
SecureFedYJ: a safe feature Gaussianization protocol
for Federated Learning

Tanguy Marchand
Owkin Inc., New York, USA.

tanguy.marchand@owkin.com

Boris Muzellec
Owkin Inc., New York, USA.
boris.muzellec@owkin.com

Constance Beguier⇤ Jean Ogier du Terrail
Owkin Inc., New York, USA.

jean.du-terrail@owkin.com

Mathieu Andreux
Owkin Inc., New York, USA.

mathieu.andreux@owkin.com

Abstract

The Yeo-Johnson (YJ) transformation is a standard parametrized per-feature unidi-
mensional transformation often used to Gaussianize features in machine learning.
In this paper, we investigate the problem of applying the YJ transformation in a
cross-silo Federated Learning setting under privacy constraints. For the first time,
we prove that the YJ negative log-likelihood is in fact convex, which allows us
to optimize it with exponential search. We numerically show that the resulting
algorithm is more stable than the state-of-the-art approach based on the Brent
minimization method. Building on this simple algorithm and Secure Multiparty
Computation routines, we propose SECUREFEDYJ, a federated algorithm that
performs a pooled-equivalent YJ transformation without leaking more information
than the final fitted parameters do. Quantitative experiments on real data demon-
strate that, in addition to being secure, our approach reliably normalizes features
across silos as well as if data were pooled, making it a viable approach for safe
federated feature Gaussianization.

1 Introduction

Federated Learning (FL) [45, 32] is an approach that was recently proposed to train machine learning
(ML) models across multiple data holders, or clients, without centralizing data points, notably for
privacy reasons. While many FL applications have been proposed, two main settings have emerged
[23]: cross-device FL, involving a large number of small edge devices, and cross-silo FL, dealing
with a smaller number of clients, with larger computational capabilities. Due to the sensitivity and
relative local scarcity of medical data, healthcare is a promising application of cross-silo FL [40], e.g.
to train a biomedical ML model between different hospitals as if all the datasets were pooled in a
central server. In this paper, we focus on the cross-silo setting.

The constraints of cross-silo FL Although cross-silo FL resembles standard distributed learning,
it faces at least two important distinct challenges: privacy and heterogeneity. Due to data sensitivity,
clients might impose stringent security and privacy constraints on FL collaborations. This arises in
coopetitive FL projects, where models are jointly trained on industrial competitors’ datasets [55], as
well as medical FL applications, where conservative data regulations might apply. In this setting,
using standard FL algorithms such as FEDAVG [32] might not provide enough privacy guarantees, as
privacy attacks such as data reconstruction can be carried out based on the clients’ gradients [56, 54].

⇤Contribution done while at Owkin, Inc.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Various protocols based on Secure Multiparty Computation (SMC) (see Section 2 for more details),
such as Secure Aggregation [4], can mitigate this shortcoming by disclosing only the sum of the
gradients from all clients to the server, without disclosing each gradient individually.

An additional constraint is that data might present statistical heterogeneity across clients, i.e. the
local clients’ data distributions may not be identical. In the case of medical applications, such
heterogeneity may be caused e.g. by environmental variations or differences in the material that was
used for acquisition [43, 47, 2]. While different ways of adapting federated training algorithms have
been proposed to automatically tackle heterogeneity [28, 29, 24], these solutions do not address data
harmonization and normalization prior to FL training.

Preprocessing in ML Data preprocessing is a crucial step in many ML applications, leading to
important performance gains. Among others, common preprocessing methods include data whitening,
principal component analysis (PCA) [22] or zero component analysis [27, 20, 46]. However, linear
normalization methods might not suffice when the original data distribution is highly non-Gaussian.
For tabular and time series data, a popular approach to Gaussianize the marginal distributions is to
apply feature-wise non-linear transformations. Two commonly-used parametric methods are the
Box-Cox [5] transformation and its extension, the Yeo-Johnson (YJ) transformation [52]. Both have
been used in multiple applications, such as climate and weather forecast [53, 50, 51], economics [13]
and genomic studies [7, 58, 9].

Problem and contributions In this paper, we investigate the problem of data normalization in
the cross-silo FL setting, by exploring how to apply the YJ transformation to a distributed dataset.
This problem arises frequently in medical cross-silo FL, e.g. when trying to jointly train models on
genetic data (see e.g. [19, 57]). Due to data heterogeneity, no single client can act as a reference
client: indeed, there is no guarantee that transformation parameters fitted on a single client would
be relevant for other clients’ data. Hence, it is necessary to fit normalization methods on the full
federated dataset. Moreover, in this setting, data privacy is of paramount importance, and therefore
FL protocols should be carefully designed. Our main contributions to this problem are as follows:

1. We prove that the negative YJ log-likelihood is convex (Section 3), which is a novel result,
to the best of our knowledge.

2. Building on this property, we introduce EXPYJ, a method to fit the YJ transformation based
on exponential search (Section 3). We numerically show that this method is more stable
than standard approaches for fitting the YJ transformation based on the Brent minimization
method [6].

3. We propose SECUREFEDYJ (Section 4), a secure way to extend EXPYJ in the cross-silo
FL setting using SMC. We show that SECUREFEDYJ does not leak any information on
the datasets apart from what is leaked by the parameters minimizing the YJ negative log-
likelihood (Section 4 and Proposition 4.1). By construction, SECUREFEDYJ provides the
same results as the pooled-equivalent EXPYJ, regardless of how the data is split across the
clients. We check this property in numerical experiments (Section 4). The core ideas behind
the resulting algorithm, SECUREFEDYJ, are summarised in Figure 7.

