
ResT V2: Simpler, Faster and Stronger

Qing-Long Zhang, Yu-Bin Yang
State Key Laboratory for Novel Software Technology

Nanjing University, Nanjing 21023, China
wofmanaf@smail.nju.edu.cn, yangyubin@nju.edu.cn

Abstract

This paper proposes ResTv2, a simpler, faster, and stronger multi-scale vision
Transformer for visual recognition. ResTv2 simplifies the EMSA structure in
ResTv1 (i.e., eliminating the multi-head interaction part) and employs an upsample
operation to reconstruct the lost medium- and high-frequency information caused by
the downsampling operation. In addition, we explore different techniques for better
applying ResTv2 backbones to downstream tasks. We find that although combining
EMSAv2 and window attention can greatly reduce the theoretical matrix multiply
FLOPs, it may significantly decrease the computation density, thus causing lower
actual speed. We comprehensively validate ResTv2 on ImageNet classification,
COCO detection, and ADE20K semantic segmentation. Experimental results show
that the proposed ResTv2 can outperform the recently state-of-the-art backbones
by a large margin, demonstrating the potential of ResTv2 as solid backbones. The
code and models will be made publicly available at https://github.com/
wofmanaf/ResT.

1 Introduction

Recent advances in Vision Transformers (ViTs) have created new state-of-the-art results on many
computer vision tasks. While scaling up ViTs with billions of parameters [22, 9, 45, 40, 13] is a well-
proven way to improve the capacity of the ViTs, it is more important to explore more energy-efficient
approaches to build simpler ViTs with fewer parameters and less computation cost while retaining
high model capacity.

Toward this direction, there are a few works that significantly improve the efficiency of ViTs [35,
10, 12, 23, 5]. The first kind is reintroducing the “sliding window” strategy to ViTs. Among them,
Swin Transformer [23] is a milestone work that partitions the patched inputs into non-overlapping
windows and computes multi-head self-attention (MSA) independently within each window. Based
on Swin, Focal Transformer [41] further splits the feature map into multiple windows in which
tokens share the same surroundings to effectively capture short- and long-range dependencies. The
second type to improve efficiency is downsampling one or several dimension of MSA. PVT [35]
is a pioneer work in this area, which adopts another non-overlapping patch embedding module
to reduce the spatial dimension of keys and values in MSA. ResTv1 [47] further explores three
types of overlapping spatial reduction methods (i.e., max pooling, average pooling, and depth-wise
convolution) in MSA to balance the computation and effectiveness in different scenarios. However,
the downsampling operation in MSA will inevitably impair the model’s performance since it destroys
the global dependency modeling ability of MSA to a certain extent (shown in Figure 1).

In this paper, we propose EMSAv2, which explores different upsample strategies adding to EMSA to
compensate for the performance degradation caused by the downsampling operation. Surprisingly,
the “downsample-upsample” combination builds an independent convolution hourglass architecture,
which can efficiently capture the local information that is complementary to long-distance dependency
with fewer extra parameters and computation costs. Besides, EMSAv2 eliminates the multi-head

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/wofmanaf/ResT
https://github.com/wofmanaf/ResT


Figure 1: Top-1 Accuracy of ResT-Lite [47] and PVT-Tiny [35] under 100 epochs training settings.
Results show that downsampling operation will impair the performance while adding an upsampling
operation can address this issue. Detailed comparisons are shown in Appendix A.

interaction module in EMSA to simply the self-attention structure. Based on EMSAv2, we build
simpler, faster, and stronger general-purpose backbones, ResTv2. In addition, we explore four
methods of applying ResTv2 backbones to downstream tasks. We found that combining EMSAv2
and window attention is not that good when the inputs’ resolution is high (e.g., 800× 1333), although
it can significantly reduce the theoretical matrix multiply FLOPs. Due to the padding operation in
window partition and grouping operation of window attention, the computation density of EMSAv2
will be significantly decreased, causing lower actual inference speed. We hope the observations
and discussions can challenge some common beliefs and encourage people to rethink the relations
between theoretical FLOPs and actual speeds, particularly running on GPUs.

We evaluate ResTv2 on various vision tasks such as ImageNet classification, object detec-
tion/segmentation on COCO, and semantic segmentation on ADE20K. Experimental results reveal
the potential of ResTv2 as strong backbones. For example, our ResTv2-L yields 84.2% Top-1
accuracy (with size 2242) on ImageNet-1k, which is significantly better than Swin-B [23] (83.5%)
and ConvNeXt-B [24] (83.8%), while ResTv2-L has fewer parameters (87M vs. 88M vs. 89M) and
much higher throughput (415 vs. 278 vs. 292 images/s).

