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Abstract

We study the change point problem that considers alterations in the conditional
distribution of an inferential target on a set of covariates. This paired data scenario
is in contrast to the standard setting where a sequentially observed variable is
analyzed for potential changes in the marginal distribution. We propose new
methodology for solving this problem, by starting from a simpler task that analyzes
changes in conditional expectation, and generalizing the tools developed for that
task to conditional distributions. Large sample properties of the proposed statistics
are derived. In empirical studies, we illustrate the performance of the proposed
method against baselines adapted from existing tools. Two real data applications
are presented to demonstrate its potential.

1 Introduction

The canonical setting for change point (CP) analysis is concerned with the detection and localization
of changes in distributions of an independent sequence of observations {xt, t = 1, 2, · · · , n}. In
many applications, however, the observation at each index t is a pair (xt, yt) with xt a set of
covariates and yt a variable of special interest for inference. This setting incorporates many important
problems in a variety of scientific fields. For example, in finance, market data are often affected by
monetary policies. Thus, to more accurately predict stock prices using this additional information,
one may want to first understand whether and when the relationship between the target stock price
and its associated covariates changes over time [37, 38, 28, 29, 49]. Another example comes from
environmental analysis [6], where one goal is to learn the relationship between the levels of pollutants
and the number of weekly hospital admissions for circulatory and respiratory diseases, which is
subject to potential changes. Before considering more complex models that incorporate time-varying
relationships, one needs to understand first whether the relationship indeed changes and if so, when.

Despite the existence of many applied scenarios where the relationship between a pair changes,
change point methods specifically designed for paired data are quite scarce. As far as we know,
existing methods assume univariate y’s and aim at changes in the conditional expectation of y given
x. Moreover, most papers [26, 24, 25, 39, 2, 4, 22, 43, 15, 40, 11] focus on the setting where the
conditional expectation of y depends linearly on x. The nonlinear and nonparametric cases, however,
are relatively under-investigated. The existing methods mainly focus on two settings. One setting
arises from challenges in econometric modelling, and they focus exclusively on the problem of testing
for structural stability of the conditional mean function over time series [49, 19, 47, 46], while the
(perhaps more) important problem of localizing the change point(s) is not investigated. Another
setting assumes that the covariate xt’s are fixed, univariate, and form an equi-spaced sequence lying
in interval [0, 1] [31, 32]. A detailed review of these related works is included in Section 2.

We are interested here in the case where both x and y can lie in a general space (not necessarily
the real line), and we aim to identify changes in the whole conditional distribution, rather than only
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the mean. This is of significance to many applications: for example, in finance, it is beneficial to
understand changes in the volatility level of stock prices. In this paper we want to both identify and
localize such changes. We will assume a random design setting. Contrary to the fixed design setting
in [31, 32], we assume that the covariate xt’s are randomly drawn from some unknown distribution.
This assumption is realistic and meaningful. Consider the example where a sociologist wants to
investigate whether the relationship between education and income has changed over years. A survey
is distributed every year, which records both the covariate (education level) and the response (income).
In this case, the covariates cannot be fixed (as one cannot determine who will take the survey).

In the random design setting, one could argue that, if we combine x and y and treat them as as one

variable, a sufficiently powerful change point method that can handle any change in distribution
should perform well. This approach is straightforward to implement; however, it targets changes
in the joint distribution p(x, y) = p(x)p(y | x), while we are only interested in changes in the
conditional distribution p(y | x). An intriguing question is whether a method especially designed
for change points in this conditional distribution will have better performance than those for joint
distributions. As the first work to study these general changes, we answer this question by: (i)
developing a mathematical formulation of this new problem and establishing its connection to a
simplified task; (ii) investigating the advantages and limitations of applying existing methods to this
new problem; and (iii) proposing new methodology.

2 Related Work

This section reviews relevant CP literature on paired observations. Please refer to [34, 1] for reviews
on the canonical (unpaired) setting. More related work is discussed in the Appendix Section B.

Linear models. Most publications on paired data assume that the conditional expectation of y is
a linear combination of x [26, 24, 25, 39, 2, 4, 22, 43, 15, 40, 11], and attention has been focused
on analyzing changes in the slope. Recently, generalizations of this classic linear model have been
investigated. One strand of work focuses on analyzing changes in high dimensional linear regression
models [30, 42, 50], while others include seasonality and/or correlated errors[43].

Structural stability test for conditional expectation. Several econometrics papers [49, 19, 47, 46]
focus on testing the stability of the conditional mean function using nonparametric methods. Their
task is simpler, as only testing is concerned, and moreover, only changes in the conditional expectation
are considered. Direct generalizations of their methods to our problem are difficult, but they provide
a good starting point.