Finally, we illustrate our contributions in numerical applications on synthetic and genomic data in
Section 5.

2 Background

The Yeo-Johnson transformation The YJ transformation [52] was introduced in order to Gaus-
sianize data that can be either positive or negative. It was proposed as a generalization of the Box-Cox
transformation [5], that only applies to non-negative data. The YJ transformation consists in applying
to each feature a monotonic function (�, ·) parametrized by a scalar �, independently of the other
features. Thus, there are as many �’s as there are features. For a real number x, (�, x) is defined as:

 (�, x) =

8
>><

>>:

[(x+ 1)� � 1]/�, if x � 0,� 6= 0,
ln(x+ 1), if x � 0,� = 0,
�[(�x+ 1)2�� � 1]/(2� �), if x < 0,� 6= 2,
� ln(�x+ 1), if x < 0,� = 2.

(1)

2

(a) (�, ·) for various �

Yeo-Johnson

(b) The YJ transformation applied to a skew-normal distribution

Figure 1: The Yeo-Johnson transformation applies a 1-D univariate transform to Gaussianize data.

Figure 1a shows the shape of the YJ function for various values of �.

The Yeo-Johnson likelihood Let us consider real-valued samples {xi}i=1,··· ,n, and let us apply
the YJ transformation (�, ·) to these samples to Gaussianize their distribution. The log-likelihood
that { (�, xi)}i=1,··· ,n comes from a Gaussian with mean µ and variance �2 is given by (derivation
details are provided in Appendix A.1):

logLYJ(�,�
2, µ) = �n

2
log(2⇡�2)� 1

2�2

nX

i=1

[(�, xi)� µ]2+(��1)
nX

i=1

sgn(xi) log(|xi|+1).

For a given �, the log-likelihood is maximized for µ⇤ = 1
n

Pn
i=1 (�, xi) and �2

⇤ =
1
n

Pn
i=1((xi,�)� µ⇤)2. Once we replace µ and �2 by µ⇤ and �2

⇤ , it becomes:

logLYJ(�) = �
n

2
log(�2

 (�,{xi})) + (�� 1)
nX

i=1

sgn(xi) log(|xi|+ 1)� n

2
log(2⇡), (2)

see [52]. Maximizing the YJ log-likelihood is therefore a 1-dimensional problem for each feature.
Once the optimal �⇤ is found, the transformed data (�, xi) is usually renormalized by subtracting
its empirical mean µ⇤ and dividing by the square root of its empirical variance �2

⇤ . Figure 1b shows
an example of the YJ transformation applied to a skew-normal distribution. Note that in a typical
application, the triplet (�⇤, µ⇤,�2

⇤) is fitted on the training data only, and is then used to Gaussianize
the test dataset during inference.

Minimization methods in dimension 1 As seen above, fitting a YJ transformation can be reduced
to a 1D optimization problem. To tackle this problem, we introduce two standard 1D minimization
methods: (i) Brent minimization [6] and (ii) exponential search [3].

Brent minimization [6] (not to be confused with the Brent-Dekker method, see [6], chapters 3 and 4)
is a widely used method for 1D optimization. It is based on golden section search and successive
parabolic interpolations, and does not require evaluating any derivatives. This algorithm is guaranteed
to converge to a local minimum with superlinear convergence of order at least 1.3247. Standard
implementations of the YJ transformation, in particular the scikit-learn implementation [36], are
based on the Brent minimization method to minimize the negative log-likelihood provided by Eq. (2).

Exponential search [3] is a dichotomic algorithm designed for unbounded search spaces. The idea is
to first find bounds, and then to perform a classic binary search within these bounds. This algorithm
can be used to find the minimum of convex differentiable functions with linear convergence, as
explained in Appendix B. In this work, we build on exponential search to propose a federated version
of the YJ transform, for two main reasons: (i) it is more numerically stable than Brent minimization,
as shown in Section 3 and Figure 2, (ii), it may conveniently be adapted to a federated setting, as
shown in Section 4, and (iii), this latter federated adaptation offers strong privacy garantees, as shown
by Proposition 4.1.

Secure Multiparty Computation As illustrated by various privacy gradient attacks [56, 54],
sensitive information on the clients’ datasets can be leaked to the central server during an FL training.
One way to mitigate this risk is to use Secure Multiparty Computation (SMC) protocols to hide

3

individual contributions to the server. SMC enables one to evaluate functions with inputs distributed
across different users without revealing intermediate results and is often based on secret sharing.
SMC protocols tailored for ML use-cases have been recently proposed [12, 14, 34, 39, 48, 33, 49, 41].
These protocols are either designed to enhance the privacy of FL trainings, or to perform secure
inference, i.e. to enable the evaluation of model trained privately on a server without revealing the
data nor the model.

A popular FL algorithm relying on SMC is Secure Aggregation (SA) [4]. Schematically, in SA each
client adds a random mask to their model update before sending it to the central server. These masks
have been tailored in such a way that they all together sum to zero. Therefore, the central server
cannot see the individual updates of the clients, but it can recover the sum of these updates by adding
all the masked quantities sent from them.

