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Abstract

Self-supervised pre-training recently demonstrates success on large-scale multi-
modal data, and state-of-the-art contrastive learning methods often enforce the fea-
ture consistency from cross-modality inputs, such as video/audio or video/text pairs.
Despite its convenience to formulate and leverage in practice, such cross-modality
alignment (CMA) is only a weak and noisy supervision, since two modalities can be
semantically misaligned even they are temporally aligned. For example, even in the
(often adopted) instructional videos, a speaker can sometimes refer to something
that is not visually present in the current frame; and the semantic misalignment
would only be more unpredictable for the raw videos collected from unconstrained
internet sources. We conjecture that might cause conflicts and biases among modal-
ities, and may hence prohibit CMA from scaling up to training with larger and
more heterogeneous data. This paper first verifies our conjecture by observing that,
even in the latest VATT pre-training using only narrated videos, there exist strong
gradient conflicts between different CMA losses within the same sample triplet
(video, audio, text), indicating them as the noisy source of supervision. We then
propose to harmonize such gradients during pre-training, via two techniques: (i)
cross-modality gradient realignment: modifying different CMA loss gradients for
one sample triplet, so that their gradient directions are in more agreement; and (ii)
gradient-based curriculum learning: leveraging the gradient conflict information
on an indicator of sample noisiness, to develop a curriculum learning strategy
to prioritize training with less noisy sample triplets. Applying those gradient
harmonization techniques to pre-training VATT on the HowTo100M dataset, we
consistently improve its performance on different downstream tasks. Moreover, we
are able to scale VATT pre-training to more complicated non-narrative Youtube8M
dataset to further improve the state-of-the-arts.

1 Introduction

Self-supervised pre-training scales up deep learning to leverage massive unlabeled data. Beyond
the maturity of pre-training over single-modality data such as language [2] or images [3], the recent
success on multimodal pre-training [4, 5] demonstrates the versatility to synergize the rich multimodal
information and to benefit a variety of downstream tasks. Many methods of this category [6–8, 4],
especially the latest contrastive pre-training methods [5, 9–11], consider the most organic supervision
as the cross-modality alignment (CMA), e.g., in the same video sequence, the video frames, audio
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Aligned

“On the football pitch” “World Cup Semi Final” “Raising fund for UNICEF”“Whether it's in a kitchen”

Misaligned

Figure 1: Examples of cross-modality alignment and misalignment existing in the complicated and
non-narrative Youtube8M dataset [1]. Here we show a video sequence whose theme is a football
match, while in some of its clips: (a) the text mentions content unrelated to the football, e.g.,
"kitchen","raising fund"; and (b) the visual content could also be unrelated to the football, e.g., TV
cutscenes, the scene of the broadcast studio, etc.

stream, and text scripts are temporally aligned and hence should naturally have correspondence. Such
assumed cross-modal correspondence could be exploited as “mutual supervision" for each modality to
learn consistent semantic features with others. For example, the latest Video-Audio-Text Transformer
(VATT) [11] hinges on this multimodal CMA a priori to train a transformer-based architecture (even
a single backbone by sharing weights among three modalities), using two contrastive losses to align
video-text and video-audio pairs, respectively. Their results set many new records in downstream
tasks with neither supervised pre-training nor predefined inductive biases, showing strong “universal"
generalizability despite the modality and domain gaps. In this paper, we focus on studying gradients
in a modality-agnostic single-backbone setting of VATT [11].

Unfortunately, the CMA assumption rests on a very shaky foundation, especially for uncurated videos
collected in the wild. The CMA can be weak even for the instructional videos such as HowTo100M
[12] that are commonly adopted as the current multimodal pre-training data source. For instance,
a speaker can refer to something before or after actually demonstrating it visually; she or he could
also skip verbally explaining something that is visually happening, because that may be trivial or be
already clear enough in the visual context [13]. Such discrepancy would be amplified if considering
many other outliers in video (e.g. background objects) or language (e.g. off-topic small talks). The
semantic misalignment will be even more severe, and in unpredictable forms, when we go beyond
instructional videos and explore training with non-narrative, free-from internet videos. Figure 1
shows a few examples of such cross-modal misalignment in the non-narrative Youtube8M dataset [1],
which would put CMA-guided pre-training in jeopardy. This important problem is yet under-studied
in the self-supervised multimodal pre-training literature. That said, there has been a few recent efforts
such as Multiple-Instance Learning (MIL) NCE [13] and noisy pair pruning as in [14].

