity ratio �Ŝ,n`
, for which the lower bound in Proposition 3.1 is non-zero only if all

columns of A` are linearly independent, which is more restrictive. Though as discussed earlier, this

7

bound is not necessarily tight. We can further extend this exponential layerwise error rate to an
exponentially rate on the final output error, if we assume as in [Ye et al., 2020b] that the function
corresponding to all layers coming after layer ` is Lipschitz continuous.

Corollary 6.2. Let y 2 Rn be the original model output, yŜ 2 Rn the output after layer ` is
pruned using our method, and H the function corresponding to all layers coming after layer `, i.e.,
y = H(A`W `+1), yŜ = H(A`

Ŝ
Ŵ `+1). If H is Lipschitz continuous with constant kHkLip, then

ky � yŜk22 e��Ŝ,n`
k/n`kHk2LipkA`W `+1k2F .

Proof. Since H is Lipschitz continuous, we have ky � yŜk22 kHk2LipkA`W `+1 � A`
Ŝ
Ŵ `+1k2F .

The claim then follows from Proposition 6.1.

This matches the exponential convergence rate achieved by the local imitation method in [Ye et al.,
2020b, Theorem 1], albeit with a different constant. Under the same assumption, we can show that
pruning multiple layers with the sequential variants of our method, SEQINCHANGE and ASYMIN-
CHANGE, also admits an exponential convergence rate:

Corollary 6.3. Let y 2 Rn be the original model output, yŜ` , yS̃` 2 Rn the outputs after layers 1 to
` are sequentially pruned using SEQINCHANGE and ASYMINCHANGE, respectively, and H` the
function corresponding to all (unpruned) layers coming after layer `. If every function H` is Lipschitz
continuous with constant kH`kLip, then

ky � yŜLk22
LX

`=1

e��Ŝ`,n`
k`/n`kH`k2LipkA`W `+1k2F ,

and
ky � yS̃Lk22

LX

`=1

LY

`0=`+1

(1� e
��S̃`0 ,n`0

k`0/n`0)e��S̃`,n`
k`/n`kH`k2LipkA`W `+1k2F .

The result is obtained by iteratively applying Proposition 6.1 to the error incurred after each layer
is pruned. The rate of SEQINCHANGE matches the exponential convergence rate achieved by the
local imitation method in [Ye et al., 2020b, Theorem 6]. The bound on ASYMINCHANGE is stronger,
confirming that the asymmetric formulation indeed reduces the accumulation of errors.

7 Empirical Evaluation

In this section, we examine the performance of our proposed pruning method in the limited-data
regime. To that end, we focus on one-shot pruning, in which a pre-trained model is compressed
in a single step, without any fine-tuning. We study the effect of fine-tuning with both limited and
sufficient data in Appendix H. We compare the three variants of our method, LAYERINCHANGE,
SEQINCHANGE, and ASYMINCHANGE, with the following baselines:

• LAYERGREEDYFS [Ye et al., 2020a]: for each layer, first removes all neurons/channels in that
layer, then gradually adds back the neuron/channel that yields the largest decrease of the loss, evalu-
ated on one batch of training data. Layers are pruned sequentially from the input to the output layer.
• LAYERSAMPLING [Liebenwein et al., 2020]: samples neurons/channels, in each layer, with
probabilities proportional to sensitivities based on (activations ⇥ weights), and prunes the rest.
• ACTGRAD [Molchanov et al., 2017]: prunes neurons/channels with the lowest (activations ⇥
gradients), averaged over the training data, with layerwise `2-normalization.
• LAYERACTGRAD: prunes neurons/channels with the lowest (activations ⇥ gradients), averaged
over the training data, in each layer. This is the layerwise variant of ACTGRAD.
• LAYERWEIGHTNORM [Li et al., 2017]: prunes neurons/channels with the lowest output
weights `1-norm, in each layer.
• RANDOM: prunes randomly selected neurons/channels globally across layers in the network.
• LAYERRANDOM: prunes randomly selected neurons/channels in each layer.