More generally, an SMC routine schematically works as follows (we refer to Appendix D for
further details). Let us consider the setting where K parties k = 1, . . . ,K want to compute g =
f(h(1), . . . , h(K)) for a known function f , where (h(1), . . . , h(K)) denote private inputs. Each party k
knows h(k) and is not willing to share it. During the first step, secret sharing, each party splits its
private input h(k) into K secret shares h(k)

1 , . . . , h(k)
K , and sends the shares h(k)

k0 to the party k0. These
secret shares are constructed in such a way that (i) knowing h(k)

k0 does not provide any information on
the value of h(k), and (ii) h(k) can be reconstructed from the vector (h(k)

1 , . . . , h(k)
K). For simplicity,

we denote Jh(k)K = (h(k)
1 , . . . , h(k)

K) the vector of share secrets. In a second step, the computation,
each party k0 computes the quantity denoted gk0 using the secret shares they know along with
intermediate quantities exchanged with the other parties. The way to compute gk0 depends on f and
on the SMC protocol that is used, and is chosen so that g = f(h(1), . . . , h(K)) can be reconstructed
from (g1, . . . gK). Said otherwise, gk0 are secret shares of g: JgK = (g1, . . . gK). Finally, during
the reveal step, each party k reveals gk to all other parties, and each party can reconstruct g from
(g1, . . . gK).

Threat model In this work, we consider an honest-but-curious setting [35]. Neither the clients nor
the server will deviate from the agreed protocol, but each party can potentially try to infer as much
information as possible using data they see during the protocol. This setting is relevant for cross-silo
FL, where participants are often large institutions whose reputation could be ternished by a more
malicious behaviour.

3 A novel method to optimize the Yeo-Johnson log-likelihood: EXPYJ

Algorithm 1 EXPYJ
Input: data xi, total data size n, number of steps tmax

Initialize �t=0 0, �+
t=0 1, ��

t=0 �1
Compute S'

for t = 1 to tmax

for g 2 { (�, ·), (�, ·)2, @� (�, ·), @� (�, ·)2}
Compute Sg

end for
�t = sgn

h
nS@ 2 � 2S S@ � 2S'

⇣
S 2 � S2

n

⌘i

�t,�
�
t ,�

+
t EXPUPDATE(�t�1,�

�
t�1,�

+
t�1,�t)

end for
�⇤ �tmax

Compute µ⇤ = S /n and �2
⇤ = S 2/n� µ2

⇤
Output: The fitted triplet (�⇤, µ⇤,�2

⇤)

In this section, we leverage the convex-
ity of the negative log-likelihood of the
YJ transformation (see Proposition 3.1)
to propose a new method to find the opti-
mal �⇤ using exponential search. While
this method only offers linear conver-
gence, compared to the super-linear con-
vergence of Brent minimization method,
we demonstrate two of its advantages: (i)
it is more numerically stable, and (ii) it
is easily amenable to an FL setting with
strong privacy guarantees. The method
proposed in this section is based on the
following result.

Proposition 3.1. The negative log-
likehood � 7! � logLYJ(�) (2) is
strictly convex.

The proof of Proposition 3.1 builds upon the work of [26] which shows that the negative log-likelihood
of the Box-Cox transformation [5] is convex. The complete proof is deferred to Appendix C.

4

The exponential YJ algorithm The pseudo-code of the proposed algorithm is presented in Al-
gorithm 1, and relies on the exponential search presented in Algorithm 2 (cf Appendix B for more
details on exponential search). An illustration of EXPYJ is shown in Figure 6 in Appendix B. Due
to the strict convexity of the negative log-likelihood of the YJ transformation, we may perform the
exponential search described in Section 2 and Appendix B. To do so, it is enough to obtain the sign
of the derivative. Let @� (�, ·)2 = 2 (�, ·)@� (�, ·) and '(x) = sgn(x) + log(|x|+ 1). Further,
for g 2 { (�, ·), @� (�, ·), (�, ·)2, @� (�, ·)2,'}, let us define Sg

def
=

Pn
i=1 g(xi). The derivative

of the log-likelihood is available in closed form (see Appendix A.3):

@� logLYJ =
n

2

S@ 2 � 2(S S@)/n

S 2 � S2
 /n

� S'.

Notice that S 2 � S2
 /n can be expressed as a variance, hence is non-negative. We may therefore

obtain sgn [@� logLYJ] while avoiding performing division by computing

sgn [@� logLYJ] = sgn
⇥
nS@ 2 � 2S S@ � 2S'(S 2 � S2

 /n)
⇤
. (3)

Avoiding this division is crucial to make the overall procedure more numerical stable, as explained
below, and eases the use of SMC routines.

Figure 2: Comparison of EXPYJ and scikit-learn. Left: For each of the 106 features (see Ap-
pendix E.1), we compute the relative difference �� = |�EXPYJ � �sk|/|�sk| and plot its median,
maximum and 25%-75% and 10%-90% percentiles across the 106 features. Right: Negative log-
likehood of the YJ transformation for the mean area of the cell of each sample of the Breast Cancer
dataset. Full orange bars correspond to values of � for which the likelihood computed using scikit-
learn returns1 as �2

�({xi}) is equal to 0 up to float-64 machine precision. Dotted lines correspond
to the �⇤ found using Brent minimization or EXPYJ with one client.

Algorithm 2 EXPUPDATE

Input: �, �+, ��, � 2 {�1, 1}
if � = 1 then

�� �
� (�+ + �)/2 if �+ < 1
else � max(2�, 1)

else
�+ �
� (��+�)/2 if �� > �1
else � min(2�,�1)

end if
Output: Updated �,�+,��

Accuracy of EXPYJ We check the accuracy of EXPYJ on the
datasets presented in Appendix E.1. In particular, we compare
the results provided by EXPYJ with the outputs of the scikit-
learn algorithm based on Brent minimization.