2 Related Work

Efficient self-attention structures. MSA has shown great power to capture global dependency
in computer vision tasks [11, 2, 3, 43, 43, 50]. However, the computation complexity of MSA
is quadratic to the input size, which might be acceptable for ImageNet classification, but quickly
becomes intractable with higher-resolution inputs. One typical way to improve efficiency is partition-
ing the patched inputs into non-overlapping windows and computing self-attention independently
within each of these windows (i.e., windowed self-attention). To enable information communicate
across windows, researchers have developed several integrate techniques, such as shift window
[23], spatial shuffle [17], or alternately running global attention and local attention [5, 42] between
successive blocks. Other ways are trying to reduce spatial dimension of the MSA. For example, PVT
[35] and ResTv1 [47] designed different downsample strategies to reduce the spatial dimension of
keys and values in MSA. MViT [12] proposed pooling attention to downsample queries, keys, and
values spatial resolution. However, either the windowed self-attention or downsampled self-attention
will impair the long-distance modeling ability to some content, i.e., surrendering some important
information for efficiency. Our target in this paper is to reconstruct the lost information in a light way.

Convolution enhanced MSA. Recently, designing transformer models with convolution operations
has become popular since convolutions can introduce inductive biases, which is complementary to

2



MSA. ResTv1 [47] and [38] reintroduce convolutions at the early stage to achieve stabler training.
CoAtNet [9] and UniFormer [19] replace MSA blocks with convolution blocks in the former two
stages. CvT [36] adopts convolution in the tokenization process and utilizes stride convolution to
reduce the computation complexity of self-attention. CSwin Transformer [10] and CPVT [6] adopt
a convolution-based positional encoding technique and show improvements on downstream tasks.
Conformer [28] and Mobile-Former[4] combine Transformer with an independent ConvNet model
to fuse convolutional features and MSA representations under different resolutions. ACmix [26]
explores a closer relationship between convolution and self-attention by sharing the 1×1 convolutions
and combining them with the remaining lightweight aggregation operations. The “downsample-
upsample” branch in ResTv2 happens to build an independent convolutional module, which can
effectively reconstruct information lost by the MSA module.

3 Proposed Method

3.1 A brief review of ResTv1

ResTv1[47] is an efficient multi-scale vision Transformer, which can capably serve as a general-
purpose backbone for image recognition. ResTv1 effectively reduces the memory of standard MSA
[34, 11] and models the interaction between multi-heads while keeping the diversity ability. To tackle
input images with an arbitrary size, ResTv1 constructs the positional embedding as spatial attention,
which models absolute positions between pixels with the help of zero paddings in the transformation
function.

EMSA is the critical component in ResTv1 [47] (shown in Figure 2(a) ). Given a 1D input token
x ∈ Rn×dm , where n is the token length, dm is the channel dimension. EMSA first projects x using
a linear operation to get the query: Q = xWq + bq, where Wq and bq are the weights and bias of
linear projection. After that, Q is split into k groups (i.e., k heads) to prepare for the next step, i.e.,
Q ∈ Rk×n×dk , where dk = dm/k is the head dimension. To compress memory, x is reshaped to its
2D size and then are downsampled by a depth-wise convolution to reduce the height and width. After
that, the output x′ is reshaped to the 1D size, and then a Layer Norm [1] is added. Then the author
employs the same way as to obtain Q to get key K and value V on x′. The output of EMSA can be
calculated by

EMSA(Q,K, V ) = Norm(Softmax(Conv(
QKT

√
dk

)))V (1)

where “Conv” is applied to model the interactions among different heads. “Norm” can be Instance
Norm [33] or Layer Norm [1], which is applied to re-weight the attention matrix captured by different
heads.

3.2 ResTv2

As shown in Figure 1, although downsample operation in EMSA can significantly reduce the
computation cost, it will inevitably lose some vital information, particularly in the earlier stages,
where the downsampling ratio is relatively higher, e.g., 8 in the first stage. To address this issue,
one feasible solution is to introduce spatial pyramid structural information. That is, setting different
downsampling rates for the input, calculating the corresponding keys and values respectively, and
then combining these multi-scale keys and values along the channel dimension. The obtained new
keys and values are then sent to the EMSA module to model global dependencies or directly calculate
multi-scale self-attention with the original multi-scale keys and values.

However, the multi-path calculation of keys and values will greatly reduce the computational density
of self-attention, although the theoretical FLOPs do not seem to change much. For example, the
multi-path Focal-T [41] and the single-path Swin-T [23] have comparable theoretical FLOPs (4.9G
vs. 4.5G), but the actual inference throughput of Focal-T is only 0.42 times of Swin-T (319 vs. 755
images/s).

In order to effectively reconstruct the lost information without having a large impact on the actual
running speed, in this paper, we propose to execute an upsampling operation on the values directly.
There are many upsampling strategies, such as “nearest”, “bilinear”, “pixel-shuffle”, etc. We find
that all of them can improve the model’s performance, but “pixel-shuffle” (which first leverages one
DWConv to extend the channel dimension and then adopts pixel-shuffle operation to upscale the

3



(a) EMSA module (b) EMSAv2 module

Figure 2: Comparison of EMSA in ResTv1 and EMSAv2 in ResTv2. To simplify, all normalization
operators in EMSA and EMSAv2 are not displayed.

spatial dimension) works better. We call this new self-attention structure EMSAv2. The detailed
structure is shown in Figure 2(b).