Nonparametric methods for fixed design. [31, 32] consider univariate xt, yt’s, where xt forms
an equi-spaced sequence, and they focus on changes in E[yt | xt]. Furthermore, [32] assumes that
direction of the change is known.We note that, although the fixed and random design settings seem
similar, a method which works well for one might not even work for another. Intuitively, the fixed
design setting can be formulated as finding break points in an otherwise continuous/smooth curve,
which is different from our focus.

Trend filtering. The recently proposed trend filtering [27, 48, 51] also targets estimating conditional
expectation in a fixed design. By solving a penalized least squares optimization problem, the
estimated curve exhibit the structure of a piecewise polynomial function [48], the form of which is
more restrictive than [31, 32].

Bayesian approaches. Bayesian methods are also used for CP problems. The most relevant are
based on the Gaussian process change point analysis [44, 7, 23], which aims to detect change(s) in the
mean and/or the covariance function of the Gaussian process regression. In order to derive a tractable
posterior, a Gaussian prior is usually placed on the mean functions. The parametric formulations
needed for Gaussian process CP approaches make them more restrictive than the methods proposed
in this work.

3 Problem Statement

Task I: Analyzing changes in conditional distributions. The ultimate goal is to analyze changes
in the conditional distribution for a paired sequence {(xt, yt), t = 1, 2, · · · , n} where xt 2 X and
yt 2 Y with (X , d) a semi-metric space and Y a general space. We assume that the covariates
xt

iid
⇠ FX , while the conditional distribution of yt given xt might go through an abrupt change.
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Denote {F 0
Y |X=x, x 2 X}, {F 1

Y |X=x, x 2 X} to be two sets of conditional distributions that differ
on at least one x 2 X . Our task is to investigate:

• (Detection) Testing the null hypothesis

H0 : yt | xt ⇠ F 0
Y |X=xt

, t = 1, 2, · · · , n

against the alternative

HA : 9⇢⇤ 2 (0, 1) s.t.

(
yt | xt ⇠ F 0

Y |X=xt
, t = 1, 2, · · · , ⌧⇤

yt | xt ⇠ F 1
Y |X=xt

, t = ⌧⇤ + 1, · · · , n

where ⌧⇤ = dn⇢⇤e. Here dae denotes the least integer great than or equal to a.
• (Localization) When rejecting H0, obtain an estimator ⌧̂ of ⌧⇤.

Task II: Analyzing changes in conditional expectations. We start by considering a simpler task.
Assume that Y ⇢ R (i.e., response y is a scalar), (X , d) is a Euclidean space, and the focus is
only on potential changes of the conditional mean of yt given xt. For this simpler task, suppose
f0, f1 : X ! R are two unknown functions with f0 6= f1, ✏t’s are independent random variables with
E(✏t) = 0 and Var(✏t) < 1, and the ✏t’s are independent from xt’s. Let F 0

✏ , F
1
✏ be two probability

distributions (not necessarily equal). We are concerned with the following two questions:

• (Detection) Testing the null hypothesis

H0 : yt = f0(xt) + ✏t, ✏t ⇠ F 0
✏ , t = 1, 2, · · · , n (1)

against the alternative

HA : 9⇢⇤ 2 (0, 1) s.t.
⇢
yt = f0(xt) + ✏t, ✏t ⇠ F 0

✏ , t = 1, 2, · · · , ⌧⇤

yt = f1(xt) + ✏t, ✏t ⇠ F 1
✏ , t = ⌧⇤ + 1, · · · , n

(2)

where ⌧⇤ = dn⇢⇤e.
• (Localization) When rejecting H0, obtain an estimator ⌧̂ of ⌧⇤.

We will adapt methods developed for Task II to solve Task I. We start with some notations.

Notations. Denote d
�! as convergence in distribution. For a sequence of real-valued random variables

Xn and a sequence of real numbers un, denote Xn = Oa.s.(un) if P(9C < 1, 9n, 8m > n, |Xm| 

Cum) = 1, and Xn = oa.s.(un) if P(8C > 0, 9n, 8m > n, |Xm|  Cun) = 1. Denote 0p,1p 2 Rp

as the vector of all 0’s and 1’s, respectively. Denote Ip 2 Rp⇥p as the identity matrix and I as the
indicator function. Denote k · k2 as Euclidean norm.

4 Methodology

4.1 Solution to Task II

The underlying idea is to transform the CP problem with paired data into the more amenable CP
problem for univariate observations. The best performing transformation, in our view, is reported
next. Another possible transformation that has good performance, but without theoretical guarantees,
is reported in Appendix A.

The proposed transformation relies on proper estimates of the conditional expectation; specifically,
we consider the Nadaraya-Watson (NW) estimator:

f̂(·) =

Pn
t=1 kX

�
h�1
X d(·, xt)

�
ytPn

t=1 kX
�
h�1
X d(·, xt)

� , (3)

with kX a kernel function, and hX = hn a sequence satisfying hn ! 0 as n ! 1.