For 2 of the 108 features present in the datasets, the scikit-
learn implementation leads to numerical instabilities discussed
hereafter. Therefore, we focus our comparison on the 106
remaining features, that we aggregated regardless of the dataset.
Figure 2 reports the relative difference �� between the results
obtained by EXPYJ and by the scikit-learn implementation
as a function of the number of iteration tmax (as defined in
Algorithm 1). These results show that this relative difference
is of order less than 10�6 when tmax = 40.

Numerical stability of EXPYJ Our experiments demonstrate that EXPYJ is numerically more
stable than Brent minimization. Indeed, for some values of � and some datasets {xi}, the transforma-
tion (�, ·) concentrates all data points in a small interval such that the values of (�, {xi}) are all

5

equal up to machine precision. In that case, the log-likelihood is not well-defined and the term log �2
 �

takes the value�1, which prevents Brent minimization from converging. This phenomenon does not
affect the EXPYJ routine as we do not compute directly the sign of @�L = @��2

 �
/�2
 �
�
P

i '(xi),
but rather the sign of �2

 �
@�L = �@��2

 �
� �2

 �

P
i '(xi), see Eq. (3).

Figure 2 illustrates this in the case of a feature of the Breast Cancer Dataset. The �⇤ returned
by the Brent minimization method of scikit-learn is �14.53 while the minimizer of the negative
log-likelihood found by the EXPYJ is �0.21. In particular, Figure 2 shows the values of the negative
log-likelihood as a function of � computed using 64-bit float precision. The orange vertical full bands
correspond to values for which �2

 �
is zero within the machine precision, resulting to a negative

log-likelihood of1. This instability happens for 2 of the 108 features used in numerical experiments,
where blindly applying the Brent-based YJ transformation leads to all data points collapsing to
zero, while EXPYJ succeeds in transforming the data distributions to more Gaussian-like ones.
Appendix E.4 shows that this issue also arises in other real-life datasets.

4 Applying the Yeo-Johnson transformation in FL

So far, we only considered the centralized setting, where data is accessible from a single server. Yet,
as mentioned in Sections 1 and 2, many real-world situations require working with heterogeneous
data split between different centers, and to take privacy constraints into account. When the data
is split across centers k = 1, . . . ,K and the function to optimize is separable, i.e. of the form
F(�) =

PK
k=1 fk(�) where each fk can be computed from data present in the center k exclusively,

Federated Learning techniques were recently proposed. In short, they consist in repeatedly performing
a few rounds of local optimization in each center, before aggregating local parameters in the server.
We refer to [23] for an overview of recent advances in FL. In our case, however, the YJ negative
log-likelihood (2) is not separable, due to the log-variance term. Indeed, turning the variance into a
separable term would require sharing the global YJ mean µ� to all centers at each iteration. Compared
to the method we propose in this section, this would lead to more privacy leakage.

We now introduce SECUREFEDYJ, a secure federated algorithm that builds upon EXPYJ to apply YJ
transformations. This algorithm satisfies the two following properties: (i) it is pooled-equivalent, i.e.
it yields the same results as if the data were freely accessible from a single server, and (ii) it leaks
as little information as possible about the underlying datasets, as shown by Proposition 4.1. Finally,
it converges in a limited number of iterations, thanks to the linear convergence of the underlying
exponential search.

SECUREFEDYJ SECUREFEDYJ is a federated adaptation of EXPYJ presented in Section 3 to
find the best parameters (�⇤, µ⇤,�2

⇤) of the YJ transformation when training datasets are split across
different clients. It relies on SMC to ensure that only the final triplet (�⇤, µ⇤,�2

⇤) fitted on the training
datasets is revealed, without leaking any other information apart from the overall total number of
training samples n. Indeed, at each intermediate step, only the sign of @� logLYJ is revealed, and the
mean and variance of the transformed data is only revealed at the last step. The pseudo-code of the
resulting algorithm is presented in Algorithm 3, and relies on the exponential search presented in
Algorithm 2. A functional representation of SECUREFEDYJ is displayed Figure 7.

In Algorithm 3,we label the clients by k = 1, . . . ,K and each client k holds data {xk,i : i =

1, . . . , nk}. We suppose that the total number of samples n =
PK

k=1 nk is public and shared to
all clients. For a given function g, we denote Sk,g the sum Sk,g

def
=

Pnk

i=1 g(xk,i). As introduced
in Section 2, we use double brackets J·K to indicate an SMC secret shared across the clients (see
Appendix D for more details).

Privacy leakage In Proposition 4.1 we show that Algorithm 3 only reveals information already
contained in the fitted triplet (�⇤, µ⇤,�2

⇤). In comparison, turning the YJ negative log-likelihood (2)
into a log-separable function before using off-the-shelf FL methods would require sharing µ and
its gradient and centrally computing �2 for intermediate values of � at each iteration. This could
potentially lead to uncontrolled privacy leakage.
Proposition 4.1. The fitted parameter �⇤ contains all the information revealed during the inter-
mediate steps of SECUREFEDYJ. More precisely, there exists a deterministic function F such

6

Algorithm 3 SECUREFEDYJ

Input: Data {xk,i}, total data size n, number of steps tmax

Notations: J·K indicates a SMC secret shared across the clients. Any operation such as J·K =
f(J·K, J·K, · · ·) where f can be the sum, product, or the sign, designs an SMC routine across the
clients as described in Appendix D.5.
Initialize �t=0 0, �+ 1, �� �1 independently on each client
Clients compute in SMC JS'K =

