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Abstract

In safety-critical applications of reinforcement learning such as healthcare and
robotics, it is often desirable to optimize risk-sensitive objectives that account for
tail outcomes rather than expected reward. We prove the first regret bounds for
reinforcement learning under a general class of risk-sensitive objectives including
the popular CVaR objective. Our theory is based on a novel characterization of the
CVaR objective as well as a novel optimistic MDP construction.

1 Introduction

There has been recent interest in risk-sensitive reinforcement learning, which replaces the usual
expected reward objective with one that accounts for variation in possible outcomes. One of the
most popular risk-sensitive objectives is the conditional value-at-risk (CVaR) objective [1, 2, 3, 4],
which is the average risk at some tail of the distribution of returns (i.e., cumulative rewards) under a
given policy [5, 6]. More generally, we consider a broad class of objectives in the form of a weighted
integral of quantiles of the return distribution, of which CVaR is a special case.

A key question is providing regret bounds for risk-sensitive reinforcement learning. While there has
been some work studying this question, it has focused on a specific objective called the entropic risk
measure [7, 8], leaving open the question of bounds for more general risk-sensitive objectives. There
has also been work on optimistic exploration for CVaR [9], but without any regret bounds.

We provide the first regret bounds for risk-sensitive reinforcement learning with objectives of form

Φ(π) =

∫ 1

0

F †
Z(π)(τ) · dG(τ), (1)

where Z(π) is the random variable encoding the return of policy π, FZ(π) is its quantile function
(roughly speaking, the inverse CDF), and G is a weighting function over the quantiles. This class
captures a broad range of useful objectives, and has been studied in prior work [10, 4].

We focus on the episodic setting, where the agent interacts with the environment, modeled by a
Markov decision process (MDP), over a fixed sequence of episodes. Its goal is to minimize the
regret—i.e., the gap between the objective value it achieves compared to the optimal policy. Our
approach is based on the upper confidence bound strategy [11, 12], which makes decisions according
to an optimistic estimate of the MDP. We prove that this algorithm (denoted A) has regret

regret(A) = Õ
(
T 2 · LG · |S|3/2 · |A| ·

√
K
)
,
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where T is the length of a single episode, LG is the Lipschitz constant for the weighting function G,
|S| is the number of states in the MDP, |A| is the number of actions, and K is the number of episodes
(Theorem 4.1). Importantly, it achieves the optimal rate

√
K achievable for typical expected return

objectives (which is a lower bound in our setting since expected return is an objective in the class we
consider, taking G(τ) = τ ). For CVaR objectives, we have LG = 1/α, where α is the size of the tail
considered—e.g., when α is small, it averages over outliers with particularly small return.

The main challenge behind proving our result is bounding the gap between the objective value for the
estimated MDP and the true MDP. In particular, even if we have a uniform bound ‖FẐ(π) − FZ(π)‖∞
on the CDFs of the estimated return Ẑ(π) and the true return Z(π), we need to translate this to a
bound on the corresponding objective values. To do so, we prove that equivalently, we have

Φ(π) = 2T −
∫
R
G(FZ(π)(x)) · dx.

This equivalent expression for Φ follows by variable substitution and integration by parts when FZ(π)

is invertible (so F †
Z(π)(τ) = F−1

Z(π)(τ)), but the general case requires significantly more care. We
show that it holds for an arbitrary CDF FZ(π) .

In addition to our regret bound, we provide several other useful results for MDPs with risk-sensitive
objectives. In particular, optimal policies for risk-sensitive objectives may be non-Markov. For
CVaR objectives, it is known that the optimal policy only needs to depend on the cumulative return
accrued so far [13]. We prove that this holds in general for objectives of the form (1) (Theorem 3.1).
Furthermore, the cumulative return so far is a continuous component; we prove that discretizing this
component yields an arbitrarily close approximation of the true MDP (Theorem 3.2).

Related work. To the best of our knowledge, the only prior work on regret bounds for risk-sensitive
reinforcement learning is specific to the entropic risk objective [7, 8]:

J(π) =
1

β
logEZ(π)

[
eβZ

(π)
]
,

where β ∈ R>0 is a hyperparameter. As β → 0, this objective recovers the expected return objective;
for β < 0, it encourages risk aversion by upweighting negative returns; and for β > 0, it encourages
risk seeking behaviors by upweighting positive returns. This objective is amenable to theoretical
analysis since the value function satisfies a variant of the Bellman equation called the exponential
Bellman equation; however, it is a narrow family of risk measures and is not widely used in practice.