Surprisingly, the “downsample-upsample” combination in EMSAv2 happens to build an indepen-
dent convolution hourglass architecture, which can efficiently capture the local information that is
complementary to long-distance dependency with fewer extra parameters and computation costs.
Besides, we find that the multi-head interaction module of the self-attention branch in EMSAv2 will
decrease the actual inference speed of EMSAv2, although it can increase the final performance. And
the performance improvements will be decreased as the channel dimension for each head increases.
Therefore, we remove it for faster speed under default settings. However, if the head dimension is
small (e.g., dk = 64 or smaller), the multi-head interaction module will make a difference (Detailed
Results can be found in Appendix B). By doing so, we can also increase the training speed since
the computation gaps between the self-attention branch and the upsample branch are bridged. The
mathematical definition of the EMSAv2 module can be represented as

EMSAv2(Q,K, V ) = Softmax(
QKT

√
dk

)V +Up(V) (2)

3.3 Model configurations.

We construct different ResTv2 variants based on EMSAv2. ResTv2-T/B/L, to be of similar complex-
ities to Swin-T/S/B. We also build ResTv2-S to make a better speed-accuracy trade-off. The four
variants only differ in the number of channels, heads’ number of EMSAv2, and blocks in each stage.
Other hyper-parameters are the same as ResTv1[47]. Note that the upsampling module in ResTv2
introduces extra parameters and FLOPs. To make a fair comparison, the block number in the first
stage of ResTv2-T/S/B is set to 1, half of the one in ResTv1. Assume C is the channel number of
hidden layers in the first stage. We summarize the configurations below:

• ResTv2-T: C = 96, heads = {1, 2, 4, 8}, blocks number = {1, 2, 6, 2}

• ResTv2-S: C = 96, heads = {1, 2, 4, 8}, blocks number = {1, 2, 12, 2}

• ResTv2-B: C = 96, heads = {1, 2, 4, 8}, blocks number = {1, 3, 16, 3}

• ResTv2-L: C = 128, heads = {2, 4, 8, 16}, blocks number = {2, 3, 16, 2}

Detailed model size, theoretical computational complexity (FLOPs), and hyper-parameters of the
model variants for ImageNet image classification are listed in Appendix D.

4



3.4 Explanation of upsample branch

To better explain the role of the upsample branch in EMSAv2, we plot the Fourier transformed feature
maps of EMSAv2, the separate self-attention branch, and upsample branch of ResTv2-T following
[27]. Here, we give some explanations: (1) 11 different coloured polylines represent 11 blocks in
ResTv2-T, and the bottom one is the first block; (2) We only use half-diagonal components of shift
Fourier results. Therefore, for each polyline, 0.0π, 0.5π, and 1.0π can also represent low-, medium-,
and high-frequency, respectively.

Compared with Figure 3(a) and 3(b), in earlier blocks, the average value of the upsampling branch
is higher than the self-attention branch, particularly in 0.5π and 1.0π, which means the upsample
branch can capture more medium- and high-frequency information. Compared with Figure 3(b) and
3(c), almost all value of the combined branch is higher than the self-attention branch, particularly in
earlier blocks, demonstrating the upsample module’s effectiveness.

Figure 3: Relative log amplitudes of Fourier transformed feature maps. ∆ Log amplitude is the
difference between the log amplitude at normalized frequency 0.0π (center) and 1.0π (boundary).

4 Empirical Evaluations on ImageNet

4.1 Settings

The ImageNet-1k dataset consists of 1.28M training images and 50k validation images from 1,000
classes. We report the Top-1 and Top-5 accuracy on the validation set. We summarize our training
and fine-tuning setups below. More details can be found in Appendix C.1.

We train ResTv2 for 300 epochs using AdamW [25], with a cosine decay learning rate scheduler
and 50 epochs of linear warm-up. An initial learning rate of 1.5e-4× batch_size / 256, a weight
decay of 0.05, and gradient clipping with a max norm of 1.0 are used. For data augmentations, we
adopt common schemes including Mixup [46], Cutmix [44], RandAugment [8], and Random Erasing
[48]. We regularize the networks with Stochastic Depth [16] and Label Smoothing [32]. We use
Exponential Moving Average (EMA) [29] as we find it alleviates larger models’ over-fitting. The
default training and testing resolution is 2242. Additionally, we fine-tune at a large resolution of 3842,
adopting AdamW for 30 epochs, with a learning rate 1.5e-5× batch_size / 256, a cosine decaying
schedule afterward, no warm up, and weight decay of 1e-8.

4.2 Main Results

Table 1 shows the result comparison of the proposed ResTv2 with three recent Transformer variants,
ResTv1 [47], Swin Transformer [23], and Focal Transformer [41], as well as two strong ConvNets:
RegNet [30] and ConvNeXt [24].