P
kJSk,'K

for t = 1 to tmax

for g 2 { (�, ·), (�, ·)2, @� (�, ·), @ (�, ·)2}
Clients compute in SMC JSgK =

P
kJSk,gK,

end for
Clients compute in SMC J�tK = sgn [nJS@ 2K � 2JS KJS@ K �2JS'K(JS 2K� JS K2/n)

⇤

Clients reveal �t

�t,�
�
t ,�

+
t EXPUPDATE(�t�1,�

�
t�1,�

+
t�1,�t) independently on each client

end for
�⇤ �tmax

Clients compute in SMC JµK =
P

kJSk, K/n and J�2K =
P

kJSk, 2K/n� Jµ2K
Clients reveal µ⇤ µ and �2

⇤ �2

Output: The fitted triplet (�⇤, µ⇤,�2
⇤)

(a) Homogeneous (b) Heterogeneous

Figure 3: Comparison of SECUREFEDYJ and EXPYJ for various fixed-point floating precisions
f used in SMC, with l = f + 50 and tmax = 40. The data is distributed across 10 clients, either
randomly (homogeneous, left), or per decile (heterogeneous, right, i.e. each client gets one decile
of the data). We report the maximum, median, 25%-75% and 10%-90% percentiles of the relative
error �� = |�SECFEDYJ � �EXPYJ|/|�EXPYJ| across the 108 features described in Appendix E.1.

that for any set of datasets {xk,i} , if �⇤({xk,i}) is the result of SECUREFEDYJ on {xk,i},
then {�t,�

+
t ,�

�
t ,�t}t=1,··· ,tmax = F [�⇤({xk,i})]

Proof. This proposition comes from the fact that all gradient signs�t revealed during the algorithm
can be retrospectively inferred from �⇤. Indeed, @� logLYJ < 0 for � > �⇤ and @� logLYJ > 0
for � < �⇤. Besides, the successive values of �t explored at each step t can be deterministically
inferred from the initial value �t=0 and and the final fitted value �⇤. We construct such a function F
and numerical verify this proposition in Appendix F. ⌅

Performance of SECUREFEDYJ We implement SECUREFEDYJ in Python, using the MPyC
library [42] based on Shamir Secret Sharing [44]. We refer to Appendix D for more details on our
implementation. To represent signed real-valued numbers in an SMC protocol, we use a fixed-point
representation (see Appendix D.2) using l bits, among which f bits are used for the decimal parts.
This means that we consider floats ranging from�2l�f to 2l�f and that we have an absolute precision
of 2�f in our computations.

In order to ensure the accuracy of SECUREFEDYJ results, we need to make sure that l and f are large
enough. Figure 3 shows the accuracy of SECUREFEDYJ when compared to EXPYJ for various values
of f . According to these numerical experiments, taking f = 50 and l = 100 provides reasonably

7

accurate results. Moreover, by construction, the outputs of SECUREFEDYJ do not depend on how the
data is split across the clients, up to rounding numerical errors. Therefore this algorithm is resilient
to data heterogeneity, as long as the numerical decimal precision f is large enough, as shown in
Figure 3.

Performing SECUREFEDYJ with tmax = 40 takes 726 rounds of communication (see Appendix D.6).
During these communication rounds, each client sends overall about 8 Mb per feature to every other
client (see also Appendix D.6). SECUREFEDYJ can be applied independently and in parallel to each
feature. Therefore, the overall number of rounds does not depend on the number of features being
considered, and the communication costs grow proportionally to the number of features. In a realistic
cross-silo FL setting as described in [19], the bandwidth of the network is 1 Gb per second with a delay
of 20 ms between every two clients. In this context, the execution of SECUREFEDYJ with tmax = 40
on p features would take about 726⇥ 20 ms ' 15 s due to the communication overhead, in addition
to p⇥ 8 Mb/1 Gbps ' 8p ms due to the bandwidth. This shows that SECUREFEDYJ is indeed a
viable algorithm in a real-world scenario.

As pointed out in Appendix B, the binary search in the exponential search can be replaced by a
k-ary search. In such a setting, the sign of the negative log-likelihood of the YJ transformation is
computed for k� 1 different values of � at each round. Such a modification would reduce the number
of communication rounds required to obtain a given accuracy, while increasing the size of the data
exchanged over the network at each round.

5 Applications

Figure 4: Cross-validation survival analysis perfor-
mance (higher is better) of a CoxPH model with dif-
ferent normalization methods. The YJ transformation
yields either a better or on par performance, and further
stabilizes results compared to other approaches.

Genomic data: TCGA We start by
showing the benefits of YJ preprocessing
in survival analysis experiments on lung
(LUAD+LUSC), pancreas (PAAD), and
colorectal (CRC) cancers. Given gene ex-
pression raw counts (features) and censored
survival data (responses) from patients hav-
ing either of those three cancers, we aim
to fit a Cox Proportional Hazards (CoxPH)
model [10] with the highest possible con-
cordance index (C-index) [25], which mea-
sures how well patients are ranked with
respect to their survival times. We refer
to [25] for a more thorough introduction to
survival analysis. In Figure 4, we compare
three different preprocessing methods: (i)
whitening, (ii) log normalization, and (iii)
YJ, each followed by a PCA dimensionality
reduction step. More precisely, whitening (i) consists in centering and reducing to unit variance the to-
tal read counts of all genes across all samples, log normalization consists in applying u 7! log(1 + u)
to raw read counts before applying global whitening, and YJ is a global YJ transform on the total
read counts. We then evaluate each strategy using 5-fold cross-validation with 5 different seeds.
We refer to Appendix E.2 for experimental details. While this experiment is performed in a pooled
environment, note that, importantly, each step has a federated pooled-equivalent version: apart from
the proposed SECUREFEDYJ for YJ, see e.g. [21] for PCA, and Webdisco [31] for Cox model fitting.
This simplified setting allows us to understand the importance of the Yeo-Johnson transformation in
an ideal setting, independently of other potential downstream federated learning artifacts.

