
Appendix introduction

The Appendix is organized as follows:

• In Appendix A, we state the symbols and notation used in this paper.

• In Appendix B, we provide the proofs and related lemmas of Theorem 1.

• In Appendix C, we provide the proofs of Theorem 2.

• In Appendix D, we provide the proofs and related lemmas of Theorem 3.

• In Appendix E, we detail our experimental settings and exhibit additional experimental
results.

• In Appendix F, we discuss several limitations of this work.

• Finally, in Appendix G, we discuss the societal impact of this paper.

A Symbols and Notation

In the paper, vectors are indicated with bold small letters, matrices with bold capital letters. To
facilitate the understanding of our work, we include the some core symbols and notation in Table 3.

Table 3: Core symbols and notations used in this project.

Symbol Dimension(s) Definition

N (µ, σ) - Gaussian distribution of mean µ and variance σ
Ber(m, p) - Bernoulli (Binomial) distribution with m trials and p success rate.
χ2(ω) - Chi-square distribution of degree ω.

∥v∥2 - Euclidean norms of vectors v
∥M∥2 - Spectral norms of matrices M
∥M∥F - Frobenius norms of matrices M
∥M∥∗ - Nuclear norms of matrices M
λ(M) - Eigenvalues of matrices M
M [l] - l-th row of matrices M
Mi,j - (i, j)-th element of matrices M

ϕ(x) = max(0, x) - ReLU activation function for scalar
ϕ(v) = (ϕ(v1), . . . , ϕ(vm)) - ReLU activation function for vectors

1 {A} - Indicator function for event A

n - Size of the dataset
d - Input size of the network
o - Output size of the network
L - Depth of the network
m - Width of intermediate layer
βl - Standard deviation of Gaussian initialization of l-th intermediate layer
α - Scale factor for the output layer

xi Rd The i-th data point
yi Ro The i-th target vector
DX - Input data distribution
DY - Target data distribution

W1 Rm×d Weight matrix for the input layer
Wl Rm×m Weight matrix for the l-th hidden layer
WL Ro×m Weight matrix for the output layer

hi,l Rm The l-th layer activation for input xi

fi Ro Output of network for input xi

O, o, Ω and Θ - Standard Bachmann–Landau order notation

P(A) - Probability of event A
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B Proof of upper bound of the Perturbation Stability in lazy training regime
for deep neural network

We present the details of our results from Section 4.1 in this section. Firstly, we introduce some
lemmas in Appendix B.1 to facilitate the proof of theorems. Then, in Appendix B.2 we provide the
proof of Theorem 1.

B.1 Relevant Lemmas

Lemma 1. Let w ∼ N (0, σ2In). Then, for two fixed non-zero vectors h1 ∈ Rn and h2 ∈ Rn, define
two random variables X = (w⊤h11

{
w⊤h2 ≥ 0

}
)2 and Y = s(w⊤h1)

2, where s ∼ Ber(1, 1/2)

follows a Bernoulli distribution with 1 trial and 1
2 success rate. Then X and Y have the same

distribution, denoted as X d
= Y .

Proof. Firstly, we derive the cumulative distribution function (CDF) of X . Obviously, X is non-
negative and w⊤h1 ∼ N (0, σ2∥h1∥22In), and then we have:

P(X = 0) = P(w⊤h2 < 0) + P(w⊤h2 ≥ 0,w⊤h1 = 0) ,

which implies:

P(w⊤h2 < 0) ≤ P(X = 0) ≤ P(w⊤h2 < 0) + P(w⊤h1 = 0) = P(w⊤h2 < 0) ,

leading to P(X = 0) = P(w⊤h2 < 0) = 1/2.

Accordingly, for x ≥ 0 , we have:

P(X ≤ x) = P(w⊤h2 < 0) + P(w⊤h2 ≥ 0,−
√
x ≤ w⊤h1 ≤

√
x)

=
1

2
+ P(w⊤h2 ≥ 0,−

√
x ≤ w⊤h1 ≤

√
x)

=
1

2
+ P(w⊤h2 ≥ 0,−

√
x ≤ w⊤h1 ≤ 0) + P(w⊤h2 ≥ 0, 0 ≤ w⊤h1 ≤

√
x)

=
1

2
+ P(w⊤h2 ≤ 0, 0 ≤ w⊤h1 ≤

√
x) + P(w⊤h2 ≥ 0, 0 ≤ w⊤h1 ≤

√
x)

=
1

2
+ P(0 ≤ w⊤h1 ≤

√
x)

=
1

2
+

∫ √
x

0

1√
2πσ2

1

e
− t2

2σ2
1 dt ,

where we use the symmetry of the Gaussian random variable and σ1 = ∥h1∥2 σ.

Then X admits the following cumulative distribution function:

F (X ≤ x) =


0 if x < 0
1
2 if x = 0

1
2 +

∫√
x

0
1√
2πσ2

1

e
− t2

2σ2
1 dt if x > 0 .

(5)

We then derive the CDF of Y . Obviously, Y is non-negative and P(Y = 0) = 1/2, which holds by
Y = 0 iff s = 0. Accordingly, for x ≥ 0 , we have:

P(Y ≤ x) = P(s = 0) + P(s = 1)P(−
√
x ≤ w⊤h1 ≤

√
x) =

1

2
+

1

2

∫ √
x

−
√
x

1√
2πσ2

1

e
− t2

2σ2
1 dt

=
1

2
+

∫ √
x

0

1√
2πσ2

1

e
− t2

2σ2
1 dt .

Then Y has the following cumulative distribution function:
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F (Y ≤ x) =


0 if x < 0
1
2 if x = 0

1
2 +

∫√
x

0
1√
2πσ2

1

e
− t2

2σ2
1 dt if x > 0 ,

(6)

which implies X d
= Y by comparing Eq. (5) and Eq. (6).