We can see, ResTv2 competes favorably with them in terms of a speed-accuracy trade-off. Specifically,
ResTv2 outperforms ResTv1 of similar complexities across the board, sometimes with a substantial
margin, e.g., +0.7% (82.3% vs. 81.6%) in terms of Top-1 accuracy for ResTv2-T. Besides, ResTv2

5



Table 1: Classification accuracy on ImageNet-1k. Inference throughput (images / s) is measured on
a V100 GPU, following [47].

Model Image Size Params FLOPs Throughput Top-1 (%) Top-5 (%)

RegNetY-4G [30] 2242 21M 4.0G 1156 79.4 94.7
ConvNeXt-T [24] 2242 29M 4.5G 775 82.1 95.9
Swin-T [23] 2242 28M 4.5G 755 81.3 95.5
Focal-T [41] 2242 29M 4.9G 319 82.2 95.9
ResTv1-B [47] 2242 30M 4.3G 673 81.6 95.7
ResTv2-T 2242 30M 4.1G 826 82.3 95.5
ResTv2-T 3842 30M 12.7G 319 83.7 96.6

RegNetY-8G [30] 2242 39M 8.0G 591 79.9 94.9
ResTv2-S 2242 41M 6.0G 687 83.2 96.1
ResTv2-S 3842 41M 18.4G 256 84.5 96.7

ConvNeXt-S [24] 2242 50M 8.7G 447 83.1 96.4
Swin-S [23] 2242 50M 8.7G 437 83.2 96.2
Focal-S [41] 2242 51M 9.4G 192 83.6 96.2
ResTv1-L [47] 2242 52M 7.9G 429 83.6 96.3
ResTv2-B 2242 56M 7.9G 582 83.7 96.3
ResTv2-B 3842 56M 24.3G 210 85.1 97.2

RegNetY-16G [30] 2242 84M 15.9G 334 80.4 95.1
ConvNeXt-B [24] 2242 89M 15.4G 292 83.8 96.7
Swin-B [23] 2242 88M 15.4G 278 83.5 96.5
Focal-B [41] 2242 90M 16.4G 138 84.0 96.5
ResTv2-L 2242 87M 13.8G 415 84.2 96.5

ConvNeXt-B [24] 3842 89M 45.0G 96 85.1 97.3
Swin-B [23] 3842 88M 47.1G 85 84.5 97.0
ResTv2-L 3842 87M 42.4G 141 85.4 97.1

outperforms the Focal counterparts with an average ×1.8 inference throughput acceleration, although
both of them share similar FLOPs. A highlight from the results is ResTv2-B: it outperforms
Focal-S by +0.1% (83.7% vs. 83.6%), but with +203% higher inference throughput (582 vs. 192
images/s). ResTv2 also enjoys improved accuracy and throughput compared with similar-sized Swin
Transformers, particularly for tiny models, the Top-1 accuracy improvement is +1.0% and (82.3% vs.
81.3%).

Additionally, we observe a highlight accuracy improvement when the resolution increases from 2242

to 3842. An average +1.4% Top-1 accuracy is achieved. We can conclude that the proposed ResTv2
also possesses the ability to scale up capacity and resolution.

4.3 Ablation Study

Here, we ablate essential design elements in ResTv2-T using ImageNet-1k image classification. To
save computation energy, all experiments in this part are trained for 100 epochs, and 10 of them are
applied for linear warm-up, with other settings unchanged.

Upsampling Targets. There are three options for upsampling, the output of down-sample operation
x′, K, and V. Table 2(a) shows the results of upsampling these targets. Undoubtedly, upsampling K or
V achieves better results than x′ since K and V are obtained from x′ via linear projection, enabling
the communication of information between different features. Upsampling V works best. This can
be attributed to the fact that unified modeling of the same variable (i.e., V) can better enhance the
feature representation.

Upsampling Strategies. Table 2(b) varies the upsampling strategies. We can see that all of the
three upsample strategies can increase the Top-1 accuracy, which means the upsample operation can

6



Table 2: Ablation experiments with ResTv2-T on ImageNet-1k. If not specified, the default
is: upsampling V using pixel-shuffle operation and applying PA as positional embedding. Default
settings are marked in gray .

(a) Upsampling Targets. Upsampling V
works the best.

Targets Top-1 (%) Top-5 (%)

w/o 79.04 94.61

x′ 79.64 94.90

K 80.03 94.95

V 80.33 95.06

(b) Upsampling Strategies. Pixel-Shuffle achieves
better speed-accuracy trade-off.

Upsample Params FLOPs Top-1 (%)

w/o 30.26M 4.08G 79.04

nearest 30.26M 4.08G 79.16

bilinear 30.26M 4.08G 79.28

pixel-shuffle 30.43M 4.10G 80.33

(c) ConvNet or EMSA? Both of them can boost the
performance.