In Figure 4, we see that YJ is better or on par with the best method for each cancer: YJ improves
prediction results for colorectal cancer, while yielding results which are on par with the best results
for lung and pancreas cancers, with a smaller variance.

Synthetic data We show how applying YJ may help improving performance compared to no or
basic preprocessing, and how SECUREFEDYJ yields improvements compared to local YJ transforms

8

Figure 5: Comparison of different preprocessing methods for linear regression on synthetic federated
data. Left: performance with 200 samples (20 on each of the 10 centers) on 1000 independent draws,
showing the interest of using YJ preprocessing. The R2 score of the models are computed on another
dataset of 200 samples not seen during the training. Right: Comparison of local and federated YJ
over 1000 independent draws. In local YJ, a single center is randomly chosen to fit �, which is then
shared with other centers, to ensure that the same transformation is applied everywhere. Full lines
correspond to the means, error bars to ± std of the R2 scores of the model on an unseen test dataset.

in federated linear regression. To do so, we generate covariates eX and responses y as

eX = (exp(x1), exp(x2 + 2),�(x3)) with X = (x1, x2, x3) ⇠ N (0, I3),

y = �TX + " with " ⇠ N (0, 0.1),
(4)

where �(·) is the sigmoid function and � = (�1.3, 2.4, 0.87) was randomly chosen. The goal is
then to fit a linear model from i.i.d. samples (eXi, yi), i = 1, . . . , n following (4), after an optional
preprocessing step. Similarly to the previous example, we simulate a cross-device FL setting only
for the preprocessing steps, and the linear model is then fitted in a pooled setting for simplicity.
All the details of the numerical experiments are provided in Appendix E.3. We suppose that the
samples (eXi, yi), i = 1, . . . , n are homogeneously split across 10 centers. The responses yi have a
highly nonlinear dependency on the covariates eXi, but depend linearly on the Xi’s (up to Gaussian
noise), which are not observed. Hence, we expect that applying a suitable preprocessing step before
training a linear model will transform back the eXi’s into the normally-distributed Xi’s and lead to a
high performance, compared to no transformation. The results of our experiments are summarized
in Figure 5. The left figure shows that the YJ transformation is indeed capable of roughly inverting
the eXi’s into the Xi’s, yielding a major improvement compared to no preprocessing or standard
centering and reduction to unit variance. Besides, the right figure shows that even in this homogeneous
setting where the data is i.i.d. across centers, using a federated version of YJ compared to a local
version of YJ leads to better average performance, and reduced variance.

6 Conclusion

Summary of our contributions In this work, we introduce SECUREFEDYJ, a method to fit a
YJ transformation on data shared by different clients in a cross-silo setting. SECUREFEDYJ is
an SMC version of its pooled equivalent EXPYJ which builds upon the convexity of the negative
log-likelihood of the YJ transformation, a novel result introduced by this work, and on the fact that
the sign of its derivative can be computed in a stable way. We show that SECUREFEDYJ has the same
accuracy as a standard YJ transformation on pooled data. In particular, the results do not depend
on how the data is split across the clients, making SECUREFEDYJ resilient to data heterogeneity.
Besides, the quantities disclosed by SECUREFEDYJ during the training to the central server do not
leak any other information than what is contained in the final parameters (µ⇤,�⇤,�2

⇤).

Limitations and future work While Brent minimization has a super-linear convergence, our
approach only has a linear convergence, as it relies on exponential search. This can be an issue if the

9

communication costs between the clients and the server are high. Acceleration could be achieved by
either adapting Brent minimization to a cross-silo setting, or applying a second-order method. We
leave the development of a faster SMC methods using either of those two approaches to future work.

Another limitation is that even if our approach reveals only information that would be contained in the
final fitted parameters, such parameters themselves might leak information about individual samples,
as our approach is not differentially private (DP) [16]. By adding Gaussian or Laplacian noise to each
sample’s features when computing the Sg terms one could, in principle, make the resulting algorithm
DP [1]. However it is unclear to what extent the noise would impact the final accuracy of the method.

Finally, we only consider an honest-but-curious setting. We do not explore the threat of a malicious
participant that would purposely deviate from the protocol to either gain more information or to
jeopardize the convergence. We leave this investigation to future work.

Acknowledgement

The authors would like to thank the four anonymous reviewers, as well as the anonymous area chair
reviewer for their relevant comments and ideas which significantly improved the paper.

References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar,

and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 308–318, 2016.

[2] Mathieu Andreux, Jean Ogier du Terrail, Constance Beguier, and Eric W Tramel. Siloed
federated learning for multi-centric histopathology datasets. In Domain Adaptation and Rep-
resentation Transfer, and Distributed and Collaborative Learning, pages 129–139. Springer,
2020.