We conjecture that the vanilla CMA might provide only weak, noisy and even misleading supervision
for multimodal pre-training; hence it might constitute a hidden bottleneck when scaled up with
more realistic data (beyond instructional videos) whose modalities are poorly aligned. We verify our
conjecture by inspecting two large-scale multimodal datasets, HowTo100M [15] and Youtube8M
[1]. Specifically, when we adopt pairwise CMA losses (e.g. video-audio, video-text) within the
cross-modal sample triplets (video, audio, text), a majority of the gradients strongly conflict with
each other in terms of their directions. We further identify (in Figure 3) that such strong conflict
in gradients are correlated to noisiness of samples, indicating the noisy and misaligned supervision
could be an important cause of gradient conflicts. Moreover, the cross-modal conflict leads to not
only unstable training convergence, but also modality-specific overfitting; e.g. semantically strong
representations for one modality while collapsed representations for another [16], yielding weak
overall performance in cross-modality tasks such as Text-Video Retrieval as shown in Table 1.

Build upon the above conjectures and observations, we propose to harmonize those gradients so that
they become mutually compatible in learning the unified representations. Specifically, we introduce
two techniques: (i) cross-modal gradient realignment, where we modify different pairwise CMA loss
gradients to align their directions for the same sample triplet, using gradient surgery [17] developed
for multi-task learning; and (ii) gradient-based curriculum learning, where we leverage the gradient
conflict information to indicate sample noisiness (e.g. a triplet whose CMA gradients are in more
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agreement is considered less “noisy" and would be prioritized for cross-modal pre-training) and a
curriculum learning strategy is developed accordingly. Both techniques are found to boost VATT
performance on downstream tasks, not only on instructional videos, but even more when the more
complicated non-narrative data is involved.

Our contributions can be summarized as the following:

• We suggest that the commonly assumed CMA might be an important yet overlooked perfor-
mance hurdle for scaling up multimodal pre-training, and we observe severe misalignment
even from the state-of-the-art (SOTA) model [11] on the relatively aligned data [12].

• We propose to consistently improve the pre-training pipeline in the only baseline in this
direction, VATT (modality-agnostic setting), resulting in better downstream performance.

• With the help of our proposed techniques, we consistently improve the pre-training of VATT,
resulting in better downstream performance, e.g. up to 58% gain in the rank metric of video-
text retrieval task. Moreover, we are able to scale VATT pre-training to more complicated
non-narrative Youtube8M dataset, which further yields new state-of-the-art performance in
a modality-agnostic setting.

2 Related Work
2.1 Self-Supervised Multimodal Pre-training
The most organic self-supervision can arguably be found in the multimodal data that are abundantly
available in the digital world: their temporal alignment naturally lead to cross-modality mutual
supervision, hence meaningful features can be learned without requiring human annotation. Mul-
timodal pre-training can thus leverage richer semantic cues than single-modality counterparts, and
outperform in various downstream tasks such as image classification [5, 11], video action recognition
[5, 11, 13, 10], audio event classification [5, 11, 10], and video-text retrieval [5, 11, 13]. Most of those
methods formulate pre-text tasks, including cross-modality correspondence [6–8, 10], cross-modality
clustering [18], cross-modality longer context prediction [19], or a combination of multiple pre-text
tasks [20].

Contrastive learning [3, 21] has recently emerged as one dominant approach in self-supervised
learning. In multimodal pre-training, the temporal co-occurrence naturally supplies the positive
sample to contrast with. [5] adopts a multimodal versatile network to embed each modality into
the same vector space, that is trained from end to end with multimodal pairwise contrastive losses
(video-audio, and video text). CrossCLR [9] further takes the intra-modality similarities into account.
[10] generalizes the instance discrimination idea to design a cross-modal discrimination task, i.e.,
predicting which audio matches a video. Most recently, VATT [11] combines the strength of
convolution-free Transformer and multimodal contrastive learning. Specifically, it first validate the
idea of using a modality-agnostic single-backbone transformer, to work on video, audio and text
modalities, it follows the exact BERT [22] and ViT [23] architecture, except injecting modality-
specific tokenization layers and linear projections.

Despite their success, existing multimodal contrastive learning methods [5, 9, 11] hinge on the
“free" cross-modalities correspondence mined through the multimodal contrastive loss, i.e., the CMA
assumption. As a result, they are often trained with well curated or narrated video datasets, such
as AudioSet [24], YouCook2 [15], and HowTo100M [12]. It remains questionable whether such
CMA-guided contrastive learning can generalize well to larger-scale multimodal data in the wild. In
fact, even in the HowTo100M dataset, the authors of [12] estimate that around 50% of clip-narration
pairs are not well aligned. The validity of CMA has arisen concerns. Most related to us is [13] which
explicitly models the misalignment noise using the MIL-NCE loss, that is inherited by VATT [11].