Lemma 2. Given two fixed non-zero vectors h1 ∈ Rp and h2 ∈ Rp, let W ∈ Rq×p be random
matrix with i.i.d. entries Wi,j ∼ N (0, 2/q) and a vector v = ϕ′(Wh2)Wh1 ∈ Rq . Then, we have
q∥v∥2

2

2∥h1∥2
2

∼ χ2(ϱ), where ϱ ∼ Ber(q, 1/2).

Proof. According to the definition of v = ϕ′(Wh2)Wh1 ∈ Rq , we have:

∥v∥22 =

q∑
i=1

(
Di,i

〈
W [i],h1

〉)2

,

where Di,i = 1
{〈

W [i],h2

〉
≥ 0

}
, the W [i] is defined in the second part of the Table 3.

Let ϖi =
〈
W [i],h1

〉
/

(√
2∥h1∥2

2

q

)
, then ϖi ∼ N (0, 1) independently. Accordingly, by Lemma 1,

recall s ∼ Ber(1, 1/2), we have:

q ∥v∥22
2 ∥h1∥22

=

q∑
i=1

(
1
{〈

W [i],h2

〉
≥ 0

}
ϖi

)2
d
=

q∑
i=1

sϖ2
i ,

which implies q∥v∥2
2

2∥h1∥2
2

∼ χ2(ϱ) with ϱ ∼ Ber(q, 1/2) according to the definition of chi-square
distribution.

Lemma 3. (Dynamic equivalence under different scaling) Given an L-layer neural network f defined
by Eq. (2), as follows:

f(x) = ŴLϕ(ŴL−1 · · ·ϕ(Ŵ1x) · · · ) , (7)

where [Ŵl]i,j satisfy the initialization in Section 3.1, i.e., β := β2 = · · · = βL−1.

Scaling all weights of f , then we get a new model f̃ as follows.

f̃(x) = γLW̃Lϕ(W̃L−1 · · ·ϕ(W̃1x) · · · ) , (8)

where [W̃l]i,j = [Ŵl]i,j/γ ∀l ∈ [L].

Then if we choose an appropriate learning rate η̃ := η
γ2 , f and f̃ will have the same dynamics.

Proof. According to the chain rule, we have:

df̃

dW̃l

= γ
df

dŴl

∀l ∈ [L] .

If we choose learning rate η̃ := η
γ2 , then, we have:

dW̃l

dt
=

1

γ

dŴl

dt
∀l ∈ [L] .

Consider that W̃l(0) =
1
γŴl(0) ∀l ∈ [L], then, we have:

W̃l(t) =
1

γ
Ŵl(t) ∀l ∈ [L] .

That means f(t) = f̃(t) ∀t ≥ 0, which concludes the proof.
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Lemma 4. Given an L-layer neural network f defined by Eq. (2) trained by {(xi,yi)}ni=1, under a
small perturbation ϵ, we have:

Ex,x̂,W

∥∥∥∇xf(x)
⊤(x− x̂)−WLDL−1WL−1 · · ·D1W1(x− x̂)

∥∥∥
2
≤ Θ

(
ϵγL−2

√
πL3m2β2

1β
2
L

8
e−m/L3

)
,

(9)
where [Wl]i,j satisfy the initialization in Section 3.1, x ∼ DX and x̂ ∼ Unif(B(ϵ,x)).

Proof. We set the weight of the neural network after training are Ŵ . i.e.

f(x) = ŴLϕ(ŴL−1 · · ·ϕ(Ŵ1x) · · · ) .

According to the standard chain rule and Lemma 3, we have:

∇xf(x)
⊤ = ŴLD̂L−1ŴL−1 · · · D̂1Ŵ1 = γLŴ ′

LD̂L−1Ŵ
′
L−1 · · · D̂1Ŵ

′
1 ,

where [Ŵ ′
l ]i,j = [Ŵl]i,j/γ ∀l ∈ [L].

Assume that the perturbation matrices satisfy
∥∥∥Ŵl −Wl

∥∥∥
2
≤ ω , ∀l ∈ [L], where the parameter ω

will be determined later. Then by Allen-Zhu et al. [2019, Lemma 7.4, Lemma 8.6, Lemma 8.7], we
obtain that for any integer s ∈

[
Ω( d

logm ),O( m
L3 logm )

]
, for d ≤ O( m

L logm ), with probability at least

1− exp

(
− Ω(s logm)

)
over the randomness of {W }Ll=1, it holds that:

∥∥∥Ŵ ′
LD̂L−1Ŵ

′
L−1 · · · D̂1Ŵ

′
1 −W ′

LDL−1W
′
L−1 · · ·D1W

′
1

∥∥∥
2
≤ O

(√
L3s logm+ ω2L3m

d

√
dm

2

β1βL

γ2

)
,

which implies that

∥∥∇xf(x)
⊤ −WLDL−1WL−1 · · ·D1W1

∥∥
2
≤ O

(√
L3s logm+ ω2L3m

d

√
dm

2
β1βLγ

L−2

)
,

holds with probability at least 1− exp

(
− Ω(s logm)

)
.

If we choose s := ⌊ m
L3 logm + ω2

logm⌋, then, we have:

∥∥∇xf(x)
⊤ −WLDL−1WL−1 · · ·D1W1

∥∥
2
≤ O

(√
L3ω2 +m+ ω2L3m

d

√
dm

2
β1βLγ

L−2

)
,

with probability at least 1− exp

(
− Ω( m

L3 + ω2)

)
.