In contrast, we focus on a much broader class of risk measures including the popular CVaR objec-
tive [1], which is used to minimize tail losses. To the best of our knowledge, we provide the first
regret bounds for the CVaR objective and for the wide range of objectives given by (1).

2 Problem Formulation

Markov decision process. We consider a Markov decision process (MDP)M = (S,A, D, P,P, T ),
with finite state space S, finite action space A, initial state distribution D(s), finite time horizon
T , transition probabilities P (s′ | s, a), and reward measure PR(s,a); without loss of generality, we
assume r ∈ [0, 1] with probability one. A history is a sequence

ξ ∈ Z =

T⋃
t=1

Zt where Zt = (S ×A× R)t−1 × S

Intuitively, a history captures the interaction between an agent andM up to step t. We consider
stochastic, time-varying, history-dependent policies πt(at | ξt), where t is the time step. Given π, the
history Ξ

(π)
t generated by π up to step t is a random variable with probability measure

P
Ξ

(π)
t

(ξt) =

{
D(s1) if t = 1

P
Ξ

(π)
t−1

(ξt−1) · πt(at | ξt−1) · PR(st,at)(rt) · P (st+1 | st, at) otherwise,

where for all τ ∈ [T ] we use the notation

ξτ = ((s1, a1, r1), ..., (sτ−1, aτ−1, rτ−1), sτ ).
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Finally, an episode (or rollout) is a history ξ ∈ ZT of length T generated by a given policy π.

Bellman equation. The return of π on step t is the random variable (Z
(π)
t (ξt))(ξT ) =

∑T
τ=t rt,

where ξT ∼ P
Ξ

(π)
T

(· | Ξ(π)
t = ξt)—i.e., it is the reward from step t given that the current history is ξt.

Defining Z(π)
T+1(ξ, s) = 0, the distributional Bellman equation [14, 9] is

F
Z

(π)
t (ξ)

(x) =
∑
a∈A

πt(a | ξ)
∑
s′∈S

P (s′ | S(ξ), a)

∫
F
Z

(π)
t+1(ξ◦(a,r,s′))(x− r) · dPR(s,a)(r),

where S(ξ) = s for ξ = (..., s) is the current state in history ξ, and FX is the cumulative distribution
function (CDF) of random variable X . Finally, the cumulative return of π is Z(π) = Z

(π)
1 (ξ), where

ξ = (s) ∈ Z1 for s ∼ D is the initial history; in particular, we have

FZ(π)(x) =

∫
F
Z

(π)
1 (ξ)

(x) · dD(s).

Risk-sensitive objective. The quantile function of a random variable X is

F †X(τ) = inf {x ∈ R | FX(x) ≥ τ} .
Note that if FX is strictly monotone, then it is invertible and we have F †X(τ) = F−1

X (τ). Now, our
objective is given by the Riemann-Stieljes integral

ΦM(π) =

∫ 1

0

F †
Z(π)(τ) · dG(τ),

where G(τ) is a given CDF over quantiles τ ∈ [0, 1]. This objective was originally studied in [15]
for the reinforcement learning setting. For example, choosing G(τ) = min{τ/α, 1} (i.e., the CDF
of the distribution Uniform([0, α])) for α ∈ [0, 1] yields the α-conditional value at risk (CVaR)
objective; furthermore, taking α = 1 yields the usual expected cumulative reward objective. In
addition, choosing G(τ) = 1(τ ≤ α) for α ∈ [0, 1] yields the α value at risk (VaR) objective. Other
risk sensitive-objectives can also be captured in this form, for example the Wang measure [16], and
the cumulative probability weighting (CPW) metric [17]. We call any policy

π∗M ∈ arg max
π

ΦM(π).

an optimal policy—i.e., it maximizes the given objective forM.

Assumptions. First, we have the following assumption on the quantile function for Z(π):

Assumption 2.1. F †
Z(π)(1) = T .

Since T is the maximum reward attainable in an episode, this assumption says that the maximum
reward is attained with some nontrivial probability. This assumption is very minor; for any given
MDPM, we can modifyM to include a path achieving reward T with arbitrarily low probability.
Assumption 2.2. G is LG-Lipschitz continuous for some LG ∈ R>0, and G(0) = 0.