Branches Params FLOPs Top-1 (%)

EMSA 30.26M 4.08G 79.04

ConvNet 26.11M 3.56G 77.18

ConvNetv2 26.67M 4.09G 77.91

ConvNetv3 30.43M 4.54G 78.63

EMSAv2 30.43M 4.10G 80.33

(d) Positional Embedding. Both RPE and
PA work well, but PA is more flexible.

PE Params Top-1 (%)

w/o 30.42M 79.94

APE [11] 30.98M 79.99

RPE [31] 30.48M 80.32

PEG [6] 30.43M 80.17

PA [47] 30.43M 80.33

provide information not captured by self-attention. In addition, pixel-shuffle operation obtains much
stronger feature extraction capabilities with a few parameters and FLOPs increase.

ConvNet or EMSA?

Figure 4: Linear CKA Similarity be-
tween EMSA, Upsample and EMSAv2
with ResTv2-T. Higher value means higher
similarity.

As mentioned in Section 3.2, we point out that the
“downsampling-upsampling” pipeline in EMSAv2 can
constitute a complete ConvNet block for extracting fea-
tures. Here, we separate it (i.e., a ResTv2-T variant
without self-attention) to see whether it can replace the
MSA module in ViTs. Table 2(c) shows that with the
same number of blocks, the performance of the ConvNet
version is quite poor. In order to show that insufficient
parameters and computation do not predominantly cause
this issue, we constructed ConvNetv2 (block numbers in
the four stages are {2, 3, 6, 2}) and ConvNetv3 (block
numbers are {2, 3, 6, 3}) so that the model complex-
ity of the ConvNetv2 and EMSA versions (without up-
sample) is equivalent. Experimental results show that
ConvNetv2 and ConvNetv3 still perform inferior to the
EMSA version (77.91 vs 78.63 vs 79.04 in terms of Top-
1 accuracy). This observation indicates that ConvNet
does not act like EMSA. Thus, it is not reasonable to
replace MSA with ConvNet in ViTs.

However, combining the upsample module and EMSA
(i.e., EMSAv2) indeed improves the overall performance.
We can conclude that the downsampling operation of EMSAv2 will lead to the loss of input informa-
tion, resulting in insufficient information extracted by the EMSA module constructed on this basis,
and the upsampling operation can reconstruct the lost information.

We further plot the linear CKA [18] curves to measure which is more critical for EMSAv2 (i.e.,
the combination variant, short for “com”), the self-attention branch (i.e., EMSA, short for “attn”)

7



or the upsample module (short for “up”)? As shown in Figure 4 (the red polyline, i.e., “up_attn”),
in earlier blocks, feature representations extracted by self-attention and upsample module show a
relatively low similarity, while in deeper blocks, they exhibit a surprisingly high similarity. We
can conclude that features in earlier blocks extracted by self-attention and upsample modules are
complementary. Combining them can boost the final performance. In deeper blocks, particularly the
last block, self-attention behaves like the upsample module (linear CKA > 0.8), although it shows a
higher similarity with EMSAv2 (linear CKA > 0.9, shown in the purple polyline, i.e., “attn_com”).
These observations could provide a guide for designing hybrid models, i.e., integrating ConvNets and
MSAs in the early stages can significantly improve the performance of ViTs.

Positional Embedding. We also validate whether Positional Embedding (short for PE) still works in
ResTv2. Table 2(d) shows PE can still improve the performance, but not that obvious as ResTv1 [47].
Specifically, both RPE and PA work well, but PEG and PA are more flexible and can process input
images of arbitrary size without interpolation or fine-tuning. Besides, PA outperforms PEG with the
same model complexity. Therefore, we apply PA as the default PE strategy. Detailed settings about
these positional embedding can be found in Appendix E.

5 Empirical Evaluation on Downstream Tasks

5.1 Object Detection and Segmentation on COCO

Settings. Object detection and instance segmentation experiments are conducted on COCO 2017,
which contains 118K training, 5K validation, and 20K test-dev images. We report results using the
validation set. We fine-tune Mask R-CNN [14] with ResTv2 backbones. Following [24], we adopt
multi-scale training, AdamW optimizer, “×1 schedule” for ablation study, and “×3 schedule” for
main results. Further details and hyper-parameter settings can be found in Appendix C.2.

Ablation Study. There are several ways to fine-tune ImageNet pre-trained ViT backbones. The
conventional one is the global style, which directly adopts ViTs into downstream tasks. The recent
popular one is window-style (short for Win), which constrained part or all MSA modules of ViTs into
a fixed window to save computation overhead. However, performing all MSA into a limited-sized
window will lose the MSA’s long-range dependency ability. To alleviate this issue, we add a 7× 7
depth-wise convolution layer after the last block in each stage to enable information to communicate
across windows. We call this style CWin. In addition, [20] provides a hybrid approach (HWin) to
integrate window information, i.e., computes MSA within a window in all but the last blocks in each
stage that feed into FPN [21]. Window sizes in Win, CWin, and HWin are set as [64, 32, 16, 8] for
the four stages.

