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A Appendix

A.1 More Training Details

Following [3, 13, 16, 19, 24, 28], we first pre-train DeAOT on synthetic video sequence generated
from static image datasets [4, 6, 7, 11, 21] by randomly applying multiple image augmentations [24].
Then, we do main training on the VOS benchmarks [18, 25] by randomly applying video augmenta-
tions [3, 27, 28].

The optimization strategies and related hyper-parameters are also the same as AOT. In detail, we
adopt the AdamW [12] optimizer and the sequential training strategy [27] with a sequence length
of 5. The loss function is a 0.5:0.5 combination of BCE loss [22] and soft Jaccard loss [15]. For
pre-training, we use an initial learning rate of 4×10−4 and a weight decay of 0.03. For main training,
the initial learning rate is set to 2× 10−4, and the weight decay is 0.07. Each training stage takes
100,000 steps, and the batch size is 16. We used 4/1 Tesla V100 GPU for training/testing.

A.2 Inference Details on VOT 2020

Most of the inference details on VOT 2020 [9] are the same as the inference setting of AOT [28]
on YouTube-VOS [25] and DAVIS [17, 18]. The differences are listed below: (1) The size of input
videos is resized to be smaller than 1.3×480p and larger than 480p, since some VOT-2020 videos
are smaller than 480p, which is too small to extract object features effectively. (2) We update the
long-term memory DeAOT/AOT per 10 frames instead of 5 frames, and we will drop the oldest
frame (except for the reference frame) from the long-term memory if the memory size is larger than
10 frames. In other words, the maximum temporal range of long-term memory is 10 × 10 = 100
frames. Such a process is necessary to keep enough long-term information and avoid facing out
of memory when inferring long videos. The longest video in VOT 2020 contains 1,500 frames.
(3) When processing tiny objects smaller than 1/900 of the video size. We conduct video object
segmentation only in a small cropped window, which is dynamically centered at the object’s position
in the last frame where the object is not occluded. The size of cropped window is only 1/12 of the
input resolution, and the cropped image will be resized to 465×465. By doing this, we can further
save computations in the inference stage and will not lose performance since tiny objects always
move slowly.

A.3 Compare with More VOS Methods

We compare our DeAOT with more VOS methods in Table 2 and 1. As shown, DeAOT variant
networks outperform all the competitors in both performance and efficiency.
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Figure 1: Qualitative results on YouTube-VOS [25] and DAVIS[18]. R50-DeAOT-L tracks and
segments objects well under many challenging scenarios, including similar objects, occlusion, fast
motion, etc.

We also supply more qualitative results under challenging scenarios on YouTube-VOS [25] and
DAVIS 2017 [18] in Fig. 1, respectively. As demonstrated, DeAOT is robust to many challenging
VOS cases, including similar objects, occlusion, fast motion, motion blur, etc.

A.4 Border Impact and Limitations

The proposed DeAOT framework significantly improves VOS’s performance, robustness, and robust-
ness. The DeAOT variants with real-time speeds may benefit the applications of VOS in real-time
video systems, such as video conference, self-driving car, augmented reality, etc. Also, DeAOT may
be used in video surveillance systems for short-term and precise object tracking, although this is not
our target requirement to promote the development of the VOS community.

As to limitations, the scenarios with multiple similar objects and severe occlusions are still very
challenging for DeAOT and other VOS solutions. Besides, there are rare studies about VOS of
long-term videos containing thousands of frames since the VOS community has no high-quality
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Table 1: Additional quantitative comparison on DAVIS 2016 [17].

Methods J&F J F FPS

FEEL [22] 81.7 81.1 82.2 2.2
AG [8] 82.1 82.2 82.0 14.3
SAT [2] 83.1 82.6 83.6 39
STM [16] 89.3 88.7 89.9 6.3
CFBI [27] 89.4 88.3 90.5 6.3
CFBI+ [29] 89.9 88.7 91.1 5.9
KMN [19] 90.5 89.5 91.5 8.3
RPCM [26] 90.6 87.1 94.0 5.8
HMMN [20] 90.8 89.6 92.0 10.0
STCN [3] 91.6 90.8 92.5 27.2⋆