For example, for the α-CVaR objective, we have LG = 1/α.
Assumption 2.3. We are given an algorithm for computing π∗M for a given MDPM.

For CVaR objectives, existing algorithms [13] can compute π∗M with any desired approximation error.
For completeness, we give a formal description of the procedure in Appendix D. When unambiguous,
we drop the dependence onM and simply write π∗.

Finally, our goal is to learn while interacting with the MDPM across a fixed number of episodes K.
In particular, at the beginning of each episode k ∈ [K], our algorithm chooses a policy π(k) = A(Hk),
where Hk = {ξT,κ}k−1

κ=1 is the random set of episodes observed so far, to use for the duration of
episode k. Then, our goal is to design an algorithm A that aims to minimize regret, which measures
the expected sub-optimality with respect to π∗:

regret(A) = E

 ∑
k∈[K]

Φ(π∗)− Φ(π(k))

 .
Finally, for simplicity, we assume that the initial state distribution D is known; in practice, we can
remove this assumption using a standard strategy.
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3 Optimal Risk-Sensitive Policies

In this section, we characterize properties of the optimal risk-sensitive policy π∗M. First, we show
that it suffices to consider policies dependent on the current state and the cumulative rewards
obtained so far, rather than the entire history. Second, the cumulative reward is a continuous quantity,
making it difficult to compute the optimal policy; we prove that discretizing this component does
not significantly reduce the objective value. For CVaR objectives, these results imply that existing
algorithms can be used to compute the optimal risk-sensitive policy [13].

Augmented state space. We show there exists an optimal policy π∗t (at | yt, st) that only depends
on the current state st and cumulative reward yt = J(ξt) =

∑t−1
τ=1 rτ obtained so far. To this end, let

Zt(y, s) = {ξ ∈ Zt | J(ξt) ≤ y ∧ st = s}
be the set of length t histories ξ with cumulative reward at most y so far, and current state s. For any
history-dependent policy π, define the alternative policy π̃ by

π̃t(at | ξt) = E
Ξ

(π)
t

[
πt(at | Ξ(π)

t )
∣∣∣ Ξ

(π)
t ∈ Zt(J(ξt), st)

]
.

Note that π̃ only depends on ξt through yt = J(ξt) and st, we can define π̃t(at | ξt) = π̃t(at | yt, st).
Theorem 3.1. For any policy π, we have Φ(π̃) = Φ(π).

We give a proof in Appendix A. In particular, given any optimal policy π∗, we have Φ(π̃∗) = Φ(π∗);
thus, we have π̃∗ ∈ arg maxπ Φ(π). Finally, we note that this result has already been shown for
CVaR objectives [13]; our theorem generalizes the existing result to any risk-sensitive objective that
can be expressed as a weighted integral of the quantile function.

Augmented MDP. As a consequence of Theorem 3.1, it suffices to consider the augmented MDP
M̃ = (S̃,A, D̃, P̃ , P̃, T ). First, S̃ = S × R is the augmented state space; for a state (s, y) ∈ S̃, the
first component encodes the current state and the second encodes the cumulative rewards so far. The
initial state distribution is a probability measure

D̃((s, y)) = D(s) · δ0(y),

where δ0 is the Dirac delta measure placing all probability mass on y = 0 (i.e., the cumulative reward
so far is initially zero). The transitions are given by the product measure

P̃ ((s′, y′) | (s, y), a) = P (s′ | s, a) · PR(s,a)(y
′ − y),

i.e., the second component of the state space is incremented as y′ = y + r, where r is the reward
achieved in the original MDP. Finally, the rewards are now only provided on the final step:

PRt((s,y),a)(r) =

{
δy(r) if t = T

0 otherwise,

i.e., the reward at the end of a rollout is simply the cumulative reward so far, as encoded by the
second component of the state. By Theorem 3.1, it suffices to compute the optimal policy for M̃ over
history-independent policies πt(at | s̃t):

max
π∈Πind

ΦM̃(π) = max
π

ΦM(π),

where Πind is the set of history-independent policies. Once we have π∗M̃, we can use it inM by
defining πM(a | ξ, s) = π∗M̃(a | J(ξ), s).