2.2 Multi-task versus Multimodal Learning
While earlier self-supervised works used different modality-specific encoders, the latest multimodal
pre-training sees a tendency to explore a versatile and “universal" model shared across modalities
[5, 11]. It is easy to notice the resemblance between multimodal learning (especially with a unified
backbone) and multi-task learning [25, 26]. The later often assumes multiple tasks to share transfer-
able knowledge and can help each other learn. Yet in practice, different tasks can be heterogeneous in
nature too, often leading to heavily misaligned gradient scales [27] or directions [17]. Such conflicting
gradients from multiple losses would lead to several undesirable effects, including (i) strong bias
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“He's a professional 
whether it's in a kitchen or 

on the football pitch”

Audio Tokenizer

Video Tokenizer

Text Tokenizer

Audio Head

Video Head

Text Head

Video-Audio
CMA Loss

Video-Text
CMA Loss

Gradient Flow gvt

Unified Transformer 
Encoder

gva

gvt

Gradient Flow gvaForward Path

Figure 2: One main model used in this paper: the VATT model [11] with a modality-agnostic, single-
backbone Transformer by sharing weights among the three modalities. VATT is trained with two
contrastive losses between video-audio and video-text pairs, respectively. The positive cross-modality
pairs to contrastive with are based on their temporal co-occurrence (e.g., the CMA assumption). We
primarily study the conflicts between gradients gva and gvt, which indicate the often poor alignments,
and discuss how to harmonize their conflicts.

towards learning some tasks with largest gradient scales; and (2) slow and unstable convergence.
Similar problems are often faced by multimodal pre-training too.

As a result, several works have been developed to mitigate the gradient dilemma in multi-task learning.
Methods such as gradient normalization [27] and adaptive loss weight [28, 29] address the gradient
scale/learning speed imbalance issues. Gradient surgery [17] tries to project gradients with conflicting
directions onto the normal plane of each other, to prevent each gradient’s interfering component from
being applied to the network. Later, Gradient vaccine [30] further generalizes this idea extending the
gradient projection to arbitrary angle, and uses the exponential moving average of cosine similarity
to measure the alignment between different tasks. When it comes to the multimodal learning, [31]
investigates optimally blending modality-specific gradients by linearly re-scaling them. Meanwhile,
to our best knowledge, there has been no prior study on modality-specific gradient directions.

3 Methodology
Pre-requisites: Without loss of generality, we focus on the SOTA multimodal contrastive learning
model, VATT [11], as our default subject of study; and we follow its modality-agnostic single-
backbone setting due to its compelling performance-efficiency trade-off, and due to the fact that it
is the most intuitive setting to modify gradients (shared between paired modalities) w.r.t different
end-point objectives.

In our modality-agnostic single-backbone setting of VATT, the goal of pre-training is to find the
parameter θ of the model fθ to learn meaningful features for all target modalities (video, audio, text),
usually measured by a set of pairwise similarity metrics. VATT uses two pairwise contrastive losses
for video-audio and video-text respectively to solve cross-modal alignment:

min
θ

CMAva(θ) + CMAvt(θ) (1)

where CMAva and CMAvt penalize the cross-modal alignment for video-audio and video-text pairs,
using the Noise-Contrastive Estimation objective [32], respectively.

Figure 2 illustrates the VATT pipeline. First, video-audio-text triplets are sampled from random
temporal locations, and then video-text and video-audio pairs are formed accordingly. Positive pairs
are formed by selecting the two modalities at the same temporal locations from the same video clip;
while the negative pairs are obtained by randomly sampling any video, audio, or text from other video
clips. We follow the convention in [5, 11] to use the vanilla NCE loss for video-audio pairs, and to
use the MIL-NCE loss proposed in [13] to align video-text pairs. Hence, CMAva and CMAvt are
defined as follows:

CMAva(θ) = − log

(
exp(z⊤v za/τ)

exp(z⊤v za/τ) +
∑

z′∈N exp(z′⊤v z
′
a/τ)

)
(2)

CMAvt(θ) = − log

( ∑
zt∈Pk(zt)

exp(z⊤v zt/τ)∑
zt∈Pk(zt)

exp(z⊤v zt/τ) +
∑

z′∈N exp(z′⊤v z
′
t/τ)

)
(3)
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where N is the pool of negative pairs, Pk(zt) denotes the k-neighbouring narrations surrounding the
original text zt. The gradients of two pairwise losses CMAva and CMAvt, denoted as gva and gvt,
will be together applied (i.e. simple adding) to updating the model fθ.

3.1 Observation of Conflicting Gradients

While qualitatively recognizing the cross-modal misalignment is easy, it is a highly challenging
endeavor to quantify the misalignment and to automatically find misaligned triplets at scale, due to
the vaguely defined criterion as well as the absence of labels [13, 14]. Therefore, the foremost need
is to identify a surrogate indicator on how noisy the alignment of a sample triplet is, without making
unrealistic assumptions nor incurring much computational overhead.

Our empirical choice of surrogate indicator is the directional alignability (i.e., vector angle) of
gradients generated by different pairwise cross-modal losses, i.e., the cosine similarity between gva
and gvt in the particular example of VATT, after flattening them into two vectors. The choice is firstly
rationalized by the coherent gradient hypothesis [33], that healthy model training should witness the
overall gradient stronger in certain directions along which the samples’ gradients reinforce each other.
Secondly, comparing the gradient directions between multiple pairwise losses could be considered as
an ensemble or “cross-check": intuitively, if both video-audio and video-text pairwise consistency
lead to the same update direction, then there is a good chance that those modalities are well aligned
and the update direction is reliable; otherwise, at least one pair (video-audio, or video-text) might
suffer from misalignment and provides noisy cross-modality guidance.