Let δ :=
√

L3ω2+m+ω2L3m
d

√
dm
2 β1βLγ

L−2, we have ω2 = uδ2−m
L3(m+1) , u = 2

mβ2
1β

2
Lγ2(L−2) . We have

the following probability inequality:

P
( ∥∥∇xf(x)

⊤ −WLDL−1WL−1 · · ·D1W1

∥∥
2
> δ

)
≤ exp

(
− uδ2 −m

L3(m+ 1)
− m

L3

)
= exp

(
− δ2u+m2

L3(m+ 1)

)
.
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Then by the expectation integral equality [Vershynin, 2018, Lemma 1.2.1], the expectation is:

EW

∥∥∥∇xf(x)
⊤ −WLDL−1WL−1 · · ·D1W1

∥∥∥
2
=

∫ +∞

0

P
(∥∥∥∇xf(x)

⊤ −WLDL−1WL−1 · · ·D1W1

∥∥∥
2
> δ

)
dδ

≤
∫ +∞

0

exp

(
− δ2u+m2

L3(m+ 1)

)
dδ

=

√
πL3(m+ 1)

4u
exp

(
− m2

(m+ 1)L3

)
= Θ

(
γL−2

√
πL3m2β2

1β
2
L

8
e−m/L3

)
.

(10)

Finally, by the definition of x̂, we have:∥∥∥∇xf
⊤(x)(x− x̂)−WLDL−1WL−1 · · ·D1W1(x− x̂)

∥∥∥
2
≤ ϵ

∥∥∥∇xf(x)
⊤ −WLDL−1WL−1 · · ·D1W1

∥∥∥
2
.

(11)

By Eq. (10) and Eq. (11) and consider expectations for x and x′, we finish the proof.

Lemma 5. Given an L-layer neural network f defined by Eq. (2) trained by {(xi,yi)}ni=1, under a
small ϵ, expectation over x, x̂,W , we have:

Ex,x̂,W ∥WLDL−1WL−1 · · ·D1W1(x− x̂)∥22 ≤ moβ2
1β

2
Lγ

2(L−2)

2
ϵ2 , (12)

where [Wl]i,j satisfy the initialization in Section 3.1 and x ∼ DX , x̂ ∼ Unif(B(ϵ,x)).

Proof. Define tl = DlWl · · ·D1W1(x− x̂), then:

Ex,x̂,W ∥WLDL−1WL−1 · · ·D1W1(x− x̂)∥22 = Ex,x̂,W ∥WLtL−1∥22 .

By Lemma 2, we have ∥tl∥2
2

β2∥tl−1∥2
2

∼ χ2(ϱ), where ϱ ∼ Ber(m, 1/2),∀l = 2, · · · , L− 1. By the law
of total expectation E[E[X|Y ]] = E[X], we have

EW
∥tl∥22

∥tl−1∥22
= β2Eϱχ

2(ϱ) = β2Eϱ =
mβ2

2
= γ2 , ∀l = 2, · · · , L− 1 .

Similarly, we have:

EW
∥t1∥22

∥x̂− x∥22
=

mβ2
1

2
.

By the definition of chi-square distribution, we have ∥WLtL−1∥2
2

β2
L∥tL−1∥2

2

∼ χ2(o), which means

EW ∥WLtL−1∥22 / ∥tL−1∥22 = oβ2
L.

Then, according to the independence among ∥WLtL−1∥2
2

∥tL−1∥2
2

, ∥t1∥2
2

∥x̂−x∥2
2

, ∥x̂− x∥22 and ∥tl+1∥2
2

∥tl∥2
2

∀l ∈
[L− 2], we have:

Ex,x̂,W ∥WLtL−1∥22 = Ex,x̂,W
∥WLtL−1∥22
∥tL−1∥22

∥tL−1∥22
∥tL−2∥22

· · ·
∥t1∥22

∥x̂− x∥22
∥x̂− x∥22

= EW
∥WLtL−1∥22
∥tL−1∥22

EW
∥tL−1∥22
∥tL−2∥22

· · ·EW
∥t1∥22

∥x̂− x∥22
Ex,x̂ ∥x̂− x∥22

=
moβ2

1β
2
Lγ

2(L−2)

2
Ex,x̂ ∥x̂− x∥22 ,

using the definition of x̂ which conclude the proof.
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B.2 Proof of Theorem 1

Proof. According to the triangle inequality and the Jensen’s inequality, we have:

P(f , ϵ) = Ex,x̂,W ∥∇xf(x)(x− x̂)∥2
≤ Ex,x̂,W ∥∇xf(x)(x− x̂)−WLDL−1WL−1 · · ·D1W1(x− x̂)∥2
+ Ex,x̂,W ∥WLDL−1WL−1 · · ·D1W1(x− x̂)∥2
≤ Ex,x̂,W ∥∇xf(x)(x− x̂)−WLDL−1WL−1 · · ·D1W1(x− x̂)∥2

+

√
Ex,x̂,W ∥WLDL−1WL−1 · · ·D1W1(x− x̂)∥22

≲ ϵ

(√
L3m2β2

1β
2
Le

−m/L3

+
√
moβ2

1β
2
L

)
γL−2 ,

where the last inequality utilizes the results of Lemma 4 and Lemma 5.

C Proof of sufficient condition for DNNs under the non-lazy training regime

In this section, we provide the proof of Theorem 2.

Proof. By Assumption 2 and by following the setting of Luo et al. [2021], without loss of generality,
we have that there exits a T ⋆ > 0 such that L(W (T ⋆)) ≤ 1

32n and y1 ≥ 1
2 . Therefore, we have:

1

2n
(f1(T

⋆)− y1)
2 ≤ 1

2n

n∑
i=1

(fi(T
⋆)− yi)

2 ≤ L(W (T ⋆)) ≤ 1

32n
,

which means |f1(T ⋆)− y1| ≤ 1
4 . Accordingly, we conclude:

1

4
≤ y1 −

1

4
≤ f1(T

⋆)

=
1

α
WL(T

⋆)σ(WL−1(T
⋆) · · ·σ(W1(T

⋆)x1))

=
1

α
WL(T

⋆)D1,L−1(T
⋆)WL−1(T

⋆) · · ·D1,1(T
⋆)W1(T

⋆)x1

≤ 1

α
∥WL(T

⋆)∥2 ∥D1,L−1(T
⋆)∥2 ∥WL−1(T

⋆)∥2 · · · ∥D1,1(T
⋆)∥2 ∥W1(T

⋆)∥2 ∥x1∥2

≤ 1

α
∥WL(T

⋆)∥2 ∥WL−1(T
⋆)∥2 · · · ∥W1(T

⋆)∥2 ,

(13)
where the last inequality uses Assumption 1 and 1-Lipschitz of ReLU.