[3] Jon Louis Bentley and Andrew Chi-Chih Yao. An almost optimal algorithm for unbounded
searching. Information processing letters, 5(SLAC-PUB-1679), 1976.

[4] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan,
Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for
privacy-preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 1175–1191, 2017.

[5] George EP Box and David R Cox. An analysis of transformations. Journal of the Royal
Statistical Society: Series B (Methodological), 26(2):211–243, 1964.

[6] Richard P Brent. Algorithms for Minimization Without Derivatives. Prentice Hall, 1973.

[7] Franziska S Brunner, Paul Schmid-Hempel, and Seth M Barribeau. Immune gene expression in
bombus terrestris: signatures of infection despite strong variation among populations, colonies,
and sister workers. PloS one, 8(7):e68181, 2013.

[8] Octavian Catrina and Amitabh Saxena. Secure computation with fixed-point numbers. In
International Conference on Financial Cryptography and Data Security, pages 35–50. Springer,
2010.

[9] Li-Chu Chien. A rank-based normalization method with the fully adjusted full-stage procedure
in genetic association studies. PloS one, 15(6):e0233847, 2020.

[10] David R Cox. Regression models and life-tables. Journal of the Royal Statistical Society: Series
B (Methodological), 34(2):187–202, 1972.

[11] Ivan Damgård, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen. Asynchronous
multiparty computation: Theory and implementation. In International workshop on public key
cryptography, pages 160–179. Springer, 2009.

10

[12] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P
Smart. Practical covertly secure MPC for dishonest majority–or: breaking the SPDZ limits. In
European Symposium on Research in Computer Security, pages 1–18. Springer, 2013.

[13] Thiago Alexandre das Neves Almeida, Luís Cruz, Eduardo Barata, and Isabel-María García-
Sánchez. Economic growth and environmental impacts: An analysis based on a composite
index of environmental damage. Ecological Indicators, 76:119–130, 2017.

[14] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY-A framework for efficient
mixed-protocol secure two-party computation. In NDSS, 2015.

[15] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

[16] Cynthia Dwork. Differential privacy. In International Colloquium on Automata, Languages,
and Programming, pages 1–12. Springer, 2006.

[17] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl. Improved
primitives for mpc over mixed arithmetic-binary circuits. In Annual International Cryptology
conference, pages 823–852. Springer, 2020.

[18] Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals of eugenics,
7(2):179–188, 1936.

[19] David Froelicher, Juan R Troncoso-Pastoriza, Jean Louis Raisaro, Michel Cuendet, Joao Sa
Sousa, Jacques Fellay, and Jean-Pierre Hubaux. Truly privacy-preserving federated analytics
for precision medicine with multiparty homomorphic encryption. Nature Communications, 12
(1):5910, 2021.

[20] Ian Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio.
Maxout networks. In International Conference on Machine Learning, pages 1319–1327. PMLR,
2013.

[21] Andreas Grammenos, Rodrigo Mendoza Smith, Jon Crowcroft, and Cecilia Mascolo. Federated
principal component analysis. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 6453–
6464. Curran Associates, Inc., 2020.

[22] Ian Jolliffe. Principal component analysis. Encyclopedia of statistics in behavioral science,
2005.

[23] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
et al. Advances and open problems in federated learning. Foundations and Trends® in Machine
Learning, 14(1–2):1–210, 2021.

[24] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pages 5132–5143. PMLR, 2020.

[25] David G Kleinbaum and Mitchel Klein. Survival analysis, volume 3. Springer, 2010.

[26] Elies Kouider and Hanfeng Chen. Concavity of Box-Cox log-likelihood function. Statistics and
probability letters, 25(2):171–175, 1995.

[27] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[28] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Chal-
lenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020.

[29] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. Proceedings of Machine Learning
and Systems, 2:429–450, 2020.

11

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

[30] Thomas Lorünser and Florian Wohner. Performance comparison of two generic MPC-
frameworks with symmetric ciphers. In ICETE (2), pages 587–594, 2020.

[31] Chia-Lun Lu, Shuang Wang, Zhanglong Ji, Yuan Wu, Li Xiong, Xiaoqian Jiang, and Lucila
Ohno-Machado. Webdisco: a web service for distributed cox model learning without patient-
level data sharing. Journal of the American Medical Informatics Association, 22(6):1212–1219,
2015.

[32] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273–1282. PMLR, 2017.

[33] Payman Mohassel and Peter Rindal. ABY3: A mixed protocol framework for machine learning.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pages 35–52, 2018.

[34] Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable privacy-preserving
machine learning. In 2017 IEEE symposium on security and privacy (SP), pages 19–38. IEEE,
2017.

[35] Andrew Paverd, Andrew Martin, and Ian Brown. Modelling and automatically analysing privacy
properties for honest-but-curious adversaries. Tech. Rep, 2014.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[37] Tord Ingolf Reistad. A general framework for multiparty computations. 2012.

[38] Tord Ingolf Reistad and Tomas Toft. Secret sharing comparison by transformation and rotation.
In International Conference on Information Theoretic Security, pages 169–180. Springer, 2007.

[39] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M Songhori, Thomas
Schneider, and Farinaz Koushanfar. Chameleon: A hybrid secure computation framework for
machine learning applications. In Proceedings of the 2018 on Asia Conference on Computer
and Communications Security, pages 707–721, 2018.