Overall, we conjecture that: aligned video-text-audio triplets should have higher cosine similarity for
gva and gvt, and vice versa.

To further validate the conjecture, we conduct a sanity check, where we started from a pre-trained
VATT network and further optimize it for 200 iterations with a batch size of 64, on Youtube8M dataset.
We then randomly sample video-text-audio triplets out of the samples with top 5% and bottom 5%
most aligned gradient, measured by cos(g′va, g

′
va). In Figure 3, we visualize 10 frames within a

32-frame video clip and its corresponding text narration (including 8 neighbouring text narrations
similar to [13]). We visually observed that the top 5% group triplets has more semantically aligned
words in the corresponding text narration (highlighted in green) thus enjoy a better cross-modality
alignment, while the bottom 5% group triplets has fewer semantically aligned words, therefore are
much more noisy in their alignments. We include more visualization samples in the Appendix.

cos(gva,gvt )

brazil…the <unk> cookies in crackers market in the world there are over…the main ingredients…successful recipe and now you will know what…manufacturers and <unk> code 
is one of the three major…side by side with crack and nestle…points of sales in brazil and in over 50 countries worldwide…in the wafers market ahead of nestle and luden

0.0858

team america its exciting i mean like literally the proudest moment of…cup in ohio set to square off against tiger woods…career the pressure the energy the emotion 
everything…goes into it and you know thats one of the things that im really looking forward…prize a berth on the world team this coming week at the prestigious…who is this 
guy to find out we spent some time with him while practicing…hed hoped he finished 28th but graham had already scored a decent…the presidents cup how often do you 
practice like you are you out…called that his playoff beard the tournament didn’t end quite

0.0583

lightning could pull off a <unk> finish if they can hurry up here alright joe jonas…hes very close <unk> close…all raises his flag jonas and roger..looks like brand command is 
gonna finish first the battle for second in third place still…hes still going to they gotta finish this trade to figure out <unk> gonna get third…like their comments are gonna take 
second brand <unk> still struggling in freshman

-0.0547

this advice but your love hes stronger than waffle house coffee…ahead of you there will be times of conflict in times of joy harmony would be…find in your partner and ask for 
help when you need it learn the wisdom of…before this benefit then the break remember that it meets will love of hash browns…keenan willie cindy and donnie in 
the…smothered and covered and ice is the basis of any lasting…this union we call marriage and they ask for your blessings on this joyous day…now this is especially true for 
you girls look for the best of your beloved…w co l today <unk> ready to pledge their love to one another

-0.0533

Top 5%

Bottom 5%

Figure 3: Qualitative example of our proposed measure based on agreement of gradients on
Youtube8M dataset, semantically aligned words are highlighted in green, cos(gva, gvt) reflect the
agreement of between gva and gvt, by measuring their cosine similarity.
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With the assumption that misalignment in gradients correlates to the noisiness of the sample’s
cross-modality alignment, we use the former as the computable surrogate indicator of the later, and
examine the cosine similarity between gradient gva and gvt (over 500k iterations) of VATT on the
HowTo100M dataset [12]. In Figure 4a, we plot the distribution of cosine similarities, cos(gva, gvt),
across 500k iterations of pre-training. We observe that cos(gva, gvt) at any iteration resembles a
normal distribution, and about half of the gradients gva and gva have misaligned directions (negative
cosine similarities). The plot echos the empirical finding in [15] that around 50% of video-text pairs
are not well-aligned on the HowTo100M dataset. In the Appendix, we have included similar plots
for the YouTube8M dataset [1]. Comparing those plots verify that non-narrative datasets have much
worse misalignment than narrative ones, hence challenging the CMA assumption even more.
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Figure 4: Visualization of cosine similarity between gradient gva and gvt across 500K Iterations on
the HowTo100M dataset. (a) shows the baseline setting in multimodal pre-training; (b) with only
cross-modality gradient realignment; (c) with only gradient-based curriculum learning. Youtube8M
follows very similar observations, see Appendix.
The existence of conflicting gradients not only makes the convergence harder, but also makes the
learned representation heavily overfit some modalities. In our case, we observe the training to be
biased towards video/audio modalities, which favors the downstream performance of video/audio
classification task, yet sets back the performance of video-to-text retrieval task (verified in Table 1).

3.2 Harmonizing Gradients during Pre-training
We present two strategies to mitigate the conflicting gradients: a “hard" way to project gradient
directions, and a “soft" way to progressively select sample triplets in curriculum.