According to Du et al. [2018, Corollary 2.1] , we have:
d

dt
(∥W1∥2F) =

d

dt
(∥W2∥2F) = · · · = d

dt
(∥WL∥2F) .

Then for any l1, l2 ∈ [L], we have:

∥Wl1(T
⋆)∥2F − ∥Wl1(0)∥

2
F = ∥Wl2(T

⋆)∥2F − ∥Wl2(0)∥
2
F ,

which implies:

∥Wl1(T
⋆)∥2 ≤ ∥Wl1(T

⋆)∥F

=

√
∥Wl1(T

⋆)∥2F

=

√
∥Wl2(T

⋆)∥2F − ∥Wl2(0)∥
2
F + ∥Wl1(0)∥

2
F

≤
√

∥Wl2(T
⋆)∥2F + ∥Wl1(0)∥

2
F

≤ ∥Wl2(T
⋆)∥F + ∥Wl1(0)∥F .

(14)
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According to Luo et al. [2021, Proposition 16] and the relationship between ℓ2 norm and Frobe-
nius norm, i.e. ∥·∥F ≤

√
r ∥·∥2, where the r is the rank of matrix, with probability at least

1 − (L − 2) exp(−Θ(m2)) − exp(−Θ(md)) − exp(−Θ(m)) over the initialization, we have

∥W1(0)∥F ≤
√
d ∥W1(0)∥2 ≤

√
3md2

2 β1, ∥Wl(0)∥F ≤
√
m ∥Wl(0)∥2 ≤

√
3m3

2 βl, ∀l ∈ [L− 1]

and ∥WL(0)∥F = ∥WL(0)∥2 ≤
√

3m
2 βL.

If we combine Eqs. (13) and (14), for any l⋆ ∈ [L], with probability at least 1 − (L −
2) exp(−Θ(m2))− exp(−Θ(md))− exp(−Θ(m)) over the initialization, we have:

1

4
≤ 1

α
∥WL(T

⋆)∥2 ∥WL−1(T
⋆)∥2 · · · ∥W1(T

⋆)∥2

=
1

α

L∏
l=1

(
∥Wl⋆(T

⋆)∥F + ∥Wl(0)∥F

)

≤ 1

α

(
∥Wl⋆(T

⋆)∥F +
1

L

L∑
l=1

(
∥Wl(0)∥F

))L

≤ 1

α

(
∥Wl⋆(T

⋆)∥F +

√
3m3

2L2

L∑
l=1

βl

)L

.

Then with probability at least 1− (L− 2) exp(−Θ(m2))− exp(−Θ(md))− exp(−Θ(m)) over the
initialization, we have:

∥Wl⋆(T
⋆)∥F ≥

(
α

4

)1/L

−
√

3m3

2L2

L∑
l=1

βl . (15)

Therefore, with probability at least 1 − (L − 2) exp(−Θ(m2)) − exp(−Θ(md)) − exp(−Θ(m))
over the initialization, we have:

sup
t∈[0,+∞)

∥Wl(t)−Wl(0)∥F
∥Wl(0)∥F

≥
∥Wl(T

⋆)−Wl(0)∥F
∥Wl(0)∥F

≥
∥Wl(T

⋆)∥F
∥Wl(0)∥F

− 1

≥
(α4 )

1/L −
√

3m3

2L2

∑L
i=1 βi√

3m3

2 βl

− 1

≥
(α4 )

1/L −
√

3m3

2L2

∑L
i=1 βi√

3m3

2

∑L
i=1 βi

− 1

=
(α4 )

1/L√
3m3

2

∑L
i=1 βi

− 1

L
− 1 ,

where the second inequality uses triangle inequality and third inequality uses Eq. (15).

If α ≫ (m3/2
∑L

i=1 βi)
L, then with probability at least 1−(L−2) exp(−Θ(m2))−exp(−Θ(md))−

exp(−Θ(m)) over the initialization, we have:

sup
t∈[0,+∞)

∥Wl(t)−Wl(0)∥F
∥Wl(0)∥F

≫ 1 .
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D Proof of the perturbation stability in non-lazy training regime for
two-layer networks

Without loss of generality, we consider two-layer neural networks with a scalar output without bias.

f(x) =
1

α

m∑
r=1

arσ(w
⊤
r x) , (16)

where x ∈ Rd, f(x) ∈ R, α is the scaling factor. The parameters are initialized by ar(0) ∼ N (0, β2
2),

wr(0) ∼ N (0, β2
1Id). Our result can be extended with slight modification to the multiple-output

case with bias setting.

Our proof requires some additional notation, which we establish below:

H∞
ij =

m

α2
Ew∼N (0,β2

1Id),a∼N (0,β2
2)
a2rx

⊤
i xj1

{
w⊤

r xi ≥ 0,w⊤
r xj ≥ 0

}
,

H̃i,j(t) =
1

α2

m∑
r=1

a2r(t)Ew∼N (0,β2
1Id)

x⊤
i xj1

{
w⊤

r xi ≥ 0,w⊤
r xj ≥ 0

}
,

Hi,j(t) =
1

α2

m∑
r=1

ar(t)
2x⊤

i xj1
{
wr(t)

⊤xi ≥ 0,wr(t)
⊤xj ≥ 0

}
,

Ĥi,j =
1

α2

m∑
r=1

ar(t)
2x⊤

i xj1
{
wr(0)

⊤xi ≥ 0,wr(0)
⊤xj ≥ 0

}
,

Gi,j(t) =
1

α2
σ(wr(t)

⊤xi)σ(wr(t)
⊤xj) .