[40] Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger R Roth, Shadi Albarqouni,
Spyridon Bakas, Mathieu N Galtier, Bennett A Landman, Klaus Maier-Hein, et al. The future
of digital health with federated learning. NPJ digital medicine, 3(1):1–7, 2020.

[41] Théo Ryffel, Pierre Tholoniat, David Pointcheval, and Francis Bach. AriaNN: Low-interaction
privacy-preserving deep learning via function secret sharing. Proceedings on Privacy Enhancing
Technologies, 1:291–316, 2022.

[42] Berry Schoenmakers. MPyC—python package for secure multiparty computation. In Workshop
on the Theory and Practice of MPC., 2018. URL https://github.com/lschoe/mpyc.

[43] Muhammad Shafiq-ul Hassan, Geoffrey G Zhang, Kujtim Latifi, Ghanim Ullah, Dylan C Hunt,
Yoganand Balagurunathan, Mahmoud Abrahem Abdalah, Matthew B Schabath, Dmitry G
Goldgof, Dennis Mackin, et al. Intrinsic dependencies of CT radiomic features on voxel size
and number of gray levels. Medical physics, 44(3):1050–1062, 2017.

[44] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[45] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, pages 1310–1321,
2015.

[46] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving
for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

12

https://github.%20com/lschoe/mpyc

[47] David Tellez, Geert Litjens, Péter Bándi, Wouter Bulten, John-Melle Bokhorst, Francesco
Ciompi, and Jeroen van der Laak. Quantifying the effects of data augmentation and stain color
normalization in convolutional neural networks for computational pathology. Medical image
analysis, 58:101544, 2019.

[48] Sameer Wagh, Divya Gupta, and Nishanth Chandran. SecureNN: Efficient and private neural
network training. IACR Cryptol. ePrint Arch., 2018:442, 2018.

[49] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek Mittal, and Tal
Rabin. FALCON: Honest-majority maliciously secure framework for private deep learning.
arXiv preprint arXiv:2004.02229, 2020.

[50] QJ Wang and DE Robertson. Multisite probabilistic forecasting of seasonal flows for streams
with zero value occurrences. Water Resources Research, 47(2), 2011.

[51] QJ Wang, Andrew Schepen, and David E Robertson. Merging seasonal rainfall forecasts from
multiple statistical models through bayesian model averaging. Journal of Climate, 25(16):
5524–5537, 2012.

[52] In-Kwon Yeo and Richard A Johnson. A new family of power transformations to improve
normality or symmetry. Biometrika, 87(4):954–959, 2000.

[53] Lina Zhang, Bizheng Wang, and Qingcun Zeng. Impact of the Madden–Julian oscillation on
summer rainfall in southeast China. Journal of Climate, 22(2):201–216, 2009.

[54] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. iDLG: Improved deep leakage from gradients.
arXiv preprint arXiv:2001.02610, 2020.

[55] Wenting Zheng, Raluca Ada Popa, Joseph E Gonzalez, and Ion Stoica. Helen: Maliciously
secure coopetitive learning for linear models. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 724–738. IEEE, 2019.

[56] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[57] Olga Zolotareva, Reza Nasirigerdeh, Julian Matschinske, Reihaneh Torkzadehmahani, Moham-
mad Bakhtiari, Tobias Frisch, Julian Späth, David B Blumenthal, Amir Abbasinejad, Paolo
Tieri, et al. Flimma: a federated and privacy-aware tool for differential gene expression analysis.
Genome biology, 22(1):1–26, 2021.

[58] Isabella Zwiener, Barbara Frisch, and Harald Binder. Transforming RNA-Seq data to improve
the performance of prognostic gene signatures. PloS one, 9(1):e85150, 2014.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] We described them in Section 6
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] The full proof of the

main theoretical results, i.e. the convexity of the Yeo-Johnson negative log-likelihood
(Proposition 3.1) is provided in Appendix C.

3. If you ran experiments...

13

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [No] The code of
the experiments is not provided, but a detailed pseudo-code of the newly proposed
algorithms are provided.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes] We specified all the hyperparameters and the details of the numerical
experiment in Appendix E.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] Standard deviations or quantiles of the results with
respect to the seed are provided (cf plots)

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] The experiment are not heavy and
run easily on a personal computer, on a CPU

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] The datasets used are

open datasets available online and are systematically cited.
(b) Did you mention the license of the assets? [Yes] The licence of the datasets used are

provided in Appendix E.1
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] We are using open datasets available online. The genomic
dataset from TCGA have been previously anonymised by its creator before publication

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

	Introduction
	Background
	A novel method to optimize the Yeo-Johnson log-likelihood: ExpYJ
	Applying the Yeo-Johnson transformation in FL
	Applications
	Conclusion
	Additional properties of the Yeo-Johnson transformation
	Derivation of the Yeo-Johnson log-likelihood
	Relationship with the Box-Cox transformation
	Analytical formulae for the derivatives of the Yeo-Johnson transformation

	Background on exponential search
	Proof of th:convex
	Proof of th:convex
	Proof that ln[(, (a)] is convex
	Edge cases not covered by the main proof of th:convex
	Strict convexity of the Yeo-Johnson negative log-likelihood.

	Secure Multi-Party Computation
	Shamir Secret Sharing
	Fixed-Point Representation
	Comparison in SMC
	MPyC
	Further details on alg:SecureFedYJ
	Complexity of SecureFedYJ

	Details of the numerical experiments
	Datasets used in this work
	Experiments on TCGA data
	Experiment on synthetic data
	Testing Brent minimization on more dataset

	Further details on prop:leakage