3.2.1 Cross-Modality Gradient Realignment

Algorithm 1 Cross-Modality Gradient Realignment

Require: Model parameter θ , minibatchs Bva, minibatchs
Bvt
for (bva, bvt) ∈ (Bva, Bvt) do

gva ← ∇θCMAva(θ), gvt ← ∇θCMAvt(θ)
gva ← flatten(gva), gvt ← flatten(gvt)
ĝva ← gva, ĝvt ← gvt
if gva · gvt < 0 then

ĝva ← ĝva − ĝva·gvt

||gvt||2 ▷ projection gvt ← gva

ĝvt ← ĝvt − ĝvt·gva

||gva||2 ▷ projection gva ← gvt
end if
ĝva ← reshape(ĝva), ĝvt ← reshape(ĝvt)
∆θ ← ĝvt + ĝva ▷ sum up gradients
update θ with ∆θ ▷ update parameter

end for

Since gva and gvt are misaligned in
terms of their directions, one nat-
ural idea is to re-align the cross-
modality gradients, by enforcing or
re-projecting their directions to be
aligned. An intuitive choice is an ef-
fective remedy developed for multi-
task learning named Gradient Surgery
[17]. Here, instead of applying it to gi
and gj where i, j are the two hetero-
geneous tasks, we apply it to gva and
gvt, which refer to the gradients of
the two pairwise losses CMAva and
CMAvt w.r.t the weights in the model,
following our rationale in Section 3.1.

If the gradients gva and gvt have nega-
tive cosine similarity, we alter them by
projecting each onto the normal plane

of the other. Otherwise, if gva and gvt have zero or positive similarity, we retain the original gra-
dients. We refer to this particularly adapted form of gradient surgery as Cross-Modality Gradient
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Realignment. Its update procedure is outlined in Algorithm 1, and the overhead very cheap, mainly
just computing inner products of two flattened gradients. We also tried another similar algorithm
named Gradient Vaccine [30], and the results are almost identical to using Gradient Surgery [17]. We
hence only report one for the sake of conciseness.

3.2.2 Gradient-based Curriculum Learning
We next propose a gradient-based curriculum learning strategy that gradually identifies and re-
moves more misaligned samples based on the similarity indicator as the training goes on. For-
mally, given a video-audio pair bva and video-text pair bvt, we only update the parameter if
cos(gva, gvt) > γ and drop this sample triplet otherwise. This ensures us to gradually priori-
tize training with well-aligned samples while suppressing the noisy supervision from potentially
misaligned samples. The drop rate here is controlled by a cut-off threshold γ. In general, γ is
a negative value monotonically increasing during training, and there is an underlying rationale.

Algorithm 2 Gradient-based Curriculum Learning

Require: Model parameter θ, minibatchs Bva, minibatchs
Bvt, initial γ0
for (bva, bvt) ∈ (Bva, Bvt) do

update γ ▷ curriculumly update γ
gva ← ∇θCMAva(θ), gvt ← ∇θCMAvt(θ)
gva ← flatten(gva), gvt ← flatten(gvt)
if gva · gvt > γ then

gva ← reshape(gva), gvt ← reshape(gvt)
∆θ ← gva + gvt ▷ sum up gradients
update θ with ∆θ ▷ update parameter

end if
end for

Initially, the network is under-trained
and the similarity between its learned
features is not reliable to indicate a
strong CMA; hence we are more con-
servative in excluding samples. As the
network becomes more sufficiently
trained, the features become more se-
mantically aligned, allowing us to re-
move more misaligned samples in the
later stage of training. The full pro-
cedure of Gradient-based Curriculum
Learning is outlined in Algorithm 2.
We empirically choice γ0 = −0.3 at
the beginning and linearly increase it
to γ500K = 0 at the end, we include

an ablation on the adaptive choice of γ in the Table 2.

Similar classes of ideas, i.e, “gradually focusing a small training subset", have been explored by a
prominent class of algorithms which rely on sample selection to robustify [34–36] or to accelerate
[37] training. Most of them use the “small loss trick" wherein a fraction of samples with smallest loss
values below a certain threshold are considered as reliable. However, they did not explore gradient
conflict indicators, which targets solving our CMA problem here. Also note that our two steps can
fully reuse the cosine similarity computed, so applying them together incurs no extra overhead.

4 Experiments
4.1 Pre-Training Datasets and Settings
In this paper, we focus on studying gradients in a modality-agnostic single-backbone setting, thus
we do not consider multimodal pre-training baseline with modality-specific models, e.g. HERO[38],
MMV[5], PerceiverIO[39], AVLnet[40]. Apart from VATT[11], there exist other concurrent work
that use modality-agnostic setting[20, 41, 42], yet they all have their respective limitations. For
example, UniVL[20] lacks audio modalities thus cannot constitute video-audio CMA loss, VLM[41]
applies separate attention mask for each modality while PolyViT[42] use alternate training between
modalities and tasks, thus eliminate the possibilities of any gradients conflicts. Therefore, this leave
VATT[11] to be the most suitable baseline besides it SoTA performance.