Table 3: Object detection results of fine-tuning styles on COCO val2017 with ResTv2-T using
Mask RCNN. Inference “ms/iter” is measured on a V100 GPU, and FLOPs are calculated with 1k
validation images.

(a) Object detection results.

Style Params. FLOPs ms/iter APbox APmask

Win 49.94M 205.2G 149.6 43.95 40.42

CWin 49.96M 212.5G 150.7 44.07 40.44

HWin 49.94M 218.9G 135.9 45.02 41.56

Global 49.94M 229.7G 79.9 46.13 42.03

(b) Detailed GFLOPs Analysis

Style Conv Linear Matmul Others

Win 119.09 82.00 3.69 0.47

CWin 126.29 82.00 3.69 0.47

HWin 118.57 79.71 20.17 0.45

Global 116.95 75.70 36.66 0.42

Table 3(a) shows that although restricted EMSAv2 into fixed windows can effectively reduce theoreti-
cal FLOPs, the actual inference speed is almost double the global style, and the box/mask AP is lower
than the global one. Therefore, we adopt the Global fine-tuning strategy as default in downstream
tasks to get better accuracy and inference speed.

There are predominantly two reasons for the decrease in inference speed: (1) padding to inputs is
required to satisfy the divisible non-overlapped window partition. In our settings, the theoretical
upper limit of padding in the first stage is 63 × 63, close to the lower bound of the input features’

8



size (i.e., 64× 64). (2) the process of window partition is similar to feature grouping, which reduces
the computational density of GPUs.

Table 3(b) shows the detailed FLOPs of different modules. We can see that window-based fine-tune
methods can effectively reduce the “Matmul” (short of matrix multiply) FLOPs with the cost of
introducing extra “Linear” FLOPs, demonstrating that window partition padding is common in
detection tasks. In addition, the “Matmul” operation is not the most time-consuming part of the
four settings (≤ 16%). Therefore, it is reasonable to speculate that window attention will reduce
computational density.

We hope the observations and discussions can challenge some common beliefs and encourage people
to rethink the relations between theoretical FLOPs and actual speeds, particularly running on GPUs.

Main Results. Table 4 shows main results of ResTv2 comparing with ConvNeXt [24], Swin
Transformer [23], and traditional ConvNet such as ResNet [15]. Across different model complexities,
ResTv2 outperforms Swin Transformer and ConvNeXt with higher mAP and inference FPS (frames
per second), particularly for tiny models. The mAP improvements over Swin Transformer are +1.6
box AP (47.6 vs. 46.0), and +1.6 mask AP (43.2 vs. 41.6). When comparing with ConvNeXt, the
improvements are +1.4 box AP (47.6 vs. 46.2), and +1.5 mask AP (43.2 vs. 41.7).

Table 4: COCO object detection and segmentation results using Mask-RCNN. We measure FPS
on one V100 GPU. FLOPs are calculated with image size (1280, 800).

Backbones APbox APmask Params. FLOPs FPS

ResNet-50 [15] 41.0 37.1 44.2M 260G 24.1
ConvNeXt-T [24] 46.2 41.7 48.1M 262G 23.4
Swin-T [23] 46.0 41.6 47.8M 264G 21.8
ResTv2-T 47.6 43.2 49.9M 253G 25.0
ResNet-101 [15] 42.8 38.5 63.2M 336G 13.5
Swin-S [23] 48.5 43.3 69.1M 354G 17.4
ResTv2-S 48.1 43.3 60.7M 290G 21.3
ResTv2-B 48.7 43.9 75.5M 328G 18.3

5.2 Semantic Segmentation on ADE20K

Settings. We also evaluate ResTv2 backbones on the ADE20K [49] semantic segmentation task
with UperNet [39]. ADE20K contains a broad range of 150 semantic categories. It has 25K images
in total, with 20K for training, 2K for validation, and another 3K for testing. All model variants
are trained for 160k iterations with a batch size of 16. Other experimental settings follow [23] (see
Appendix C.2 for more details).

Table 5: ADE20K validation results using UperNet. Following Swin, we report mIoU results with
multiscale testing. FLOPs are based on input sizes of (2048, 512).