8

We also considered the global variant of LAYERWEIGHTNORM proposed in [He et al., 2014], but we
exclude it from plots, as it is always the worst performing method. We evaluate the performance of
these methods on the LeNet model [LeCun et al., 1989] on the MNIST dataset [Lecun et al., 1998],
and on the ResNet56 [He et al., 2016] and the VGG11 [Simonyan and Zisserman, 2015] models
on the CIFAR-10 dataset [Krizhevsky et al., 2009]. To ensure a fair comparison, all experiments
are based on our own implementation of all the compared methods. To compute the gradients and
activations used for pruning in LAYERSAMPLING, ACTGRAD, LAYERACTGRAD, and our method’s
variants, we use four batches of 128 training images, i.e., n = 512, which corresponds to⇠ 1% of the
training data in MNIST and CIFAR10. We consider two variants of the method proposed in [Ye et al.,
2020a]: a limited-data variant LAYERGREEDYFS which only uses the same four batches of data used
in our method, and a full-data variant LAYERGREEDYFS-fd with access to the full training data.

We report top-1 accuracy results evaluated on the validation set, as we vary the compression ratio
(original size

pruned size). Unless otherwise specified, we use the per-layer budget selection method described in Sec-
tion 5.2 for all the layerwise pruning methods, except for LAYERSAMPLING for which we use its own
budget selection strategy provided in [Liebenwein et al., 2020]. We use a subset of the training set, of
the same size as the validation set, as a verification set for the budget selection method. To disentangle
the benefit of using our pruning method from the benefit of reweighting (Section 3.2), we report results
with reweighting applied to all pruning methods, or none of them. Though, we will focus our analysis
on the more interesting results with reweighting, with the plots without reweighting mostly serving as
a demonstration of the benefit of reweighting. Results are averaged over five random runs, with stan-
dard deviations plotted as error bars. We report the speedup (original number of FLOPs

pruned number of FLOPs) and pruning time
values in Appendix J. For additional details on the experimental set-up, see Appendix G. The code
for reproducing all experiments is available at https://github.com/marwash25/subpruning.

LeNet on MNIST We pre-train LeNet model on MNIST achieving 97.75% top-1 accuracy. We
prune all layers except the last classifier layer. Results are presented in Figure 1 (left). All three vari-
ants of our method consistently outperform other baselines, even when reweighting is applied to them,
with ASYMINCHANGE doing the best and LAYERINCHANGE the worst. We observe that reweighting
significantly improves the performance of all methods except LAYERGREEDYFS variants.

ResNet56 on CIFAR-10 We use the ResNet56 model pre-trained on CIFAR-10 provided in
ShrinkBench [Blalock et al., 2020], which achieves 92.27% top-1 accuracy. We prune all layers
except the last layer in each residual branch, the last layer before each residual branch, and the last
classifier layer. Results are presented in Figure 1 (middle). The sequential variants of our method
perform the best. Their performance is closely matched by LAYERWEIGHTNORM and ACTGRAD
(with reweighting) for most compression ratios, except very large ones. LAYERINCHANGE performs
significantly worst here than the sequential variants of our method. This is likely due to the larger
number of layers pruned in ResNet56 compared to LeNet (27 vs 4 layers), which increases the effect
of pruning earlier layers on subsequent ones. Here also reweighting improves the performance of
all methods except the LAYERGREEDYFS variants.

VGG11 on CIFAR-10 We pre-train VGG11 model on CIFAR-10 obtaining 90.11% top-1 accuracy.
We prune all layers except the last features layer and the last classifier layer. Results are presented
in Figure 1 (right). The three variants of our method perform the best. Their performance is matched
by ACTGRAD and LAYERWEIGHTNORM (with reweighting). LAYERINCHANGE performs similarly
to the sequential variants of our method here, even slightly better at compression ratio 32, probably
because the number of layers being pruned is again relatively small (9 layers). As before, reweighting
benefits all methods except the LAYERGREEDYFS variants.

Discussion We summarize our observations from the empirical results:

• Our proposed pruning method outperforms state-of-the-art structured pruning methods in various
one shot pruning settings. As expected, ASYMINCHANGE is the best performing variant of our
method, and LAYERINCHANGE the worst, with its performance deteriorating with deeper models.
Our results also illustrate the robustness of our method, as it reliably yields the best results in
various settings, while other baselines perform well in some settings but not in others.
• Reweighting significantly improves performance for all methods, except LAYERGREEDYFS
and LAYERGREEDYFS-fd. We suspect that reweighting does not help in this case because this

9

https://github.com/marwash25/subpruning

Figure 1: Top-1 Accuracy of different pruning methods applied to LeNet on MNIST (left), ResNet56
on CIFAR10 (middle), and VGG11 on CIFAR10 (right), for several compression ratios (in log-scale),
with (top) and without (bottom) reweighting. We include the three reweighted variants of our method
in the bottom plots (faded) for reference.

method already scales the next layer weights, and it takes into account this scaling when selecting
neurons/channels to keep, so replacing it with reweighting can hurt performance.