Our pre-training adopts three settings for comprehensive comparison: (1) using HowTo100M as
our training set, following [20, 12]; (2) combining HowTo100M and AudioSet as our training set
following [5] and VATT [11]; and (3) additionally merging a noisy Youtube8M dataset alongside
with HowTo100M and AudioSet, to create a much more compound and complicated training set than
considered before, to stretch-test our proposal’s benefits to scale up pre-training in uncurated and
poorly aligned data.

For each setting, we i.i.d sample video-audio-text clips from the mixture of all candidate sets in
every batch. (HowTo100M, Audioset or Youtube8M, if applicable). For all setting, we only use a
subset of HowTo100M, AudioSet, Youtube8M, Kinetics400 and Youcook2 dataset in compliance
with Youtube’s wipe-out policies.
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HowTo100M1[12] is a large-scale dataset of narrated videos with an emphasis on instructional videos
that have well synchronized modalities. The training set consists of 127 Millions video clips with the
corresponding close-captioned text from automatic speech recognition (ASR).

AudioSet1[24] is a large-scale audio-visual dataset originally intended for audio event classification.
It consists of 1.78 Million 10-second clips sampled from Youtube Videos that contains a variety of
audio tracks, such as musical instruments, animals or mechanical sounds.

Youtube8M1[1] is a large-scale video classification dataset based on Youtube videos. It consists
of a diverse vocabulary of 3862 visual entities and a total number of 8 Million videos. To the best
of our knowledge, we are the first to scale contrastive multimodal pre-training beyond instructional
videos, onto this noisy Youtube8M videos that more faithfully represent videos the wild. For data pre-
processing, we split each video into 5s clips and use ASR close-captions to generate the corresponding
text, resulting in 165 Millions video-audio-text clips.

4.2 Pre-Training Settings
Network Architecture: For all of our experiments, we use modality-agnostic Transformer variant
in [11], VATT-MA-Medium. Specifically, we use a 12-layer Transformer, in which each layer has a
feed-forward MLP with hidden size of 4096, and 16 attention heads with a hidden size of 1024.

Pre-training Hyperparameter: We strictly follow the setting in [11], pre-training VATT from
scratch with Adam optimizer with an initial learning rate of 1e-4, 10k warmup steps, 500k steps in
total, a batch size of 2048 and using a cosine learning rate scheduler to anneal the learning rate from
1e-4 to 5e-5. Our framework is implemented in Tensorflow 2.8, and train with 256 TPUV3s, it took a
total of 3 days to train our models.

4.3 Downstream Tasks for Evaluation
We evaluate the performance of our pre-trained representations when tuned towards various down-
stream tasks, including a variety of video/audio and cross modalities tasks.

Video Action Recognition: Following [5], we evaluate on UCF101[43] (101 action classes, 13,320
videos) and the HMDB51[44] (51 classes, 6,766 videos) benchmarks. For both settings, we directly
attach a linear classifier on the learned representations while freezing the transformer backbone.
We also evaluate on Kinetics4001[45] dataset (400 classes, 234,584 video), where we fine-tune the
transformer backbone.

Audio Event Classification: Following [5], we used ESC50[46] (50 classes, 2000 audio clips) as the
benchmark for audio modalities. Similarly, we directly attach and tune a linear classifier on top of the
frozen transformer backbone.

Zero-shot Video-Text Retrieval: To evaluate our performance on cross-modality task, we follow
[5] using YouCook21[15] (3.1K video-text clips) and MSR-VTT1[47] (1K video-text clips) as our
evaluation datasets. We directly use the embedding from the pre-trained model without any fine-
tuning, and report the recall at 10 (R@10) and Median Rank as described in [5].

4.4 Result Analysis on HowTo100M and AudioSet Pre-training
Gradient Re-weighting We set up a simple gradient re-weighting baseline similar to [31], where we
simply scale up the gradient magnitude of gva by 2.5 times and scale down the gradient magnitude
of its counterpart gvt by 0.5 times, we denote this baseline as Gradient Re-weighting (VA), we also
did it vice versa and denoted it as Gradient Re-weighting (VT). As shown in Table 1, we did not
observe much performance boost with gradient re-weighting, on the contrary, there are significant
performance drop in Text-Video Retrieval task on both YouCook2 and MSRVTT datasets.

Cross-Modality Gradient Realignment Compared to Gradient Re-weighting, our Cross-Modality
Gradient Realignment mitigates the gradient conflicts by modifying gradients direction. In Table 1,
we can see significant performance gains in video-text retrieval task (e.g. 58% gain in rank metric on
YouCook2, 46% gain in R@10 metric on MSR-VTT), while maintaining a comparable performance
in video/audio tasks. Since video-text retrieval task heavily hinge on cross-modality alignment
(CMA), this improvement verify the benefits of re-aligning the cross-modality gradients.