The minimum eigenvalue of H∞
ij is denoted as λ0 and is assumed to be strictly greater than 0, i.e.

λ0 = λmin(H
∞) > 0 .

Remark: This assumption follows Du et al. [2019b] but can be proved by Nguyen et al. [2021] under
the NTK initialization. Moreover, Chen and Xu [2021], Geifman et al. [2020], Bietti and Mairal
[2019] discuss this assumption in different settings.

The following two symbols are used to measure the weight changes during training:

Ra :=
α

n

√
λ0

8nm
−
√

2

π
β2, and Rw :=

α2λ0

√
2πβ1

32n3m(Ra(Ra +
√

8/πβ2) + β2
2)

. (17)

The last two symbols are used to characterize the early stages of neural network training:

t⋆1 = − 2

λ0
log

(
1− Rwλ0α

2
√
n(
√
nβ2 +Ra) ∥y − f(0)∥2

)
,

t⋆2 = − 2

λ0
log

(
1− Raλ0α

2
√
n(3β1

√
log(mn2) +Rw) ∥y − f(0)∥2

)
.

Then we present the details of our results on Section 4.3 in this section. Firstly, we introduce some
lemmas in Appendix D.1 to facilitate the proof of theorems. Then in Appendix D.2 we provide the
proof of Theorem 3.
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D.1 Relevant Lemmas

Lemma 6. [Du et al., 2019b, Appendix A.1] Given a two-layer neural network f defined by Eq. (16)
and trained by {xi, yi}ni=1 using gradient descent with the quadratic loss, let y = (y1, . . . , yn) ∈ Rn

be the label vector and f(t) = (f1(t), . . . , fn(t)) ∈ Rn be the output vector at time t, then, we have:

df(t)

dt
= (H(t) +G(t))(y − f(t)) . (18)

Proof. Our proof here just re-organizes Du et al. [2019b, Appendix A.1]. For making our manuscript
self-contained, we provide a formal proof here.

We want to minimize the quadratic loss:

L(W ,a) =

n∑
i=1

1

2
[f(W ,a,xi)− yi]

2 .

Using the gradient descent algorithm, the formula for update the weights is:

W (t+ 1) = W (t)− η
∂L(W (t),a(t))

∂W (t)
,

a(t+ 1) = a(t)− η
∂L(W (t),a(t))

∂a(t)
.

According to the standard chain rule, we have:

∂L(W (t),a(t))

∂W (t)
=

1

α

n∑
i=1

[f(W (t),a(t),xi)− yi]ar(t)1
{
w⊤

r (t)xi ≥ 0
}
xi ,

∂L(W (t),a(t))

∂a(t)
=

1

α

n∑
i=1

[f(W (t),a(t),xi)− yi]σ(w
⊤
r (t)xi) .

Then, we have:

dfi(t)

dt
=

m∑
r=1

〈
∂fi(t)

∂wr(t)
,
∂wr(t)

∂t

〉
+

m∑
r=1

dfi(t)

dar(t)

dar(t)

dt

=

n∑
i=1

[yi − fi(t)][Hij(t) +Gij(t)] .

Written in vector form, we have:

df(t)

dt
= (H(t) +G(t))(y − f(t)) .

Lemma 7. If α ≥ 16nβ2

√
log(2n3)

λ0
, with probability at least 1− 1

n , we have:

∥H(0)−H∞∥2 ≤ λ0

4
, and λmin(H(0)) ≥ 3

4
λ0 ,

Remark: This lemma is a modified version of Du et al. [2019b, Lemma 3.1], which differs in the
initialization of a from Unif({−1,+1}) to Gaussian initialization. This makes our analysis relatively
intractable due to their analysis based on a2i = 1, ∀i ∈ [m].
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Proof. Firstly, for a fixed pair (i, j), H∞
ij is an average of H̃i,j with respect to ar . By Bernstein’s

inequality [Vershynin, 2018, Chapter 2], with probability at least 1− δ, we have:

∣∣∣H∞
ij − H̃i,j

∣∣∣ ≤ 2β2

√
log( 1δ )

α
.

Then, for fixed pair (i, j), H̃i,j is an average of Hij(0) with respect to wr. By Hoeffding’s
inequality [Vershynin, 2018, Chapter 2], with probability at least 1− δ′, we have:

∣∣∣Hij(0)− H̃i,j

∣∣∣ ≤ 2β2

√
log( 1

δ′ )

α
.

Choose δ := δ′ := 1
2n3 , we have with probability at least 1− 1

n3 , for fixed pair (i, j):

∣∣Hij(0)−H∞
ij

∣∣ ≤ 4β2

√
log(2n3)

α
.

Consider the union bound over (i, j) pairs, with probability at least 1− 1
n , we have:

∣∣Hij(0)−H∞
ij

∣∣ ≤ 4β2

√
log(2n3)

α
.

Thus, we have:

∥H(0)−H∞∥22 ≤ ∥H(0)−H∞∥2F ≤
∑
i,j

∣∣Hij(0)−H∞
ij

∣∣2 ≤ 16n2β2
2 log(2n

3)

α2
.

when α ≥ 16nβ2

√
log(2n3)

λ0
, we have the desired result.

Lemma 8. With probability at least 1− 2
n over initialization , if a set of weight vectors {wr}mr=1 and

the output weight {ar}mr=1 satisfy for all r ∈ [m], ∥wr(t)−wr(0)∥2 ≤ Rw and |ar(t)− ar(0)| ≤
Ra, then, we have:

∥H(t)−H(0)∥2 ≤ λ0

4
, and λmin(H(t)) ≥ λ0

2
.