Discretized augmented MDP. Planning over M̃ is complicated by the fact that the second compo-
nent of its state space is continuous. Thus, we consider an η-discretization of M̃, for some η ∈ R>0.
To this end, we modify the reward function so that it only produces rewards in η ·N = {η ·n | n ∈ N},
by always rounding the reward up. Then, sums of these rewards are contained in η · N, so we can
replace the second component of S̃ with η · N. In particular, we consider the discretized MDP
M̂ = (Ŝ,A, D̃, P̂ , P̃, T ), where Ŝ = S × (η · N), and transition probability measure

P̂ ((s′, y′) | (s, y), a) = P (s′ | s, a) · (PR(s,a) ◦ φ−1)(y′ − y)
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where φ(r) = η · dr/ηe. That is, PR(s,a) is replaced with the pushforward measure PR(s,a) ◦ φ−1,
which gives reward η · i with probability PR(s,a)[η · (i− 1) < r ≤ η · i].

Now, we prove that the optimal policy π∗M̂ for the discretized augmented MDP M̂ achieves objective
value close to the optimal policy π∗M for the original MDPM. Importantly, we want to consider
measure performance of both policies based on the objective ΦM of the original MDPM. To do so,
we need a way to use π∗M̂ inM. Note that π∗M̂ depends only on the state ŝ = (s, y), where s ∈ S
is a state of the original MDPM, and y ∈ η · N is a discretized version of the cumulative reward
obtained so far. Thus, we can run π∗M̂ inM by simply rounding the reward rt at each step t up to
the nearest value r̂t ∈ η · N at each step—i.e., r̂t = φ(rt); then, we increment the internal state as
yt = yt−1 + r̂t. We call the resulting policy πM the version of π∗M̂ adapted toM. Then, our next
result says that the performance of πM is not too much worse than the performance of π∗M.

Theorem 3.2. Let π∗M̂ be the optimal policy for the discretized augmented MDP M̂, let πM be the
policy π∗M̂ adapted to the original MDPM, and let π∗M be the optimal (history-dependent) policy
for the original MDPM. Then, we have

ΦM(πM) ≥ ΦM(π∗M)− η.

We give a proof in Appendix B. Note that we can set η to be sufficiently small to achieve any desired
error level (i.e., choose ε/T , where ε is the desired error). The only cost is in computation time.
Note that the number of states in M̂ is still infinite; however, since the cumulative return satisfies
y ∈ [0, H], it suffices to take Ŝ = S × (ε · [dH/ηe]); then, M̂ has |Ŝ| = |S| · dH/ηe states.

4 Upper Confidence Bound Algorithm

Here, we present our upper confidence bound (UCB) algorithm (summarized in Algorithm 1). At a
high level, for each episode, our algorithm constructs an estimateM(k) of the underlying MDPM
based on the prior episodes i ∈ [k− 1]; to ensure exploration, it optimistically inflates the estimate of
the reward probability measure P. Then, it plans inM(k) to obtain an optimistic policy π(k) = π∗M(k) ,
and uses this policy to act in the MDP for episode k.

Optimistic MDP. We defineM(k). Without loss of generality, we assume S includes a distinguished
state s∞ with rewards FR(s∞,a)(r) = 1(r ≥ 1) (i.e., achieve the maximum reward r = 1 with
probability one), and transitions P (s∞ | s, a) = 1(s = s∞) and P (s′ | s∞, a) = 1(s′ = s∞) (i.e.,
inaccessible from other states and only transitions to itself). Our construction of M̂(k) uses s∞ for
optimism. Now, let M̃(k) be the MDP using the empirical estimates of the transitions and rewards:

P̃ (k)(s′ | s, a) =
Nk,t(s, a, s

′)

Nk,t(s, a)

FR̃(k)(s,a)(r) =
1

Nk,t(s, a)

k−1∑
i=1

T∑
t=1

1(r ≤ ri,t) · 1 (si,t = s ∧ ai,t = a) .