Introducing the transformed sequence �̃t. A natural direction is to find a sequence {�̂t, t =
1, 2, · · · , n} such that �̂t 2 [0,1) represents the degree of difference in conditional expectation for
data before t and data after t. One such sequence is shown in Figure 1, where we see that without a
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Figure 1: Plot of transformed sequence �̂t against t. In both panels FX = F 0
✏ = N(0, 1), f0(x) = x,

n = 1000. For the right panel f1(x) = x2, F 1
✏ = N(0, 1), ⌧⇤ = 500. Y-axis in both panels are set to the same

scale for comparison.

change point (left panel), �̂t is flat across all t’s; and with a change point (right panel), maxt �̂t will
be larger and the maximizer argmaxt �̂t roughly lies around t = ⌧⇤. Thus, inference for the CP
problem could be based on the location and magnitude of the maximum among {�̂t}.

To define the sequence {�̂t} used for inference (and for generating Figure 1), we introduce a natural
sequence, {�̃t}, as follows. At each t, consider dividing the data into two parts: before t (i.e.,
{(xi, yi), i = 1, 2, · · · , t}) and after t (i.e., {(xi, yi), i = t+1, t+2, · · · , n}). We fit two functions,

the left-side estimate f̂�(t, ·), using only data {(xi, yi), i = 1, 2, · · · , t}, and

the right-side estimate f̂+(t, ·), using only data {(xi, yi), i = t+ 1, t+ 2, · · · , n}.
(4)

Intuitively, with some mild conditions, under the null, we have for all t’s

f̂�(t, ·) ⇡ f0(·), f̂+(t, ·) ⇡ f0(·), f̂�(t, ·)� f̂+(t, ·) ⇡ 0,

while under the alternative, when t = ⌧⇤,

f̂�(t, ·) ⇡ f0(·), f̂+(t, ·) ⇡ f1(·), f̂�(t, ·)� f̂+(t, ·) ⇡ f0(·)� f1(·).

However, under the alternative, when t 6= ⌧⇤, both f̂+(t, ·) and f̂�(t, ·) will roughly lie between f0
and f1, and we expect the ‘difference’ between f̂�(t, ·) and f̂+(t, ·) to be smaller than that between
f0 and f1. Formally, we define the ‘difference’ as

EX⇠FX [f̂�(t,X)� f̂+(t,X)]2, (5)

which is different from the usual l1 or l2 distance between functions by emphasizing on their difference
at the value of x’s with a larger density in FX . In practice we do not know FX , and the expectation
in (5) can be approximated by

n�1Pn
i=1[f̂�(t, xi)� f̂+(t, xi)]2 =: �̃t, (6)

or more economically, a Monte Carlo estimate using fewer particles (n0 < n)

(n0)�1Pn0

t=1[f̂�(t, x
0

t)� f̂+(t, x0

t)]
2, (7)

where x0

t
iid
⇠ F̂X and F̂X = (1/n)

Pn
i=1 �xi with �x the delta measure centered at x.

Standardizing �̃t into �̂t. It can be shown that the sequence �̃t satisfies the trend shown in Figure
1 (see Theorem C.1 in the Appendix), i.e., when sample size is sufficiently large, �̃t ⇡ 0 under
the null, while under the alternative, �̃t increases with t before change point, while decreases after
it. While directly using �̃t for solving CP problems might work, a better choice for localization is
to consider a properly standardized version (denoted, �̂t) which is comparable across all t’s under
the null. This requires a more careful analysis of the limiting distribution of f̂�, f̂+ under the null.
Proposition C.2 in the Appendix shows that under the null, with some mild assumptions, for any
t = dn⇢e with ⇢ 2 [⇢0, ⇢1] and any fixed x, as n ! 1,

p
nc1(hX)[f̂�(t, x)� f̂+(t, x)]

d
�! N (0, c2(x)/[⇢(1� ⇢)]) , (8)

where c1(hX), c2(x) are constants depending on hX and x separately. With Definition (6), result (8)
immediately suggests setting

�̂t = [t(n� t)/n]�̃t, (9)
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such that �̂t follows the same limiting distribution (and thus is comparable) for all t’s. Notice that
the standardized sequence {�̂t, t = 1, 2, · · · , n} is used in drawing Figure 1. The proposed method
is named KCE (Kernel-based change point analysis for Conditional Expectations).

Before summarizing KCE and introducing the detailed algorithm, we would like to discuss the
similarity of of the proposed method with the well established CUSUM [35], as the definition (5) and
standardization in (9) might look very similar to those in CUSUM. Indeed, one can think of KCE as
a generalization of CUSUM where the estimate for mean is replaced by the estimate for conditional
expectations; a similar argument holds for the KCD algorithm proposed next to detect changes in
conditional distributions.