Proof. Firstly, we can derive that:

Ĥi,j(t)−Hi,j(0) =
1

α2

m∑
r=1

(ar(t)
2 − ar(0)

2)x⊤
i xj1

{
wr(0)

⊤xi ≥ 0,wr(0)
⊤xj ≥ 0

}
,

Hi,j(t)− Ĥi,j(t) =
1

α2

m∑
r=1

ar(t)
2x⊤

i xj1
{
wr(t)

⊤xi ≥ 0,wr(t)
⊤xj ≥ 0

}
− 1

α2

m∑
r=1

ar(t)
2x⊤

i xj1
{
wr(0)

⊤xi ≥ 0,wr(0)
⊤xj ≥ 0

}
.

Then we can compute the expectation of
∣∣∣Ĥi,j(t)−Hi,j(0)

∣∣∣:
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E
∣∣∣Ĥi,j(t)−Hi,j(0)

∣∣∣ = E

∣∣∣∣∣ 1α2

m∑
r=1

(ar(t)
2 − ar(0)

2)x⊤
i xj1

{
wr(0)

⊤xi ≥ 0,wr(0)
⊤xj ≥ 0

}∣∣∣∣∣
≤ m

α2
E
∣∣ar(t)2 − ar(0)

2
∣∣

=
m

α2
E |(ar(t)− ar(0))(ar(t) + ar(0))|

≤ mRa

α2
E |ar(t) + ar(0)|

≤ mRa

α2
(Ra + 2E |ar(0)|)

≤ m(Ra + E |ar(0)|)2

α2

=
m(Ra +

√
2
πβ2)

2

α2
.

(19)

Then we define the event:

Ai,r =
{
∃ : ∥wr(t)−wr(0)∥ ≤ Rw, 1

{
wr(0)

⊤xi ≥ 0
}
̸= 1

{
wr(t)

⊤xi ≥ 0
}}

.

This event happens if and only if
∣∣wr(0)

⊤xi

∣∣ < Rt. According to this, we can get P(Ai,r) =

Pz∼N (0,β2
1)
(|z| ≤ Rw) ≤ 2Rw√

2πβ1
, further:

E
∣∣∣Hi,j(t)− Ĥi,j(t)

∣∣∣ = 1

α2
E
∣∣∣∣ m∑
r=1

ar(t)
2x⊤

i xj1
{
wr(t)

⊤xi ≥ 0,wr(t)
⊤xj ≥ 0

}
−

m∑
r=1

ar(t)
2x⊤

i xj1
{
wr(0)

⊤xi ≥ 0,wr(0)
⊤xj ≥ 0

} ∣∣∣∣
≤ 1

α2

m∑
r=1

E
(
ar(t)

2x⊤
i xj1 {Ai,r ∪Aj,r}

)

≤ 1

α2

m∑
r=1

E
(
ar(t)

2 4Rw√
2πβ1

)

=
4Rw

α2
√
2πβ1

m∑
r=1

E(ar(t)2 − ar(0)
2 + ar(0)

2)

≤ 4Rwm

α2
√
2πβ1

(
Ra(Ra +

√
8

π
β2) + β2

2

)
,

(20)

where the last inequality uses the result of Eq. (19).

From Eqs. (19) and (20), using Markov’s inequality. with probability at least 1− 2
n , we have:

∣∣∣Ĥi,j(t)−Hi,j(0)
∣∣∣ ≤ nm(Ra +

√
2
πβ2)

2

α2
,

∣∣∣Hi,j(t)− Ĥi,j(t)
∣∣∣ ≤ 4Rwnm

α2
√
2πβ1

(
Ra(Ra +

√
8

π
β2) + β2

2

)
.
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Then, we have:

∥H(t)−H(0)∥2 ≤ ∥H(t)−H(0)∥F

≤
(n,n)∑

(i,j)=(1,1)

|Hi,j(t)−Hi,j(0)|

≤
(n,n)∑

(i,j)=(1,1)

( ∣∣∣Ĥi,j(t)−Hi,j(0)
∣∣∣+ ∣∣∣Hi,j(t)− Ĥi,j(t)

∣∣∣ )

≤ mn3

α2

(
(Ra +

√
2

π
β2)

2 +
4Rw√
2πβ1

(Ra(Ra +

√
8

π
β2) + β2

2)

)
.

Then, by Eq. (17), we have:

∥H(t)−H(0)∥2 ≤ λ0

4
,

which implies:

λmin(H(t)) ≤ λmin(H(0))− λ0

4
≤ λ0

2
.

Lemma 9. Suppose that for 0 ≤ s ≤ t, λmin(H(s)) ≥ λ0

2 and |ar(s)− ar(0)| ≤ Ra. Then with
probability at least 1− n exp(−n/2) over initialization, we have ∥wr(t)−wr(0)∥2 ≤ Rw for all
r ∈ [m] and the t ≤ t⋆1.

Proof. By Lemma 6, we have df(t)
dt = (H(t) + G(t))(y − f(t)). Then we can calculate the

dynamics of risk function:

d

dt
∥y − f(t)∥22 = −2(y − f(t))⊤(H(t) +G(t))(y − f(t))

≤ −2(y − f(t))⊤(H(t))(y − f(t))

≤ −λ0 ∥y − f(t)∥22 ,

in the first inequality we use that the G(t) is Gram matrix thus it is positive. Then, we have
d
dt

(
eλ0t ∥y − f(t)∥22

)
≤ 0, then eλ0t ∥y − f(t)∥22 is a decreasing function with respect to t. Thus,

we can bound the risk:

∥y − f(t)∥22 ≤ e−λ0t ∥y − f(0)∥22 . (21)

Then we bound the gradient of wr. For 0 ≤ s ≤ t, With probability at least 1− n exp(−n/2), we
have:

∥∥∥∥ d

ds
wr(s)

∥∥∥∥
2

=

∥∥∥∥∥ 1α
n∑

i=1

[f(W (s),a(s),xi)− yi]ar(s)1
{
w⊤

r (s)xi ≥ 0
}
xi

∥∥∥∥∥
2

≤ 1

α

n∑
i=1

|f(W (s),a(s),xi)− yi| |ar(0) +Ra|

≤
√
n

α
∥y − f(s)∥2 (

√
nβ2 +Ra)

≤
√
n

α
(
√
nβ2 +Ra)e

−λ0s/2 ∥y − f(0)∥2 ,
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where the second inequality is because of ar(0) ∼ N (0, β2
2), then with probability at least 1 −

exp(−n/2), we have ar(0) ≤
√
nβ2. Then, we have:

∥wr(t)−wr(0)∥2 ≤
∫ t

0

∥∥∥∥ d

ds
wr(s)

∥∥∥∥
2

ds ≤ 2
√
n

λ0α
(
√
nβ2 +Ra) ∥y − f(0)∥2 (1− exp(−λ0t

2
)) .