Backbones input crop. mIoU Params. FLOPs FPS

ResNet-50 [15] 5122 42.8 66.5M 952G 23.4
ConvNeXt-T [24] 5122 46.7 60.2M 939G 19.9
Swin-T [23] 5122 45.8 59.9 M 941G 21.1
ResTv2-T 5122 47.3 62.1M 977G 22.4

ResNet-101 [15] 5122 44.9 85.5M 1029G 20.3
ConvNeXt-S [24] 5122 49.0 81.9M 1027G 15.3
Swin-S [23] 5122 49.2 81.3M 1038G 14.7
ResTv2-S 5122 49.2 72.9M 1035G 20.0
ResTv2-B 5122 49.6 87.6M 1095G 19.2

Results. In Table 5, we report validation mIoU with multi-scale testing. ResTv2 models can achieve
competitive performance across different model capacities, further validating the effectiveness of

9



our architecture design. Specifically, ResTv2-T outperforms Swin-T and ConvNeXt-T with +1.5
and +0.7 mIoU improvements, respectively (47.3 vs. 45.8 vs. 46.7) with much higher FPS (22.4 vs.
21.1 vs. 19.9 images/s). As for larger models, the mIoU improvements of ResTv2-B over Swin-S
and ConvNeXt-B are +0.4 and +0.6 (49.6 vs. 49.2 vs. 49.0). The inference speed improvements are
+30.6% and +25.5% (19.2 vs. 14.7 vs. 15.3 images/s).

6 Conclusion

In this paper, we proposed ResTv2, a simpler, faster, and stronger multi-scale vision Transformer for
image recognition. ResTv2 adopts pixel-shuffle in EMSAv2 to reconstruct the lost information due to
the downsampling operation. In addition, we explore different techniques for better apply ResTv2 to
downstream tasks. Results show that the theoretical FLOPs is not a good reflection of actual speed,
particularly running on GPUs. We hope that these observations could encourage people to rethink
architecture design techniques that can actually prompt the network’s efficiency.

Acknowledgments and Disclosure of Funding

This work is funded by the Natural Science Foundation of China under Grant No. 62176119. We
also greatly appreciate the help provided by our colleagues at Nanjing University, particularly Rao
Lu, Niu Zhong-Han, and Xu Jian.

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint

arXiv:1607.06450, 2016.
[2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey

Zagoruyko. End-to-end object detection with transformers. In European conference on computer vision,
ECCV2020, pages 213–229. Springer, 2020.

[3] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu,
Chao Xu, and Wen Gao. Pre-trained image processing transformer. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2021, pages 12299–12310. Computer Vision Foundation / IEEE,
2021.

[4] Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen Liu, Xiaoyi Dong, Lu Yuan, and Zicheng Liu.
Mobile-former: Bridging mobilenet and transformer. In International Conference on Computer Vision and
Pattern Recognition, CVPR 2022, 2022.

[5] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia Xia, and Chunhua
Shen. Twins: Revisiting the design of spatial attention in vision transformers. In A. Beygelzimer, Y.
Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems,
NeurIPS 2021, 2021.

[6] Xiangxiang Chu, Bo Zhang, Zhi Tian, Xiaolin Wei, and Huaxia Xia. Conditional positional encodings for
vision transformers. arXiv preprint arXiv:2102.10882, 2021.

[7] MMSegmentation Contributors. MMSegmentation: Openmmlab semantic segmentation toolbox and
benchmark. https://github.com/open-mmlab/mmsegmentation, 2020.

[8] Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc Le. Randaugment: Practical automated data
augmentation with a reduced search space. In Advances in Neural Information Processing Systems,
NeurIPS 2020, 2020.

[9] Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan. Coatnet: Marrying convolution and attention for
all data sizes. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in
Neural Information Processing Systems, NeurIPS 2021, 2021.

[10] Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang, Nenghai Yu, Lu Yuan, Dong Chen, and
Baining Guo. Cswin transformer: A general vision transformer backbone with cross-shaped windows.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022,
2022.

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In 9th
International Conference on Learning Representations, ICLR 2021. OpenReview.net, 2021.

[12] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and Christoph
Feichtenhofer. Multiscale vision transformers. In 2021 IEEE/CVF International Conference on Computer
Vision, ICCV 2021, pages 6804–6815. IEEE, 2021.

[13] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders
are scalable vision learners. In International Conference on Computer Vision and Pattern Recognition,
CVPR 2022, 2022.

10

https://github.com/open-mmlab/mmsegmentation


[14] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN. In IEEE International
Conference on Computer Vision, ICCV 2017, pages 2980–2988. IEEE Computer Society, 2017.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, pages 770–778. IEEE
Computer Society, 2016.

[16] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with stochastic
depth. In 14th European Conference on Computer Vision, ECCV 2016, volume 9908, pages 646–661.
Springer, 2016.

[17] Zilong Huang, Youcheng Ben, Guozhong Luo, Pei Cheng, Gang Yu, and Bin Fu. Shuffle transformer:
Rethinking spatial shuffle for vision transformer. arXiv preprint arXiv:2106.03650, 2021.

[18] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey E. Hinton. Similarity of neural network
representations revisited. In Proceedings of the 36th International Conference on Machine Learning, ICML
2019, volume 97, pages 3519–3529. PMLR, 2019.

[19] Kunchang Li, Yali Wang, Gao Peng, Guanglu Song, Yu Liu, Hongsheng Li, and Yu Qiao. Uniformer:
Unified transformer for efficient spatial-temporal representation learning. In International Conference on
Learning Representations, ICLR 2022, 2022.