• The choice of how much to prune in each layer given a global budget can have a drastic effect on
performance, as illustrated in Appendix I.

• Fine-tuning with full-training data boosts performance more than reweighting, while fine-tuning
with limited data helps less, as illustrated in Appendix H. Reweighting still helps when fine-tuning
with limited-data, except for LAYERGREEDYFS variants, but it can actually deteriorate perfor-
mance when fine-tuning with full-data. Our method still outperforms other baselines after fine-
tuning with limited-data, and is among the best performing methods even in the full-data setting.

8 Conclusion

We proposed a data-efficient structured pruning method, based on submodular optimization. By
casting the layerwise subset selection problem as a weakly submodular optimization problem, we are
able to use the GREEDY algorithm to provably approximate it. Empirically, our method consistently
outperforms existing structured pruning methods on different network architectures and datasets.

Acknowledgments and Disclosure of Funding

We thank Stefanie Jegelka, Debadeepta Dey, Jose Gallego-Posada for their helpful discussions,
and Yan Zhang, Boris Knyazev for their help with running experiments. We also acknowledge
the MIT SuperCloud and Lincoln Laboratory Supercomputing Center (supercloud.mit.edu),
Compute Canada (www.computecanada.ca), Calcul Quebec (www.calculquebec.ca), WestGrid
(www.westgrid.ca), ACENET (ace-net.ca), the Mila IDT team, Idiap Research Institute and
the Machine Learning Research Group at the University of Guelph, for providing HPC resources
that have contributed to the research results reported within this paper. This research was partially
supported by the Canada CIFAR AI Chair Program. Simon Lacoste-Julien is a CIFAR Associate
Fellow in the Learning Machines & Brains program.

10

supercloud.mit.edu
www.computecanada.ca
www.calculquebec.ca
www.westgrid.ca
ace-net.ca

References
A. A. Bian, J. M. Buhmann, A. Krause, and S. Tschiatschek. Guarantees for greedy maximization of

non-submodular functions with applications. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 498–507. JMLR. org, 2017. (Cited on 22)

D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag. What is the state of neural network pruning?
arXiv preprint arXiv:2003.03033, 2020. (Cited on 1, 9, 26)

C. Bucila, R. Caruana, and A. Niculescu-Mizil. Model compression. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’06, page
535–541, New York, NY, USA, 2006. Association for Computing Machinery. ISBN 1595933395.
doi: 10.1145/1150402.1150464. URL https://doi.org/10.1145/1150402.1150464. (Cited
on 1)

S. Buschjäger, P.-J. Honysz, and K. Morik. Very fast streaming submodular function maximization,
2020. (Cited on 26)

M. D. Collins and P. Kohli. Memory bounded deep convolutional networks. arXiv preprint
arXiv:1412.1442, 2014. (Cited on 1)

M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect: Training deep neural networks with
binary weights during propagations. In Advances in neural information processing systems, pages
3123–3131, 2015. (Cited on 1)

A. Das and D. Kempe. Submodular meets spectral: Greedy algorithms for subset selection, sparse
approximation and dictionary selection. arXiv preprint arXiv:1102.3975, 2011. (Cited on 3, 4, 6,
7, 21, 24)

M. Denil, B. Shakibi, L. Dinh, M. A. Ranzato, and N. de Freitas. Predicting parameters
in deep learning. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems, volume 26. Cur-
ran Associates, Inc., 2013. URL https://proceedings.neurips.cc/paper/2013/file/
7fec306d1e665bc9c748b5d2b99a6e97-Paper.pdf. (Cited on 1)

M. El Halabi, F. Bach, and V. Cevher. Combinatorial penalties: Structure preserved by convex
relaxations. Proceedings of the 21st International Conference on Artificial Intelligence and
Statistics, 2018. (Cited on 22)