Summary of algorithm and complexity. As mentioned before, after calculating �̂t, the estimator
for ⌧⇤ is set to ⌧̂ = argmaxn0tn1 �̂t. Here n0 = dn⇢0e, n1 = dn⇢1e, 0 < ⇢0  ⇢⇤  ⇢1 < 1
are pre-determined in order to prevent selecting too few samples near the ends [8, 9]. We have
not discussed yet the detection step. Traditionally, either analytic formulas or re-sampling methods
have been used to calculate p-values for CP detection. The (limiting) distribution of max �̂t is
complicated, and we adopt a resampling-based method to obtain p-values. The complete procedure
to solve Task II is summarized in Algorithm 1. Note that we store some pre-computed matrices for
speed-up, and the overall time complexity is O(n2) and space complexity O(n2).

Algorithm 1 KCE to solve task II (conditional expectation change)
input: observations {(xt, yt)}nt=1, significance level ↵, parameters n0, n1.
output: estimated change point location ⌧̂ . (⌧̂ = n implies no significant change point)
pre-compute:

1. KX = [kX
�
h�1
X d(xi, xj)

�
]ni,j=1 2 Rn⇥n.

2. A 2 Rn⇥n, where Aij =
Pj

l=1[KX ]il.
3. B 2 Rn⇥n, where Bij = [KX ]ijyj .
4. C, where [C]ij =

Pj
l=1 Bil.

for t = n0, n0 + 1, · · · , n1 do

for i = 1, 2, · · · , n do

calculate f̂�(xi, t) = [C]it/Ait and f̂+(xi, t) = ([C]in � [C]it)/(Ain �Ait).
end for

calculate �̂t = [t(n� t)/n]
Pn

i=1[f̂�(t, xi)� f̂+(t, xi)]
2.

end for

detection: obtain p-value for maxn0tn1 �̂t using permutations or bootstrap.
localization: if p-value < ↵, estimate ⌧̂ = argmaxn0tn1 �̂t; else, set ⌧̂ = n.

4.2 Solution to Task I

So far we have derived the solution for Task II, the conditional expectation change point problem.
We show next how to adapt the proposed procedure to solve the more difficult Task I, the conditional
distribution change point problem.

Generalizing �̃t. Note that the NW estimator is linear on yt’s, and thus �̃t can be written as

tX

i,j=1

w(t, i, j, xi, xj)yiyj +
nX

i,j=t+1

w(t, i, j, xi, xj)yiyj � 2
tX

i=1

nX

j=t+1

w(t, i, j, xi, xj)yiyj , (10)

where denote for simplicity kX
�
h�1
X d(xi, xj)

�
= kX(i, j), then

w(t, i, j, xi, xj) =

8
>><

>>:

1
n

Pn
l=1

kX(i,l)Pt
r=1 kX(i,r)

kX(j,l)Pt
r=1 kX(j,r)

, if i, j  t,
1
n

Pn
l=1

kX(i,l)Pn
r=t+1 kX(i,r)

kX(j,l)Pn
r=t+1 kX(j,r) , if i, j > t,

1
n

Pn
l=1

kX(i,l)Pt
r=1 kX(i,r)

kX(j,l)Pn
r=t+1 kX(j,r) , if i  t, j > t.

(11)
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We replace the inner product terms yiyj in Equation (10) by kY (yi, yj) (a standard kernel technique),
yielding

�̃t =
tX

i,j=1

w(t, i, j, xi, xj)kY (yi, yj) +
nX

i,j=t+1

w(t, i, j, xi, xj)kY (yi, yj)

� 2
tX

i=1

nX

j=t+1

w(t, i, j, xi, xj)kY (yi, yj). (12)

Some notes on (12): if xt ⌘ c for all t’s (which can be viewed as the canonical unpaired setting,
observing only {yt}nt=1), �̃t equals the maximum mean discrepancy [16] for testing equality between
the distribution of {yi, i  t} and that of {yi, i > t}. In the paired setting, the weights (11) depend
also on the value of xt’s: the more similar xi, xj are, the larger the weight on kY (yi, yj) becomes.

Standardizing �̃t. Similar to Task II, one can show under some mild assumptions that �̃t defined in
(12) has the same trend as in Figure 1 (see Theorem 5.1 in Section 5). Standardizing �̃t, however, is
much less obvious. We defer the rigorous derivation to Theorem 5.1 in the following section. Here
we give some high-level intuition: standardization essentially relies on variance of �̃t; when deriving
it, because of the randomness of xi’s, a uniform bound that does not depend on xi’s is needed. To
establish uniform bounds, we need to put some assumptions on the space of x’s. In order to regulate
the complexity of the space X , we introduce Kolmogorov’s entropy, defined as:

 X (✏) = log (N✏ (X )) ,

with N✏ (X ) the minimal number of open balls of radius ✏ in order to cover X . Now we are ready
to present the standardization for �̃t. Recall the re-scaling factor in (9) is 1/t+ 1/(n� t), and we
expect the re-scaling factor here to be inflated by the Kolmogorov entropy of space X in some way.
The simplest case is when X is compact and X has a density with respect to the Lebesgue measure:
we can still set �̂t using definition (9); and in the general case we suggest setting

�̂t = [(1/t) X ((log t)/t) + (1/(n� t)) X ((log(n� t))/(n� t))]�1 �̃t.