Then, let M̂(k) be the optimistic MDP; in particular, its transitions

P̂ (k)(s′ | s, a) =


1(s′ = s∞) if s = s∞
1−

∑
s′∈S\{s∞} P̃

(k)(s′ | s, a) if s′ = s∞

max
{
P̃ (k)(s′ | s, a)− ε(k)

R (s, a), 0
}

otherwise

transition to the optimistic state s∞ when uncertain, and its rewards

FR̂(k)(s,a)(r) =


1(r ≥ 1) if s = s∞
1 if r ≥ 1

max
{
FR̃(k)(s,a)(r)− ε

(k)
R (s, a), 0

}
otherwise

optimistically shift the reward CDF downwards. Here, ε(k)
P (s, a) and ε

(k)
R (s, a) are defined in

Section 5; intuitively, they are high-probability upper bounds on the errors of the empirical estimates
P̃ (k)(· | s, a) and FR̃(k)(s,a) of the transitions and rewards, respectively.
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Algorithm 1 Upper Confidence Bound Algorithm

1: for k ∈ [K] do
2: ComputeM(k) and π(k) = π∗M(k) using prior episodes {ξ(i) | i ∈ [k − 1]}
3: Execute π(k) in the true MDPM and observe episode ξ(k) = [(sk,t, ak,t, rk,t)]

T
t=1 ∪ [sk,T+1]

4: end for

Theoretical guarantees. We have the following upper bound on the regret of Algorithm 1.
Theorem 4.1. Denote Algorithm 1 by A. For any δ ∈ (0, 1], with probability at least 1− δ, we have

regret(A) ≤ 4T 3/2 · LG · |S| ·

√
5|S| · |A| ·K · log

(
4|S| · |A| ·K

δ

)
= Õ(

√
K).

We briefly compare our bound to existing ones in the setting of expected return objectives. The
dependence on the number of episodes K matches existing bounds [11, 12]; since this is optimal in
the setting of expected return, and expected return is a special case of our setting (with G(τ) = τ ),
our bound is also optimal in K. In terms of the dependence on the number of states |S|, our bound
has an extra

√
|S| factor compared to the UCRL2 algorithm [11], and an extra |S| factor compared

to the improved bound of the UCBVI algorithm [12]. One extra
√
|S| comes from down-shifting

transitions uniformly in the construction of the optimistic MDP M̂(k). This
√
|S| may be removed

by a more careful construction of the optimistic MDP. Another extra
√
|S| compared to UCBVI

comes from bounding the estimation error of the reward distribution. We believe it may be possible
to remove this

√
|S| through a more careful treatment of the estimation error, similar to the one in

UCBVI. We leave both of these potential refinements to future work.

In terms of the dependence on the number of actions |A|, our bound matches the order of
√
|A|

in both UCRL2 and UCBVI. Our dependence on the horizon length T is T 3/2, compared to the
same order of T 3/2 in UCBVI and T in a variant of UCBVI [12] utilizing a carefully designed
variance-based bonus.

5 Proof of Theorem 4.1

We prove Theorem 4.1; we defer proofs of several lemmas to Appendix C.

At a high level, the proof proceeds in three steps. First, we prove our key Lemma 5.1, which expresses
the objective Φ in terms of an integral of the weighted CDF of the return. This lemma allows us to
translate bounds on the difference between CDFs of the estimated return Ẑ(π) and the true return
Z(π) into bounds on the difference between corresponding objective values. The proof of this lemma
is divided into three parts that deal with different sets of points in the domain of the quantile function
F †
Z(π) : (i) discontinuous; (ii) continuous and strictly monotone; (iii) continuous and non-strictly

monotone. This result is used throughout the remainder of the proof.

Second, we define E to be the event where the optimistic estimated MDP M̂(k) falls into a certain
confidence set around the true MDPM for each k ∈ [K]; in Lemma 5.2, we prove that E holds with
high probability. Then, in Lemma 5.6, we prove that under event E , the objective values of M̂(k) and
M are close. To prove this lemma, we separately show that (i) the objective values of the estimated
MDP M̃(k) (estimated without optimism) andM are close (Lemma 5.4), and (ii) the objective values
of M̂(k) and M̃(k) are close (Lemma 5.5).

Third, in Lemma 5.7, we prove that under event E , the MDP M̂(k) is indeed optimistic. Together,
these results imply the regret bound using the standard UCB proof strategy.

We proceed with the proof. First, we have our key result providing an equivalent expression for Φ:
Lemma 5.1. We have

Φ(π) = T −
∫
R
G(FZ(π)(x)) · dx.
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Proof. First, note that by integration by parts, we have

Φ(π) =

∫ 1

0

F †
Z(π)(τ) · dG(τ) =

[
F †
Z(π)(τ) ·G(τ)

]1
0
−
∫ 1

0

G(τ) · dF †
Z(π)(τ)

= T −
∫ 1

0

G(τ) · dF †
Z(π)(τ),

where the last line follows by Assumptions 2.1 & 2.2. Thus, it suffices to show that∫ 1

0

G(τ) · dF †
Z(π)(τ) =

∫
R
G(FZ(π)(x)) · dx.