E. R. Elenberg, R. Khanna, A. G. Dimakis, and S. Negahban. Restricted strong convexity implies
weak submodularity. arXiv preprint arXiv:1612.00804, 2016. (Cited on 3, 4, 6, 7, 16, 21)

Y. Gong, L. Liu, M. Yang, and L. Bourdev. Compressing deep convolutional networks using vector
quantization. arXiv preprint arXiv:1412.6115, 2014. (Cited on 1)

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016. (Cited
on 9)

T. He, Y. Fan, Y. Qian, T. Tan, and K. Yu. Reshaping deep neural network for fast decoding by
node-pruning. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 245–249. IEEE, 2014. (Cited on 2, 5, 9)

Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very deep neural networks. In
Proceedings of the IEEE international conference on computer vision, pages 1389–1397, 2017.
(Cited on 2)

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. Neural Information
Processing Systems (NeurIPS) Workshops, 2015. (Cited on 1)

T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste. Sparsity in deep learning: Pruning and
growth for efficient inference and training in neural networks. arXiv preprint arXiv:2102.00554,
2021. (Cited on 2)

11

https://doi.org/10.1145/1150402.1150464
https://proceedings.neurips.cc/paper/2013/file/7fec306d1e665bc9c748b5d2b99a6e97-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/7fec306d1e665bc9c748b5d2b99a6e97-Paper.pdf

A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009. (Cited
on 9)

A. Kuzmin, M. Nagel, S. Pitre, S. Pendyam, T. Blankevoort, and M. Welling. Taxonomy and evalua-
tion of structured compression of convolutional neural networks. arXiv preprint arXiv:1912.09802,
2019. (Cited on 1, 2, 7)

V. Lebedev, Y. Ganin, M. Rakhuba, I. V. Oseledets, and V. S. Lempitsky. Speeding-up convolutional
neural networks using fine-tuned cp-decomposition. In International Conference on Learning
Representations, 2015. (Cited on 1)

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541–551,
1989. (Cited on 9)

Y. Lecun, C. Cortes, and C. Burges. The mnist databaseof handwritten digits, 1998. (Cited on 9)

B. Lehmann, D. Lehmann, and N. Nisan. Combinatorial auctions with decreasing marginal utilities.
Games and Economic Behavior, 55(2):270–296, 2006. (Cited on 22)

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient convnets. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/
forum?id=rJqFGTslg. (Cited on 2, 5, 8)

W. Li, M. Feldman, E. Kazemi, and A. Karbasi. Submodular maximization in clean linear time, 2022.
URL https://arxiv.org/abs/2006.09327. (Cited on 15, 30)

L. Liebenwein, C. Baykal, H. Lang, D. Feldman, and D. Rus. Provable filter pruning for efficient
neural networks. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=BJxkOlSYDH. (Cited on 2, 5, 8, 9, 26)

J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning method for deep neural network
compression. In Proceedings of the IEEE international conference on computer vision, pages
5058–5066, 2017. (Cited on 2)

Z. Mariet and S. Sra. Diversity networks: Neural network compression using determinantal point
processes. arXiv preprint arXiv:1511.05077, 2015. (Cited on 2, 3, 5)

K. McGuffie and A. Newhouse. The radicalization risks of gpt-3 and advanced neural language
models. arXiv preprint arXiv:2009.06807, 2020. (Cited on 1)

B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi, J. Vondrák, and A. Krause. Lazier than lazy greedy.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29, 2015. (Cited on 5,
20)

P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning convolutional neural networks for
resource efficient inference. ICLR, 2017. (Cited on 2, 5, 8)

B. Mussay, M. Osadchy, V. Braverman, S. Zhou, and D. Feldman. Data-independent neural pruning
via coresets. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=H1gmHaEKwB. (Cited on 2, 5)

B. Mussay, D. Feldman, S. Zhou, V. Braverman, and M. Osadchy. Data-independent structured
pruning of neural networks via coresets. IEEE Transactions on Neural Networks and Learning
Systems, pages 1–13, 2021. doi: 10.1109/TNNLS.2021.3088587. (Cited on 2, 5)

B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM journal on computing, 24(2):
227–234, 1995. (Cited on 3, 4)