Intuitively, for any fixed t = dn⇢e, the larger the sample size, the smaller the variance of �̃t, and
thus the smaller the rescaling factor. For any fixed n and t, the more complex the space X , the larger
 X , and the larger the rescaling factor. A more detailed derivation on this standardization is included
in the next section.

Summary of algorithm and complexity. The complete procedure for solving task I is summarized
in Algorithm 2. Again we store some pre-computed matrices to save time. The time complexity
of Algorithm 2 is O(n3) and space complexity O(n2). The proposed method is named KCD
(Kernel-based change point analysis for Conditional Distributions).

5 Theory

We present only some relevant theory for Task I, and defer the rest to Section C and all proofs to
Section D in the Appendix. From the Moore-Aronszajn theorem, the function kY (y, ·) satisfies
kY (y, y0) = hkY (y, ·), kY (y0, ·)iH where H is a reproducing kernel Hilbert space, as long as kernel
kY (·, ·) is positive-definite. Denote the conditional mean maps before and after change point as

f0(x) = EY⇠F 0
Y |X=x

[kY (Y, ·)] , f1(x) = EY⇠F 1
Y |X=x

[kY (Y, ·)] ,

in the sense that hfi(x), kY (y, ·)iH = EY⇠F i
Y |X=x

[kY (Y, y)] for i = 0, 1. Define the norm k · kH =
p
h·, ·iH, and let

� = EX⇠FXkf0(X)� f1(X)k2
H
. (13)

Let B (x, h) = {x0
2 X , d (x0, x)  h} be a closed ball in X . We need the following assumptions to

establish the asymptotic behavior of �̃t.
Assumption 1 (small ball probability of FX ). There exists a non-decreasing function m(·) such that

9 (C1, C2) , 8x 2 X , 8✏ > 0, 0 < C1m (✏)  P (X 2 B (x, ✏))  C2m (✏) < 1.
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Algorithm 2 KCD to solve Task I (conditional distribution change)
input: observations {(xt, yt)}nt=1, significance level ↵, parameters n0, n1.
output: estimated change point location ⌧̂ . (⌧̂ = n implies no significant change point)
pre-compute:

1. KX = [kX(h�1
X d(xi, xj))]

n
i,j=1 2 Rn⇥n, KY = [kY (yi, yj)]

n
i,j=1 2 Rn⇥n.

2. A 2 Rn⇥n, where Aij =
Pj

l=1[KX ]il.
3. B = (1/n)KXK>

X 2 Rn⇥n.
4. C 2 Rn⇥n, where Cij = Bij [KY ]ij .
for t = n0, n0 + 1, · · · , n1 do

calculate Q 2 Rn⇥n with

Qij =

8
>><

>>:

Cij

AitAjt
, if i, j  t,

Cij

Ait(Ajn�Ajt)
, if i  t, j > t,

Cij

(Ain�Ait)(Ajn�Ajt)
, if i, j > t.

calculate �̃t =
Pt

i,j=1 Qij +
Pn

i,j=t+1 Qij � 2
Pt

i=1

Pn
j=t+1 Qij .

end for

detection: obtain p-value for maxn0tn1 �̂t using permutations or bootstrap.
localization: if p-value < ↵, estimate ⌧̂ = argmaxn0tn1 �̂t; else, estimate ⌧̂ = n.

Assumption 2 (Lipschitz continuity of f0, f1). Functions f0, f1 satisfy

9C3 < 1, 9b > 0, 8x, x0
2 X , kf0(x)� f0(x

0)k
H
+ kf1(x)� f1(x

0)k
H

 C3d
b (x, x0) .

Assumption 3 (regularization on kernel kX ). kX(·) is a nonnegative, bounded and Lipschitz contin-

uous function with support [0, 1), and if kX(1) = 0 the following conditions have to be satisfied

9 (C4, C5) , �1 < C4 < k0X(t) < C5 < 0, 8t 2 [0, 1),

9C6 > 0, 9⌘0 > 0, 8⌘ < ⌘0,
R ⌘
0m(u)du > C6⌘m(⌘).

Assumption 4 (regularization on kernel kY ). kY (·, ·) is a continuous, symmetric, positive definite,

and uniformly bounded kernel.

Assumption 5 (topological complexity of X ). The topological complexity  X (·), together with the

small ball probability function m(·), satisfy

9C7 > 0, 9⌘0 > 0, 8⌘ < ⌘0, 0  m0 (⌘) < C7,

9n0, 8n > n0, (log n)
2/[nm(h)] <  X (log n/[nm(h)]) < nm(h)/[log n],

9� > 1,
P

1

n=1 exp {(1� �) X ((log n)/n)} < 1.