(22)

If we account for t, then we conclude the proof.

Lemma 10. Suppose that for 0 ≤ s ≤ t, λmin(H(s)) ≥ λ0

2 and ∥wr(s)−wr(0)∥2 ≤ Rw. Then
with probability at least 1− 1

n over initialization, we have |ar(t)− ar(0)| ≤ Ra for all r ∈ [m] and
the t ≤ t⋆2.

Proof. Note for any i ∈ [n] and r ∈ [m], w⊤
r (0)xi ∼ N (0, β2

1). Therefore applying Gaussian
tail bound and union bound, we have with probability at least 1 − 1

n , for all i ∈ [n] and r ∈ [m],∣∣w⊤
r (0)xi

∣∣ ≤ 3β1

√
log(mn2), That means for 0 ≤ s ≤ t, With probability at least 1− 1

n , we have:

∣∣∣∣ ddsar(s)
∣∣∣∣ =

∣∣∣∣∣ 1α
n∑

i=1

[f(W (t),a(t),xi)− yi]σ(w
⊤
r (t)xi)

∣∣∣∣∣
≤

√
n

α
∥y − f(s)∥2 (

∣∣w⊤
r (0)xi

∣∣+Rw)

≤
√
n

α
e−λ0s/2 ∥y − f(0)∥2

(
3β1

√
log(mn2) +Rw

)
.

Then, we have:

|ar(t)− ar(0)|2 ≤
∫ t

0

∣∣∣∣ ddsar(s)

∣∣∣∣ds ≤ 2
√
n

λ0α

(
3β1

√
log(mn2) +Rw

)
∥y − f(0)∥2 (1− exp(−λ0t

2
)) .

(23)

Bring in t, then finish the proof.

Lemma 11. Suppose 0 ≤ t ≤ min(t⋆1, t
⋆
2). Then with probability at least 1 − n exp(−n/2) − 3

n

over initialization, we have: λmin(H(t)) ≥ λ0

2 ,

|ar(t)− ar(0)| ≤
2
√
n

λ0α

(
3β1

√
log(mn2) +Rw

)
∥y − f(0)∥2 (1− exp(−λ0t

2
)) := R⋆

a(t) ,

∥wr(t)−wr(0)∥2 ≤ 2
√
n

λ0α
(
√
nβ2 +Ra) ∥y − f(0)∥2 (1− exp(−λ0t

2
)) := R⋆

w(t) ,

for all r ∈ [m].

Proof. When t = 0, λmin(H(s)) ≥ 3
4λ0, |ar(t)− ar(0)| = 0 < Ra and ∥wr(t)−wr(0)∥2 = 0 <

Rw. Using induction, combine Lemma 8, Lemma 9 and Lemma 10, we have the result.

D.2 Proof of Theorem 3

Proof. We can compute the gradient of the network that:

∇xft(x) =
1

α

m∑
r=1

ar(t)1
{
w⊤

r (t)x ≥ 0
}
w⊤

r (t) .
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Then we can derive that:

P(ft, ϵ) = Ex,x̂

∣∣∣∣∣ 1α
m∑
r=1

ar(t)1
{
w⊤

r (t)x ≥ 0
}
w⊤

r (t)(x− x̂)

∣∣∣∣∣
≤ 1

α
Ex,x̂

m∑
r=1

∣∣ar(t)w⊤
r (t)(x− x̂)

∣∣
≤ 1

α
Ex,x̂

m∑
r=1

|ar(t)| ∥wr(t)∥2 ∥x− x̂∥2

≤ ϵ

α

m∑
r=1

|ar(t)| ∥wr(t)∥2 .

(24)

Then by Lemma 11, we have:

|ar(t)| ≤ |ar(t)− ar(0)|+ |ar(0)| ≤ R⋆
a(t) + |ar(0)| .

∥wr(t)∥2 ≤ ∥wr(t)−wr(0)∥2 + ∥wr(0)∥2 ≤ R⋆
w(t) + ∥wr(0)∥2 .

From Eq. (19), we have E |ar(0)| =
√

2
πβ2. That means with probability at least 1 − 1

n over

initialization, we have |ar(0)| ≤
√

2
πnβ2.

By Vershynin [2018, Chapter 3], with probability at least 1−δ over initialization, we have ∥wr(0)∥2 ≤
4β1

√
m+ 2β1

√
log n.

By combining the results above with Eq. (24) and Lemma 11, with probability at least 1 −
n exp(−n/2)− 3

n over initialization we obtain that:

P(ft, ϵ) ≤
ϵ

α

m∑
r=1

|ar(t)| ∥wr(t)∥2

≤ ϵm

α
(R⋆

a(t) +

√
2

π
nβ2)(R

⋆
w(t) + 4β1

√
m+ 2β1

√
log n)

(25)

Suppose that α ∼ 1, β1 ∼ β2 ∼ β ∼ 1
mc , c ≥ 1.5, m ≫ n2. Then Ra = Θ( 1√

n3m
), Rw = Θ( 1

mc ),

R⋆
a(t) = Θ(

√
n logm
mc ) and R⋆

w(t) = Θ( 1√
n3m

). Bring these results into Eq. (25), with probability at
least 1− n exp(−n

2 )−
3
n over initialization, we have:

P(ft, ϵ) ≤ Θ

(
ϵ

√
n logm+ n

mc−1

(
1√
n3m

+
1

mc−0.5

))
.