The quantile function F †
Z(π) is monotonically increasing and left-continuous [18], so this integral is

equivalently a Lebesgue-Stieltjes integral [19]. Dividing the unit interval I = [0, 1] into disjoint sets

I(1) = {τ ∈ I | F †
Z(π)(τ) is discontinuous}

I(2) = {τ ∈ I | F †
Z(π)(τ) is continuous and strictly monotone}

I(3) = {τ ∈ I | F †
Z(π)(τ) is continuous and non-strictly monotone},

then we have∫ 1

0

G(τ) · dF †
Z(π)(τ) =

∫
I(1)

G(τ) · dF †
Z(π)(τ) +

∫
I(2)

G(τ) · dF †
Z(π)(τ) +

∫
I(3)

G(τ) · dF †
Z(π)(τ).

We consider each of the three terms separately and then combine them to finish the proof.

First term. Note that I(1) = {τ (1)
i }∞i=1 is countable since monotone functions can have countably

many discontinuities. Also, for each i ∈ N, the measure assigned to τ (1)
i by dF †

Z(π) is

dF †
Z(π)({τ

(1)
i }) = lim

τ→τ(1)
i +

F †
Z(π)(τ)− F †

Z(π)(τ
(1)
i ) =: x

(1)+
i − x(1)

i .

Thus, we have∫
I(1)

G(τ) · dF †
Z(π)(τ) =

∞∑
i=1

G(τ
(1)
i ) · (x(1)+

i − x(1)
i ) =

∞∑
i=1

G(τ
(1)
i ) ·

∫ x
(1)+
i

x
(1)
i

dx

=

∞∑
i=1

∫ x
(1)+
i

x
(1)
i

G(FZ(π)(x)) · dx

=

∞∑
i=1

∫
F−1

Z(π)
({τ(1)

i })
G(FZ(π)(x)) · dx

=

∫
F−1

Z(π)
(I(1))

G(FZ(π)(x)) · dx.

On the second line, we have used the fact that FZ(π)(x) = τ
(1)
i for all x ∈ [x

(1)
i , x

(1)+
i ). To see this

fact, note that since x ≥ x
(1)
i , by monotonicity of FZ(π) , we have FZ(π)(x) ≥ FZ(π)(x

(1)
i ) = τ

(1)
i .

Furthermore, if FZ(π)(x) > τ
(1)
i , then we would have

x
(1)+
i = lim

τ→τ(1)
i +

F †
Z(π)(τ) = lim

τ→τ(1)+
i

inf{x′ ∈ R | FZ(π)(x′) ≥ τ}

≤ inf{x′ ∈ R | FZ(π)(x′) ≥ FZ(π)(x)}
≤ x,

where the first inequality follows since FZ(π)(x) ≥ τ for τ sufficiently close to τ (1)
i , and the second

since x ∈ {x′ ∈ R | FZ(π)(x′) ≥ FZ(π)(x)}. Since we have assumed x < x
(1)+
i , we have a
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contradiction, so FZ(π)(x) ≤ τ (1)
i . Thus, it follows that FZ(π)(x) = τ

(1)
i , as claimed. The third line

follows since

F−1
Z(π)({τ

(1)
i }) = [x

(1)
i , x

(1)+
i ) or F−1

Z(π)({τ
(1)
i }) = [x

(1)
i , x

(1)+
i ].

In particular, for any x ∈ F−1
Z(π)({τ

(1)
i }), we have FZ(π)(x) = τ

(1)
i , so

x ≥ inf{x ∈ R | FZ(π)(x) ≥ τ (1)
i } = x

(1)
i .

Conversely, we have

x
(1)+
i = lim

τ→τ(1)
i +

F †
Z(π)(τ) = lim

τ→τ(1)+
i

inf{x′ ∈ R | FZ(π)(x′) ≥ τ} ≥ x

since FZ(π)(x′) ≤ τ (1)
i < τ for all x′ ≤ x so the infimum must be ≥ x. These two arguments show

that F−1
Z(π)({τ

(1)
i }) ⊆ [x

(1)
i , x

(1)+
i ]. The fact that [x

(1)
i , x

(1)+
i ) ⊆ F−1

Z(π)({τ
(1)
i }) follows by the same

argument as for the second line. The claim follows. Finally, the fourth line follows since the sets
F−1
Z(π)({τ

(1)
i }) are disjoint.