Remark 5.1. Assumptions 1-5 are technical, but, in general, they are mild and not that restrictive.

For example, when the space X is compact, and kX , kY are Gaussian kernels, Assumption 1,3, 4 are

all satisfied. If we further assume X is Euclidean and the random variable x has a density function,

Assumption 5 is satisfied. Assumption 2 is probably the most abstract, but it essentially states that the

conditional distribution p(Y | X = x) changes smoothly in the sense that p(Y | X = x0) is close to

p(Y | X = x1) when x0 is close to x1.

Theorem 5.1. Suppose Assumptions 1, 2, 3, 4, 5 hold.

(1) Under the null, for any t = dn⇢e with ⇢ 2 [⇢0, ⇢1],

�̃t = Oa.s.

�
[tm(h)]�1 X

�
t�1 log t

�
+ [(n� t)m(h)]�1 X

�
(n� t)�1 log(n� t)

��
.

(2) Under the alternative, for any t = dn⇢e with ⇢ 2 [⇢0, ⇢⇤) \ (⇢⇤, ⇢1],

�̃t � �(⇢)� = oa.s.(1), where �(⇢) =

⇢
(1� ⇢⇤)2/(1� ⇢)2, if ⇢  ⇢⇤

(⇢⇤)2/⇢2, if ⇢ > ⇢⇤
. (14)

Remark 5.2. Assumptions 1, 2, 3, 4 are standard conditions for obtaining pointwise convergence of

NW estimators. Assumption 5 comes from [13] and regulates the topological structure of the infinite

dimensional space X . An example of m, X : if X is a compact subset of Rp
,  X (✏) = O(log(1/✏)),

and, if X has a density with respect to the Lebesgue measure, m(h) = O(hp).
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Table 1: Mean ± standard error of the l1 localization error |⌧̂ � ⌧⇤| for each method, summarized over 20
simulations. The best performing method is marked in bold font.

(a) Experiment A.

f1(x) [31] DY DXY KCE

5x 98.4±10.6 322.5±55.6 1.7±0.3 2.1±0.3
cos(x) 239.1±41.1 320.6±48.4 6.4±1.6 2.7±0.5

x2 70.2±28.8 285.2±44.2 9.4±1.9 4.9±1.3

|x| 240.1±47.3 297.7±46.1 11.8±6.4 2.9±0.5

0.1max(0, 1� x) 311.7±44.3 248.8±53.1 10.2±4.3 6.4±1.6

ex 56.6±22.9 257.4±41.2 3.6±1.2 1.9±0.4
1

2(x+3) 307.8±40.5 369.6±53.1 10.9±2.9 3.1±0.6

(b) Experiment B.

v1(x) [31] DY DXY KCD

10x 89.0±12.6 2.7±0.5 3.6±0.7 1.3±0.2

cos(x) 284.7±44.0 146.8±43.7 4.8±1.5 3.0±0.9

x2 107.9±25.2 46.1±13.7 38.4±11.7 12.6±3.0

max(0, 1� x) 107.6±11.7 1.9±0.3 2.6±0.6 1.8±0.3

ex 97.5±12.0 63.0±14.0 6.6±1.7 3.1±0.8
1

x+3 249.2±34.7 10.4±3.9 13.9±3.8 5.0±1.3

Remark 5.3. Theorem 5.1 shows that as long as � 6= 0, �̂t satisfies the trend in Figure 1. Thus,

performance of KCD is crucially affected by �, which is characterized in the next proposition.

Proposition 1. Under Assumption 2, if kY is a characteristic kernel, and F 0
Y |X=x 6= F 1

Y |X=x for at

least one x 2 supp(FX), i.e., the support of FX , we have � 6= 0.

Remark 5.4. Proposition 1 shows that � acts as a discrepancy measure between two sets of condi-

tional distributions, {F 0
Y |X=x, x 2 supp(FX)} and {F 1

Y |X=x, x 2 supp(FX)}. It is reminiscent of

the maximal conditional mean discrepancy (MCMD) between two conditional distributions in [36].

Actually, � equals the expected value of squared MCMD between F 0
Y |X , F 1

Y |X with X ⇠ FX . A

detailed discussion on the link with [36] is included in the Appendix (Section B).

6 Experimental Results

This section investigates performance in synthetic data. We report representative results on different
forms of X ,Y and types of changes, with additional results included in the Appendix.