E Additional Experiments

A number of additional experiments are conducted in this section. Unless explicitly mentioned
otherwise, the experimental setup remains similar to the one in the main paper. The following
experiments are conducted below:

1. In Appendix E.1, we compare the two different training regimes, lazy training and non-lazy
training.

2. In Appendix E.2, we conduct some experiments to assess early-stopping training.
3. In Appendix E.3, we extend the experiments in Section 5.3 from fully connected network to

Convolutional Neural Network.
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Table 4: Compare the clean accuracy for lazy training regime and non-lazy training regime of
ResNet-110.

Dataset Lazy training Non-lazy training
CIFAR10 92.89% 92.14%
CIFAR100 71.08% 70.55%

4. In Appendix E.5, we conduct experiments with additional initializations under the non-lazy
training regime.

5. In Appendix E.6, we extend the experiments from He and LeCun initialization to NTK
initialization.

6. In Appendix E.4, we extend in Section 5.3 from fully connected network to ResNet.

E.1 Comparison of Lazy training and Non-lazy training

In this section, we test the performance of the lazy training regime and the non-lazy training regime
on the standard ResNet-1103. We adopt a narrow model width for computational efficiency. We
choose the He initialization and the non-lazy training initialization as mentioned in Section 5.1 on
CIFAR10 and CIFAR100. The results are provided in Table 4. Notice that the non-lazy training
regime achieves a similar performance to the lazy training regime. This implies that the non-lazy
training regime is also needed for studying practical learning tasks.

E.2 Ablation study on early stopping (training 50 epochs)

In this section, we conduct an experiment to assess the early-stopping technique that is frequently
employed in neural network training. In our case, we consider stopping after 50 epochs. The
experimental results shown in Fig. 6 indicate that the loss and accuracy of the neural network remain
almost unchanged from the 50th epoch to the 200th epoch under two different network settings: width
= 32, depth = 4 and width = 64, depth = 8. Therefore, we train the rest of the networks for 50 epochs
in this work.

E.3 Extension of Section 5.3 to convolutional networks

We extend the experiments of Section 5.3 from fully connected networks to convolutional neural
networks in Fig. 7. Compared with the fully connected network, the main difference of the con-
volutional neural network is that the difference between different depths is much larger than fully
connected network, which is more in line with the relationship between robustness and depth under
He initialization in Theorem 1.

E.4 Additional experiments on ResNet

In this section, we extend the experiments in Section 5.3 from fully connected networks to ResNet
in Fig. 8. Compared with the fully connected network, the results of ResNet show similar characteris-
tics to our theory on fully connected networks. Specifically, the perturbation stability increases with
depth, and an insignificant phase transition can also be seen for width.

E.5 Additional experiments in non-lazy training regime

We extend the experiments of Fig. 4(b) to more initializations under non-lazy training regime (the
variance of the initial weight are 1

m3 and 1
m4 ). Fig. 9 provides the relationship between robustness

and width of neural network for these two initializations and shows that the robustness improves with
the increase of the width of network which is consistent with Theorem 3. However, the difference
between different initializations is not as large as our theoretical expectation, which may indicate that
the bound in Theorem 3 is not tight enough.

3We use the following link for the implementation: https://github.com/bearpaw/
pytorch-classification.
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Figure 6: Effect of the early-stop of training on (a) the accuracy and (b) the loss of the network with
width=32 and depth=4, (c) the accuracy and (d) the loss of the network with width=64 and depth=8.

E.6 Additional experiments under NTK initialization

In this section, we extend the experiments in Fig. 5 from He and LeCun initialization to NTK
initialization in Fig. 10. Our experimental results show that, NTK initialization and He initialization
yield similar curves, but differ in the curve of L = 2. This may be because the infinite-width NTK is
equivalent to the linear model, and the large finite-width network approximates the linear model. This
phenomenon can be more easily detected for two-layer neural networks when compared to deeper
networks.

F Limitation and discussion

The limitation of this work is mainly manifested in that Theorem 3 is built on two-layers neural
networks. Extending this results to deep neural networks beyond lazy training regime is non-trivial.
Firstly, the dynamics of the deep neural network and the bounds of the gap between the initialization
and the expectation of the gram matrix will become more complex. Secondly, due to the coupling
relationship between different layers, the critical change radius of the weight in Lemma 8 is also
coupled with each other and is difficult to analyze. Then, due to the superposition of the previous two
points, the relationship between the weights changing with time in the early stage of training (similar
to Lemma 9) and the width and initialization of the neural network will be difficult to distinguish,
which leads to the final result being complex, demanding and difficult to obtain a valid conclusion
about width and initialization.

G Societal impact

This is a theoretical work that explores the interplay of the width, the depth and the initialization
of neural networks on their average robustness. Our goal is to obtain an in-depth understanding of
the factors that affect the robustness. We do not focus on obtaining any state-of-the-art results in a
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Figure 7: Relationship between the perturbation stability and width of CNN under He initialization
for different depths of L = 4, 6, 8 and 10. The stability values differ substantially across depths,
which is more in line with the relationship between robustness and depth under He initialization
in Theorem 1.
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Figure 8: Relationship between the perturbation stability and width of ResNet-18 and ResNet-34.

particular task, which means there are other works that can be used for forming strong adversarial
attacks and can be used with malicious intent.

Despite the theoretical nature of our work, we encourage researchers to further investigate the impact
of robustness on the society. We expect robustness to have a key role into a world where neural
networks are increasingly deployed into real-world applications.
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Figure 9: Influence of width of neural network on the perturbation stability under non-lazy training
regime. (a) the variance of the initial weight is 1

m3 . (b) the variance of the initial weight is 1
m4 .
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Figure 10: Relationship between the perturbation stability and depth of FCN under NTK initialization
with different depths of L = 2, 6 and 10.
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