Second term. For any τ ∈ I(2), then F−1
Z(π) exists at τ , and we have F †

Z(π)(τ) = F−1
Z(π)(τ). Thus, by

a substitution τ = FZ(π)(x), we have∫
I(2)

G(τ) · dF †
Z(π)(τ) =

∫
F−1

Z(π)
(I(2))

G(FZ(π)(x)) · dx.

Third term. We can divide I(3) into a union of disjoint intervals I(3) =
⋃∞
i=1 I

(3)
i , where

I
(3)
i = {τ ∈ [0, 1] | F †

Z(π)(τ) = x
(3)
i }

for some x(3)
i ∈ R; there are only be countably many such intervals (since each one contains a distinct

rational number). Then, we have∫
I(3)

G(τ) · dF †
Z(π)(τ) = 0 =

∫
F−1

Z(π)
(I(3))

G(FZ(π)(x)) · dx,

since F−1
Z(π)(I

(3)) = {x(3)
i }∞i=1 has measure zero according to the Lebesgue measure dx.

Final proof. Finally, note that F−1
Z(π)(I

(1)), F−1
Z(π)(I

(2)), and F−1
Z(π)(I

(3)) cover R and are disjoint
except possibly on a set of measure zero, so∫

F−1

Z(π)
(I(1))

G(FZ(π)(x)) · dx+

∫
F−1

Z(π)
(I(2))

G(FZ(π)(x)) · dx+

∫
F−1

Z(π)
(I(3))

G(FZ(π)(x)) · dx

=

∫
R
G(FZ(π)(x)) · dx.

The claim follows.

Next, given δ ∈ R>0, define E to be the event where the following hold:

‖P̃ (k)(· | s, a)− P (· | s, a)‖1 ≤

√
2|S|

N (k)(s, a)
log

(
6|S| · |A| ·K

δ

)
=: ε

(k)
P (s, a) (∀s ∈ S, a ∈ A)

‖FR̃(k)(s,a) − FR(s,a)‖∞ ≤

√
1

2N (k)(s, a)
log

(
6|S| · |A| ·K

δ

)
=: ε

(k)
R (s, a) (∀s ∈ S, a ∈ A)

‖P̃ (k)(· | s, a)− P (· | s, a)‖∞ ≤

√
1

2N (k)(s, a)
log

(
6|S| · |A| ·K

δ

)
= ε

(k)
R (s, a) (∀s ∈ S, a ∈ A).

Lemma 5.2. We have P[E | {N (k)(s, a)}k∈[K],s∈S,a∈A] ≥ 1− δ.
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Next, let Z̃(k,π) and Ẑ(k,π) be the returns for policy π for M̃(k) and M̂(k), respectively, let Φ = ΦM,
Φ̃(k) = ΦM̃(k) , and Φ̂(k) = ΦM̂(k) , and let π∗ = π∗M, π̃(k) = π∗M̃(k) , and π̂(k) = π∗M̂(k)

. Now, we

prove two key results: (i) Φ̂(k) is close to Φ, and (ii) Φ̂(k) is optimistic compared to Φ. To this end,
we have the following key lemma; its proof depends critically on Lemma 5.1.

Lemma 5.3. Consider MDPsM = (S,A, D, P,P, T ) andM′ = (S,A, D, P ′,P′, T ), such that
‖P ′(· | s, a)− P (· | s, a)‖1 ≤ εP (s, a) and ‖FR′(s,a) − FR(s,a)‖∞ ≤ εR(s, a). Then, we have

|Φ′(π)− Φ(π)| ≤ T · LG ·B(π) (∀k ∈ [K], π),

where

B(π) = E
Ξ

(π)
T

[
T∑
t=1

εP (st, at) + εR(st, at)

]
.

Our next lemma characterizes the connection between Φ̃(k) and Φ.

Lemma 5.4. On event E and conditioned on {N (k)(s, a)}k∈[K],s∈S,a∈A, we have

|Φ̃(k)(π)− Φ(π)| ≤ T · LG ·B(k)(π) (∀k ∈ [K], π),

where

B(k)(π) = E
Ξ

(π)
T

[
T∑
t=1

ε
(k)
P (st, at) + ε

(k)
R (st, at)

∣∣∣∣ {N (k)(s, a)}s∈S,a∈A

]
.