1It is important to note that Howto100M, Youtube8M, AudioSet, Kinetics400, MSRVTT and YouCook2
videos are sourced from YouTube. Many of the videos have been made explicitly unavailable [48], hence we
only train and evaluate over the subset of data that is publicly available at the time.
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Dataset Tasks Video Action Cls Text-Video Retrieval Audio Cls
Dataset UCF101 HMDB51 Kinetics400 YouCook2 MSRVTT ESC50
Metric Top1↑ Top5↑ Top1↑ Top5↑ Top1↑ Top5↑ Rank↓ R@10↑ Rank↓ R@10↑ Top1↑ Top5↑

HT100M

VATT [11] 78.53 95.24 57.36 86.07 74.71 92.69 93.50 17.10 73.00 16.70 71.50 91.75
+ RW (VA) 78.24 95.01 58.74 85.39 70.55 90.41 168.90 9.24 100.20 13.56 71.56 93.02
+ RW (VT) 78.03 95.35 58.23 86.80 75.66 92.80 90.35 19.26 62.50 18.02 71.29 91.38
+ GR 78.44 95.37 54.38 83.64 76.72 92.72 47.00 24.94 68.00 19.20 69.00 93.00
+ CL 79.10 96.16 56.41 86.06 77.25 93.38 40.00 26.01 56.00 23.90 72.50 94.25
+ Both 79.24 96.58 58.24 87.37 76.59 93.26 42.00 25.87 54.00 24.50 72.05 94.16

HT100M
+

AudioSet

VATT [11] 84.40 - 63.10 - 79.23 94.30 34.00 29.00 67.00 23.60 81.20 -
+ RW (VA) 83.44 97.28 59.55 88.02 76.56 93.52 238.50 6.80 147.00 12.30 81.75 97.25
+ RW (VT) 84.42 97.49 62.30 86.61 78.59 94.17 76.00 18.72 120.00 15.20 80.75 96.75
+ GR 84.77 97.38 62.30 90.38 79.29 94.32 29.00 31.65 70.00 21.40 81.50 97.00
+ CL 86.04 97.75 65.45 88.94 79.89 94.71 33.00 29.17 65.50 20.97 82.00 97.25
+ Both 85.46 97.58 65.52 89.74 79.26 94.48 31.50 30.26 69.50 19.96 82.00 97.00

HT100M
+

AudioSet
+

YT8M

VATT [11] 88.28 98.73 65.84 91.43 79.39 94.56 29.00 29.66 56.00 26.90 80.75 97.00
+ RW (VA) 86.97 98.09 61.06 89.66 77.70 93.83 99.00 14.25 75.50 19.70 83.50 97.25
+ RW (VT) 88.19 97.96 61.13 90.51 78.43 94.38 27.00 31.07 48.50 27.70 82.25 96.75
+ GR 87.49 98.10 60.99 88.35 79.73 94.57 32.00 29.56 60.00 27.20 85.00 98.00
+ CL 89.02 98.33 65.77 92.15 79.70 94.80 31.00 31.34 48.50 28.70 83.50 97.75
+ Both 89.70 98.35 64.35 92.08 80.01 94.69 29.00 31.86 45.00 29.10 84.50 98.00

Table 1: Results of pre-training on HowTo100M, AudioSet and Youtube8M. Best results are high-
lighted in blue, second best results are highlighted in light blue. RW(VA): Gradient Re-weighting
(Scale up Video-Audio), RW(VT): Gradient Re-weighting (Scale up Video-Text), GR: Cross-Modality
Gradient Realignment, CL: Gradient-based Curriculum Learning. (best view in color)

Hyperparameter Video Action Cls Text-Video Retrieval Audio Cls
Dataset UCF101 HMDB51 YouCook2 MSRVTT ESC50
Metric Top1↑ Top5↑ Top1↑ Top5↑ Rank↓ R@10↑ Rank↓ R@10↑ Top1↑ Top5↑

VATT [11] 78.53 95.24 57.36 86.07 93.50 17.10 73.00 16.70 71.50 91.75

+ CL

(γ0, γ500K) = (−0.3, 0.0) 79.10 96.16 56.41 86.06 40.00 26.01 56.00 23.90 72.50 94.25
(γ0, γ500K) = (−0.2, 0.0) 77.75 94.94 56.87 87.18 53.00 22.21 57.00 20.80 70.75 94.75
(γ0, γ500K) = (−0.1, 0.0) 44.49 75.42 33.44 68.78 81.00 17.13 68.50 19.10 70.25 93.25
(γ0, γ500K) = (0.0, 0.0) 10.05 24.88 7.31 23.76 457.50 5.02 153.50 11.20 58.50 87.50

Table 2: Ablation on the choice of γ in Gradient-based Curriculum Learning on Howto100M. We
linearly decay γ during training, γ0, γ500K denote γ at the beginning and at the end of the training,
respectively. Best results are highlighted in blue. CL: Gradient-based Curriculum Learning.