Baselines. We consider three baselines: one existing (the fixed design CP method [31]), and two
adapted from existing abrupt CP methods for unpaired data (denoted by DXY and DY ). DXY applies
an existing CP method by treating (xt, yt) as the observation, while DY does so by discarding xt.
There are numerous CP methods to choose from, and we use S1 introduced in [33], which unifies
many existing nonparametric CP methods and can be viewed exactly as Algorithm 2 by setting
xt ⌘ c. For KCD (or KCE), DXY , DY , we set kX(u) = exp{�u2

} and the choice of kY depends
on Y . For the method in [31], there are restrictions on the kernel function that are violated by the
RBF kernel. So, following [31], we set k(u) = 1.5(1� u2)I(0  u  1). All bandwidths used for
all methods are tuned among Sh = {0.001, 0.01, 0.1, 1, 10} on 10 independently generated data sets.

Evaluation metrics. We report the l1 localization error |⌧̂ � ⌧⇤| and the empirical power, both
averaged over 20 independent simulations. Power is calculated under significance level ↵ = 0.05
with p-value determined by 500 bootstraps.

Experiment A: y 2 R, E[y | x] changes. We first consider task II, and we set FX = N(0, 1),
F 0
✏ = F 1

✏ = N(0, 1), n = 1000, ⇢⇤ = 0.7, ⌧⇤ = 700, ⇢0 = 0.05, ⇢1 = 0.95. Before the change
point, we set f0(x) = x, while after change point, we investigate different options for f1. For
DY , set kY (y, y0) = exp{�ky � y0k22/h

2
Y }; for DXY , set kZ(z, z0) = exp{�kz � z0k22/h

2
Z} with

zt = (xt, yt)0. KCE uses Algorithm 1 with d(·, ·) set to Euclidean distance.

Localization comparisons are reported in Table 1a. Note that the method in [31] and DY perform not
so well, which is expected as the former is designed for equi-spaced covariates, and the latter only
looks at the marginal distribution of yt; DXY performs better, but is still slightly worse than KCE.
KCE performs quite well, obtaining the most accurate estimator in most settings. Power comparisons
are similar and are included in Table 3a in the Appendix.

Experiment B: y 2 R, p(y | x) changes. Here we investigate task I. We start with y 2 R, E[y | x]
does not change, yet p(y | x) changes. Specifically, we consider the model

yt =

⇢
v0(xt)✏t, t  ⌧⇤,
v1(xt)✏t, t > ⌧⇤,

where ✏t
iid
⇠ N(0, 1), v0(x) = x and we consider different forms of v1’s. We set FX = N(0, 1),

n = 1000, ⇢⇤ = 0.7, ⌧⇤ = 700, ⇢0 = 0.05, ⇢1 = 0.95. KCD uses Algorithm 2 with kY (y, y0) =
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exp{�ky � y0k22/h
2
Y } and d(·, ·) set to Euclidean distance. DY uses kY (y, y0) = exp{�ky �

y0k22/h
2
Y } and DXY uses kZ(z, z0) = exp{�kz � z0k22/h

2
Z} with zt = (xt, yt)0.

Localization results are summarized in Table 1b. We observe that KCD performs the best among all
alternatives, followed by DXY , DY , and lastly [31].

Experiment C: general y 2 Y , p(y | x) changes. In the most general setting, let us consider
task I with x 2 Rp with p = 5, FX = N(0p, Ip) and different forms of Y’s. When designing
experiments, we deliberately let the conditional mean of y given x to be invariant. We set kZ(z, z0) =
kX(h�1

X d(x, x0))kY (y, y0) for DXY , and kY used in all methods is tailored to each Y . [31] is not
applicable to non-scalar yt’s and is thus omitted. The other settings are identical to Experiment B.
The forms of Y’s that are considered include:

(1) Y = Rp, and we set yt ⇠ N(0p, Ip) before change point, and yt ⇠ N(B0xt, Ip) with B =
[�1,�2, · · · ,�5] and �i = 0.1⇥ i⇥ �⇥ 1p with different magnitude of � after the change point. We
set kY (y, y0) = exp{�ky � y0k22/h

2
Y }.

(2) Y = Rp⇥p. Denote Yij as the element in the i-th row and j-th column of Y . Before change point,
we set Yij = XiXj where Xi, Xj denote the element in the ith and jth coordinate of X , while after
change point, we set it to a different quantity. We set kY (Y, Y 0) = exp{�kY � Y 0

k
2
F /h

2
Y } with

Frobenius norm k · kF .

(3) Y = P , the set of all univariate normal distributions with variance 1. Each datum yt is m = 10
observations independently drawn from N(µ(xt), 1). We consider µ(xt) = (�/5)x0

t15 with different
magnitude �’s. We set kY (Y, Y 0) = exp{�kY � Y 0

k
2
W /h2

Y } with 2-Wasserstein metric k · kW .

Table 2: Mean ± standard error of the l1 localization error |⌧̂ � ⌧⇤| for each method, summarized over 20
simulations in experiment C. The best performing method is marked in bold font.