[20] Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra Malik, and Christoph
Feichtenhofer. Improved multiscale vision transformers for classification and detection. arXiv preprint
arXiv:2112.01526, 2021.

[21] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan, and Serge J. Belongie.
Feature pyramid networks for object detection. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, pages 936–944, 2017.

[22] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li
Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR 2022, 2022.

[23] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In 2021 IEEE/CVF International
Conference on Computer Vision, ICCV 2021, pages 9992–10002. IEEE, 2021.

[24] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A
convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2022, 2022.

[25] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International Conference
on Learning Representations, ICLR 2019. OpenReview.net, 2019.

[26] Xuran Pan, Chunjiang Ge, Rui Lu, Shiji Song, Guanfu Chen, Zeyi Huang, and Gao Huang. On the
integration of self-attention and convolution. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2022, 2022.

[27] Namuk Park and Songkuk Kim. How do vision transformers work? In International Conference on
Learning Representations, ICLR 2022, 2022.

[28] Zhiliang Peng, Wei Huang, Shanzhi Gu, Lingxi Xie, Yaowei Wang, Jianbin Jiao, and Qixiang Ye. Con-
former: Local features coupling global representations for visual recognition. In 2021 IEEE/CVF Interna-
tional Conference on Computer Vision, ICCV 2021, pages 357–366. IEEE, 2021.

[29] Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging. SIAM
journal on control and optimization, 30(4):838–855, 1992.

[30] Ilija Radosavovic, Raj Prateek Kosaraju, Ross B. Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2020, pages 10425–10433. IEEE, 2020.

[31] Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, Pieter Abbeel, and Ashish Vaswani.
Bottleneck transformers for visual recognition. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2021, pages 16519–16529. Computer Vision Foundation / IEEE, 2021.

[32] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, pages 2818–2826. IEEE Computer Society, 2016.

[33] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Instance normalization: The missing ingredient
for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems, NeurIPS 2017, pages 5998–6008, 2017.

[35] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and
Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions.
In 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, pages 548–558. IEEE,
2021.

[36] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt:
Introducing convolutions to vision transformers. In 2021 IEEE/CVF International Conference on Computer
Vision, ICCV 2021, pages 22–31. IEEE, 2021.

[37] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2. https:
//github.com/facebookresearch/detectron2, 2019.

11

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2


[38] Tete Xiao, Piotr Dollar, Mannat Singh, Eric Mintun, Trevor Darrell, and Ross Girshick. Early convolutions
help transformers see better. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, NeurIPS 2017, 2021.

[39] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for scene
understanding. In 15th European Conference on Computer Vision, ECCV 2018, volume 11209, pages
432–448. Springer, 2018.

[40] Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu.
Simmim: A simple framework for masked image modeling. In International Conference on Computer
Vision and Pattern Recognition, CVPR 2022, 2022.

[41] Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai, Bin Xiao, Lu Yuan, and Jianfeng Gao. Focal
attention for long-range interactions in vision transformers. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, NeurIPS 2021, 2021.

[42] Qihang Yu, Yingda Xia, Yutong Bai, Yongyi Lu, Alan Yuille, and Wei Shen. Glance-and-gaze vision
transformer. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in
Neural Information Processing Systems, NeurIPS 2021, 2021.

[43] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zihang Jiang, Francis E. H. Tay, Jiashi Feng,
and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on imagenet. In 2021
IEEE/CVF International Conference on Computer Vision, ICCV 2021, pages 538–547. IEEE, 2021.

[44] Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In 2019 IEEE/CVF
International Conference on Computer Vision, ICCV 2019, pages 6022–6031. IEEE, 2019.

[45] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers. arXiv
preprint arXiv:2106.04560, 2021.

[46] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. In 6th International Conference on Learning Representations, ICLR 2018. OpenReview.net,
2018.

[47] Qinglong Zhang and Yu bin Yang. Rest: An efficient transformer for visual recognition. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing
Systems, NeurIPS 2021, 2021.

[48] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmentation.
In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, pages 13001–13008. AAAI
Press, 2020.

[49] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
Semantic understanding of scenes through the ADE20K dataset. Int. J. Comput. Vis., 127(3):302–321,
2019.

[50] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable DETR: deformable
transformers for end-to-end object detection. In 9th International Conference on Learning Representations,
ICLR 2021. OpenReview.net, 2021.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [N/A]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

12



2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main

experimental results (either in the supplemental material or as a URL)? [Yes] In
https://github.com/wofmanaf/ResT.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] In the Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] In the Appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

https://github.com/wofmanaf/ResT

	Introduction
	Related Work
	Proposed Method
	A brief review of ResTv1
	ResTv2
	Model configurations.
	Explanation of upsample branch

	Empirical Evaluations on ImageNet
	Settings
	Main Results
	Ablation Study

	Empirical Evaluation on Downstream Tasks
	Object Detection and Segmentation on COCO
	Semantic Segmentation on ADE20K

	Conclusion