AOT-T [28] 86.8 86.1 87.4 51.4
DeAOT-T 88.9 87.8 89.9 63.5
AOT-S [28] 89.4 88.6 90.2 40.0
DeAOT-S 89.3 87.6 90.9 49.2
AOT-B [28] 89.9 88.7 91.1 29.6
DeAOT-B 91.0 89.4 92.5 40.9
AOT-L [28] 90.4 89.6 91.1 18.7
DeAOT-L 92.0 90.3 93.7 28.5
R50-AOT-L [28] 91.1 90.1 92.1 18.0
R50-DeAOT-L 92.3 90.5 94.0 27.0
SwinB-AOT-L [28] 92.0 90.7 93.3 12.1
SwinB-DeAOT-L 92.9 91.1 94.7 15.4

dataset for long-term video segmentation. However, applications (e.g., augmented reality) in the real
world often require the algorithms to have the ability to process long videos smoothly.
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Table 2: Additional quantitative comparison on multi-object benchmarks, YouTube-VOS [25] and
DAVIS 2017 [18]. ∗: using 600p instead of 480p videos in inference. ‡: timing extrapolated from
single-object speed assuming linear scaling in the number of objects. ⋆: recorded on our device.

(a) YouTube-VOS

Seen Unseen

Methods J&F J F J F FPS

Validation 2018 Split

SAT[CVPR20] [2] 63.6 67.1 70.2 55.3 61.7 -
AG[CVPR19] [8] 66.1 67.8 - 60.8 - -
PReM[ACCV18] [14] 66.9 71.4 75.9 56.5 63.7 0.17
BoLT[arXiv19] [23] 71.1 71.6 - 64.3 - 0.74
GC[ECCV20] [10] 73.2 72.6 75.6 68.9 75.7 -
STM[ICCV19] [16] 79.4 79.7 84.2 72.8 80.9 -
EGMN[ECCV20] [13] 80.2 80.7 85.1 74.0 80.9 -
KMN[ECCV20] [19] 81.4 81.4 85.6 75.3 83.3 -
CFBI[ECCV20] [27] 81.4 81.1 85.8 75.3 83.4 3.4
LWL[ECCV20] [1] 81.5 80.4 84.9 76.4 84.4 -
SST[CVPR21] [5] 81.7 81.2 - 76.0 - -
CFBI+[TPAMI21] [29] 82.8 81.8 86.6 77.1 85.6 4.0
HMMN[ICCV21] [20] 82.6 82.1 87.0 76.8 84.6 -
STCN[NeurIPS21] [3] 83.0 81.9 86.5 77.9 85.7 8.4⋆

RPCM[AAAI22] [26] 84.0 83.1 87.7 78.5 86.7 -
AOT-T [28] 80.2 80.1 84.5 74.0 82.2 41.0
DeAOT-T 82.0 81.6 86.3 75.8 84.2 53.4
AOT-S [28] 82.6 82.0 86.7 76.6 85.0 27.1
DeAOT-S 84.0 83.3 88.3 77.9 86.6 38.7
AOT-B [28] 83.5 82.6 87.5 77.7 86.0 20.5
DeAOT-B 84.6 83.9 88.9 78.5 87.0 30.4
AOT-L [28] 83.8 82.9 87.9 77.7 86.5 16.0
DeAOT-L 84.8 84.2 89.4 78.6 87.0 24.7
R50-AOT-L [28] 84.1 83.7 88.5 78.1 86.1 14.9
R50-DeAOT-L 86.0 84.9 89.9 80.4 88.7 22.4
SwB-AOT-L [28] 84.5 84.3 89.3 77.9 86.4 9.3
SwB-DeAOT-L 86.2 85.6 90.6 80.0 88.4 11.9

Validation 2019 Split

CFBI[ECCV20] [27] 81.0 80.6 85.1 75.2 83.0 3.4
SST[CVPR21] [5] 81.8 80.9 - 76.6 - -
HMMN[ICCV21] [20] 82.5 81.7 86.1 77.3 85.0 -
CFBI+[TPAMI21] [29] 82.6 81.7 86.2 77.1 85.2 4.0
STCN[NeurIPS21] [3] 82.7 81.1 85.4 78.2 85.9 8.4⋆