Gradient-based Curriculum Learning Compared to Cross-Modality Gradient Realignment,
Gradient-based Curriculum Learning inherents its performance gains in video-text retrieval task, yet
enjoy an additional performance boost in audio classification (e.g. 1.40% gain ESC50 dataset in
Table 1) and video classification (e.g. 1.94% gains UCF101 dataset in Table 1). We also perform an
ablation on the adaptive choice of γ on Howto100M dataset in Table 2. We can see that curriculumly
evolving γ (i.e.(γ0, γ500K) = (−0.3, 0.0)) yields the best overall results, while maintaining a fixed γ
(i.e. (γ0, γ500K) = (0.0, 0.0)) yields the worst results, this verify the effectiveness of curriculumly
removing mis-aligned samples during training.

Cross-Modality Gradient Realignment + Gradient-based Curriculum Learning We further verify
the effectiveness with the combination of both techniques. Specifically, given a video-audio pair and
video-text pair, (a) if cos(gva, gvt) ≤ γ, we drop this sample triplet; (b) if γ < cos(gva, gvt) < 0, we
apply gradient projection in Algorithm 1; (c) if cos(gva, gvt) ≥ 0, we retain the original gradients. We
found they are complimentary to each other and the combination of both lead to better performance
in the majority of downstream tasks.
4.5 Scaling Pre-training to YouTube8M
As shown in Table 1, adding YouTube8M dataset brings the video classification and video-text
retrieval performance to a new level (e.g. 88.28% Top1 on UCF101, 56.0 rank on MSRVTT)), yet it
set back the performance in audio classification task, we conjecture this is largely due to the noisy
misaligned samples introduced by Youtube8M dataset.

However, by leveraging our proposed techniques, we further yields a new state-of-the-art performance
in the modality-agnostic setting, without any modification in architecture, striking 89.70% Top1 on
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UCF101, 92.15% Top5 on HMDB51, 80.01% Top1 on Kinetics400 and 85.00% Top1 on ESC50
dataset, demonstrating the effectiveness of our method when scaling to noisy Youtub8M dataset.

4.6 Feature Visualization
To better illustrate why gradient harmonization techniques works, in Figure 5, we follow the vi-
sualization used in VATT[11], which take YouCook2 Video-Text Retrieval dataset, showing the
output space visualization of video and text, respectively. We can see the initial video and text
feature representation of VATT baseline are mixed together (which aligned with the findings in [11]),
however, after using gradient realignment, curriculum learning or applying both, the video and text
representations become disentangled, this indicates our gradient harmonization techniques adds to
cross-modality diversity, which makes video/text more discriminative from each other, making the
model more discriminative and better in generalization.

(a) VATT Baseline (b) w/ Gradient Realignment(c) w/ Curriculum Learning (d) w/ Both Techniques
Figure 5: t-SNE visualization of the VATT output space on YouCook2 dataset.

4.7 Extending Gradient Realignment to Modality-Specific VATT
So far, our techniques were built upon the modality-agnostic setting of VATT with a shared backbone.
We also try to apply the same technique to the modality-specific setting, given there is still a
shared video head where we can harmonization the gradients. In Table 3, we observe that applying
Gradient Realignment (GR) to modality-specific setting has some gain over uni-modality tasks (e.g.
Video/Audio Classfication), yet set back on cross-modality tasks (e.g. Text-Video Retrieval). We
hypothesize this is due the lack of cross-modality signals: since there is no longer shared backbone
across modalities, the only shared video head would provide bias signala towards the video modality,
for cross-modality alignment. We leave the improvement of modality-specific VATT for future work.

Methods Video Action Cls Text-Video Retrieval Audio Cls
Dataset UCF101 HMDB51 YouCook2 MSRVTT ESC50
Metric Top1↑ Top5↑ Top1↑ Top5↑ Rank↓ R@10↑ Rank↓ R@10↑ Top1↑ Top5↑
Modality-Specific VATT [11] 82.36 97.35 58.51 89.32 19.00 38.84 27.00 32.38 74.72 93.75
+ GR 82.06 97.35 61.45 90.45 22.00 36.82 40.00 27.32 76.50 93.00

Table 3: Extended experiments on applying Gradient Realignment to the modality-specific VATT.

5 Conclusion
In this paper, we take a deep dive into the common CMA assumption used in multimodal pre-
training. Using the gradient directions between pairwise losses as the surrogate indicator, we observe
ubiquitous gradient conflicts even in relatively well-aligned narrative datasets. We then propose
two plug-and-play techniques to harmonize the gradients during training. They are demonstrated to
substantially enhance VATT pre-training across a number of downstream tasks, and further scale
it up to pre-training with even more complicated and poorly aligned data. Our findings underline
the (often overlooked) importance to carefully revisit the basic assumption and training dynamics
of multimodal learning, besides advancing the model architectures. However, our cross-modality
gradient harmonization technique still has room to generalize better to the modality-specific setting.
Additionally, we did not fully explore other regularization techniques in multi-tasking learning
literature, such as [27–29]. The potential negative societal impacts include the malicious use of
multimodal models, such as unintended use of its downstream visual/audio recognition capability.
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