G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of approximations for maximizing submodular
set functions — I. Mathematical Programming, 14(1):265–294, 1978. (Cited on 3)

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,
and A. Lerer. Automatic differentiation in pytorch. 2017. (Cited on 26)

12

https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=rJqFGTslg
https://arxiv.org/abs/2006.09327
https://openreview.net/forum?id=BJxkOlSYDH
https://openreview.net/forum?id=BJxkOlSYDH
https://openreview.net/forum?id=H1gmHaEKwB
https://openreview.net/forum?id=H1gmHaEKwB

H. Phan. huyvnphan/pytorch_cifar10, Jan. 2021. URL https://doi.org/10.5281/zenodo.
4431043. (Cited on 26)

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
In Y. Bengio and Y. LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1409.1556. (Cited on 9)

S. Srinivas and R. V. Babu. Data-free parameter pruning for deep neural networks. In Proceedings of
the British Machine Vision Conference (BMVC), pages 31.1–31.12. BMVA Press, September 2015.
(Cited on 2, 5)

J. Su, J. Li, B. Bhattacharjee, and F. Huang. Tensorial neural networks: Generalization of neural
networks and application to model compression. arXiv preprint arXiv:1805.10352, 2018. (Cited
on 1)

M. Sviridenko, J. Vondrák, and J. Ward. Optimal approximation for submodular and supermodular
optimization with bounded curvature. Mathematics of Operations Research, 42(4):1197–1218,
2017. (Cited on 22, 23, 24)

E. Voita, D. Talbot, F. Moiseev, R. Sennrich, and I. Titov. Analyzing multi-head self-attention:
Specialized heads do the heavy lifting, the rest can be pruned. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 5797–5808, 2019. (Cited on 1)

M. Ye, C. Gong, L. Nie, D. Zhou, A. Klivans, and Q. Liu. Good subnetworks provably exist: Pruning
via greedy forward selection. ICML, 2020a. (Cited on 2, 3, 5, 7, 8, 9, 15, 26)

M. Ye, L. Wu, and Q. Liu. Greedy optimization provably wins the lottery: Logarithmic number of
winning tickets is enough. Advances in Neural Information Processing Systems, 33:16409–16420,
2020b. (Cited on 2, 3, 5, 8, 15)

Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu, J. Huang, and J. Zhu. Discrimination-aware
channel pruning for deep neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/
2018/file/55a7cf9c71f1c9c495413f934dd1a158-Paper.pdf. (Cited on 2, 7)

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] We specify that our focus is on
the limited-data regime in both the abstract and introduction. See also the discussions
on lines 143-151 and 207-213 on when our approximation guarantee is non-zero, and
on lines 173-181 on the cost of our method.

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix B

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] We include
the code with instructions on how to reproduce all our experimental results in the
supplemental material.

13

https://doi.org/10.5281/zenodo.4431043
https://doi.org/10.5281/zenodo.4431043
http://arxiv.org/abs/1409.1556
https://proceedings.neurips.cc/paper/2018/file/55a7cf9c71f1c9c495413f934dd1a158-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/55a7cf9c71f1c9c495413f934dd1a158-Paper.pdf

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 7 and Appendix G

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix G

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Appendix G
(b) Did you mention the license of the assets? [Yes] The license of the assets we used are

included in the code we provide.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We include our code in the supplemental material.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

	Introduction
	Preliminaries
	Reweighted input change pruning
	Greedy selection
	Reweighting
	Cost

	Pruning regular regions of neurons
	Pruning multiple layers
	Reweighted input change pruning variants
	Per-layer budget selection

	Error convergence rate
	Empirical Evaluation
	Conclusion
	Additional details on related work
	Missing proofs
	Submodularity ratio bounds: Proof of prop:WeaklySub and 4.1 and their extension to the asymmetric formulation
	Cost bound: Proof of prop:cost and its extension to other variants
	Extension of Stochastic-Greedy to weakly submodular functions

	Error rates: Proof of prop:layerError and 6.3
	Stronger notion of approximate submodularity
	Additional preliminaries
	Approximate modularity of reweighted input change

	Empirical values of the submodularity ratio
	Tightness of lower bounds on the submodularity ratio
	Experimental setup
	Effect of fine-tuning
	Importance of per-layer budget selection
	Results with respect to other metrics