Proof. The result follows since on event E and conditioned on {N (k)(s, a)}k∈[K],s∈S,a∈A, M̃(k)

andM satisfy the conditions of Lemma 5.3 for all k ∈ [K].

Our next lemma characterizes the connection between Φ̂(k) and Φ̃(k).

Lemma 5.5. For each k ∈ [K] and any policy π, we have

|Φ̂(k)(π)− Φ̃(π)| ≤ T · LG ·
√
|S| ·B(k)(π).

Proof. The result follows since by definition of M̂(k), M̂(k) and M̃(k) satisfy the condition of
Lemma 5.3 with εP (s, a) = 2|S| · ε(k)

R (s, a) ≤
√
|S| · ε(k)

P (s, a) and εR(s, a) = ε
(k)
R (s, a) for all

k ∈ [K].

Now, we prove the first key claim—i.e., Φ̂(k) is close to Φ.

Lemma 5.6. On event E , for all k ∈ [K] and any policy π, we have

|Φ̂(k)(π)− Φ(π)| ≤ 2T · LG ·
√
|S| ·B(k)(π).

Proof. Note that

|Φ̂(k)(π)− Φ(π)| ≤ |Φ̂(k)(π)− Φ̃(k)(π)|+ |Φ̃(k)(π)− Φ(π)| ≤ 2T · LG ·
√
|S| ·B(k)(π),

where the second inequality follows by Lemmas 5.4 & 5.5.

Now, we prove the second key claim—i.e., Φ̂(k) is optimistic compared to Φ.

Lemma 5.7. On event E , we have Φ̂(k)(π) ≥ Φ(π) for all k ∈ [K] and all policies π.

With these two key claims, the proof of Theorem 4.1 follows by a standard upper confidence bound
argument; we give the proof in Appendix C.4.
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Figure 1: Results on the frozen lake environment. Left: Regret of our algorithm vs. UCBVI (with
expected return) and a greedy exploration strategy. Right: Regret of our algorithm across different α
values. We show mean and standard deviation across five random seeds.

6 Experiments

We consider a classic frozen lake problem with a finite horizon. The agent moves to a block next to its
current state at each timestep t and has a slipping probability of 0.1 in its moving direction if the next
state is an ice block. The objective is to maximize the cumulative reward without falling into holes.
The agent needs to choose among paths which correspond to different levels of risk and rewards. In
other words, the agent should account for the tradeoff between the cumulative reward and risk of
slipping into holes. We use a map with four paths of the same lengths that have different rewards at
the end and different levels of risk of falling into holes. We consider α ∈ {0.40, 0.33, 0.25, 0.01},
which correspond to optimal policies of choosing paths with best possible returns of {6, 4, 2, 1} and
success probabilities of {0.729, 0.81, 0.9, 1}, respectively (failure corresponds to zero return).

Figure 1 (left) shows the comparison in cumulative regret between our algorithm, UCBVI (which
maximizes expected returns, not our risk-sensitive objective), and the an algorithm that optimizes our
risk-sensitive objective but explores in a greedy way (i.e., use the best policy for the current estimated
MDP without any optimism), for α = 0.33. The regret is measured in terms of the CVaR objective
with respect to the optimal policy for the same CVaR objective. While UCBVI outperforms greedy,
neither of them converge; in contrast, our algorithm converges within 40 episodes.

Figure 1 (right) compares the regret between our algorithm under different values of α using the
CVaR objective. Note that smaller values of α tend to lead our algorithm to converge more slowly;
this result matches our theory since smaller α corresponds to larger LG. Intuitively, more samples
are needed to get a good estimate of the objective as α becomes small since the CVaR objective is the
average return over a tiny fraction of samples, causing high variance in our estimate of the objective.

7 Conclusion

We have proposed a novel regret bound for risk sensitive reinforcement learning that applies to a broad
class of objective functions, including the popular conditional value-at-risk (CVaR) objective. Our
results recover the usual

√
K dependence on the number of episodes, and also highlights dependence

on the Lipschitz constant LG of the integral of the weighting function G used to define the objective.
Future work includes extending these ideas to the setting of function approximation and understanding
whether alternative exploration strategies such as Thompson sampling are applicable.
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