Y HA DY DXY KCD

Rp � = 1.0 7.1±2.0 15.1±4.4 6.7±2.1

Rp � = 0.8 11.7±3.9 9.4±3.2 11.6±3.3
Rp � = 0.6 65.1±22.6 69.8±28.7 38.2±12.9

Rp⇥p Yij = Xi(Xj)3 10.4±2.8 10.2±2.8 5.7±1.4

Rp⇥p Yij = (Xi)3(Xj)3 10.2±3.3 15.5±4.1 10.2±2.9

Rp⇥p Yij = sin(Xi) sin(Xj) 1.9±0.7 5.9±1.4 1.4±0.6

P � = 1.0 51.6±17.6 5.1±1.7 4.0±0.8

P � = 0.8 25.2±9.5 7.0±1.7 9.2±2.3
P � = 0.5 113.7±35.7 104.7±31.7 49.1±12.3

Results for experiment C are summarized in Table 2. In general, KCD (or KCE) outperform DXY

and DY , often with significant improvements. This observation is consistent across all experiments.
The trade-off is that KCD takes O(n3) time complexity, while KCE, DXY , DY take only O(n2).

7 Real Data Applications

UK stock index. The Financial Times Stock Exchange 100 Index (FTSE 100) is a share index of
the 100 largest companies listed on the London Stock Exchange.We investigate potential changes
in UK economy from January to August 2016, a period containing the Brexit vote (06/23/2016).
Following [20, 21], we consider changes in the daily value of FTSE 100 stock index, compared to two
“reference” time series: the NYSE Composite Index and the NIKKEI 225 stock index. The NYSE
Composite is a stock market index of all common stocks listed on the New York Stock Exchange,
and the NIKKEI 225 is a stock market index for the Tokyo Stock Exchange operating in the Japanese
Yen. They are used here as indicators for the US and Japan economies. Following [20], we divide the
closing value of each index by its corresponding daily Euro exchange rates. All data are downloaded
from https://www.marketwatch.com/. Data from the three stock indices are shown in Figure 2a.

The processed dataset contains n = 157 sample points, with y 2 R the FTSE 100 divided by
Euro exchange rate to British pound, and x 2 R2 the vector consisting of NYSE and NIKKEI 225
divided by Euro exchange rate to US dollars and Japanese Yen, respectively. Using KCD with
kX(u) = exp{�u2

}, d(x, x0) = kx � x0
k2, h2

X = 0.1, kY (y, y0) = exp{�ky � y0k22/h
2
Y },

h2
Y = 0.1 and n0 = 5, n1 = n � 5, we identify 06/23/2016 as the change point, with a p-

value < 0.01. At the significance level 0.05, we conclude that there is a change point, which
is consistent with [20, 21], and the estimated change point is also the date of the Brexit vote.
https://www.overleaf.com/project/625c4c34c121ad5a0311e7cc
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Figure 2: Real data examples. In both panels, the blue dotted line represents ⌧̂ estimated using KCD.

Market interest rates. We consider changes in the relationship between market interest and discount
rates over 1973-1989. The discount rate is the rate “at which the Federal Reserve System (Fed)
lends and is set by the Fed” [4]. Market interest rates usually respond to changes in discount rates,
but the differentials in response might be different, reflecting different conditions of the economy.
We examine the response of market interest rates to discount rates over time. The data we use are
collected by [10], where the yields of three-month T-bills are treated as market interest rates.

The data set contains n = 56 sample points, with covariate x 2 R the discount rate, response y 2 R
the market interest rate. We note that discount rates are changed irregularly, thus the sequence is not
equi-spaced in terms of time. The sequence {(xi, yi)}ni=1 is visualized in Figure 2b.

Using KCD with kX(u) = exp{�u2
}, d(x, x0) = kx� x0

k2, h2
X = 0.1, kY (y, y0) = exp{�ky �

y0k22/h
2
Y }, h2

Y = 0.1 and n0 = 5, n1 = n � 5, we estimate a change point 08/17/1979. This is
identical to the estimation in [4], and is close to the October 1979 change in the Fed’s operating
procedures ([4]). However, the p-value is 0.25, indicating that the change is not significant. This is
similar to the result obtained using the vanilla symmetric response model in [4], but different from
that using adjusted or asymmetric response model [4].

8 Conclusion and Discussion

To identify changes in the conditional distribution of paired sequences, we investigate several
approaches, some based on existing algorithms and one novel. Our nonparametric method applies to
general covariates and responses, and outperforms existing methods. Future directions of research
include relaxing distributional assumptions, and improving the O(n3) time complexity of Algorithm
2. As suggested by one reviewer, the question of detecting changes in conditional distributions
with multiple or gradual change points is also important but unresolved. A rigorous treatment of
this generalized setup requires nontrivial modifications of the method and a re-formulation of the
mathematical set-up, but we provide a simple windowing approach as a possible solution for multiple
change points in the Appendix. There are no foreseeable negative societal impacts of this work.
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