RPCM[AAAI22] [26] 83.9 82.6 86.9 79.1 87.1 -
AOT-T [28] 79.7 79.6 83.8 73.7 81.8 41.0
DeAOT-T 82.0 81.2 85.6 76.4 84.7 53.4
AOT-S [28] 82.2 81.3 85.9 76.6 84.9 27.1
DeAOT-S 83.8 82.8 87.5 78.1 86.8 38.7
AOT-B [28] 83.3 82.4 87.1 77.8 86.0 20.5
DeAOT-B 84.6 83.5 88.3 79.1 87.5 30.4
AOT-L [28] 83.7 82.8 87.5 78.0 86.7 16.0
DeAOT-L 84.7 83.8 88.8 79.0 87.2 24.7
R50-AOT-L [28] 84.1 83.5 88.1 78.4 86.3 14.9
R50-DeAOT-L 85.9 84.6 89.4 80.8 88.9 22.4
SwB-AOT-L [28] 84.5 84.0 88.8 78.4 86.7 9.3
SwB-DeAOT-L 86.1 85.3 90.2 80.4 88.6 11.9

(b) DAVIS 2017

Methods J&F J F FPS

Validation 2017 Split

AG [8] 70.0 67.2 72.7 7.1‡

FEEL [22] 71.5 69.1 74.0 2.0
SAT [2] 72.3 68.6 76.0 19.5‡

LWL [1] 81.6 79.1 84.1 2.5‡

STM [16] 81.8 79.2 84.3 3.1‡

CFBI [27] 81.9 79.3 84.5 5.9
SST [5] 82.5 79.9 85.1 -
EGMN [13] 82.8 80.2 85.2 2.5‡

KMN [19] 76.0 74.2 77.8 4.2‡

KMN [19] 82.8 80.0 85.6 4.2‡

CFBI+ [29] 82.9 80.1 85.7 5.6
SST [5] 82.5 79.9 85.1 -
KMN [19] 82.8 80.0 85.6 4.2‡

CFBI+ [29] 82.9 80.1 85.7 5.6
RPCM [26] 83.7 81.3 86.0 -
HMMN [20] 84.7 81.9 87.5 5.0‡

STCN [3] 85.4 82.2 88.6 24.7⋆

AOT-T [28] 79.9 77.4 82.3 51.4
DeAOT-T 80.5 77.7 83.3 63.5
AOT-S [28] 81.3 78.7 83.9 40.0
DeAOT-S 80.8 77.8 83.8 49.2
AOT-B [28] 82.5 79.7 85.2 29.6
DeAOT-B 82.2 79.2 85.1 40.9
AOT-L [28] 83.8 81.1 86.4 18.7
DeAOT-L 84.1 81.0 87.1 28.5
R50-AOT-L [28] 84.9 82.3 87.5 18.0
R50-DeAOT-L 85.2 82.2 88.2 27.0
SwB-AOT-L [28] 85.4 82.4 88.4 12.1
SwB-DeAOT-L 86.2 83.1 89.2 15.4

Testing 2017 Split

FEEL [22] 57.8 55.2 60.5 1.9
STM∗ [16] 72.2 69.3 75.2 -
CFBI [27] 75.0 71.4 78.7 5.3
CFBI∗ [27] 76.6 73.0 80.1 2.9
STCN [3] 76.1 72.7 79.6 19.5⋆

KMN∗ [19] 77.2 74.1 80.3 -
CFBI+∗ [29] 78.0 74.4 81.6 3.4
HMMN [20] 78.6 74.7 82.5 3.4‡

RPCM [26] 79.2 75.8 82.6 -

AOT-T [28] 72.0 68.3 75.7 51.4
DeAOT-T 73.7 70.0 77.3 63.5
AOT-S [28] 73.9 70.3 77.5 40.0
DeAOT-S 75.4 71.9 79.0 49.2
AOT-B [28] 75.5 71.6 79.3 29.6
DeAOT-B 76.2 72.5 79.9 40.9
AOT-L [28] 78.3 74.3 82.3 18.7
DeAOT-L 77.9 74.1 81.7 28.5
R50-AOT-L [28] 79.6 75.9 83.3 18.0
R50-DeAOT-L 80.7 76.9 84.5 27.0
SwB-AOT-L [28] 81.2 77.3 85.1 12.1
SwB-DeAOT-L 82.8 78.9 86.7 15.4
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