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Abstract

We study the average robustness notion in deep neural networks in (selected) wide
and narrow, deep and shallow, as well as lazy and non-lazy training settings. We
prove that in the under-parameterized setting, width has a negative effect while it
improves robustness in the over-parameterized setting. The effect of depth closely
depends on the initialization and the training mode. In particular, when initialized
with LeCun initialization, depth helps robustness with the lazy training regime. In
contrast, when initialized with Neural Tangent Kernel (NTK) and He-initialization,
depth hurts the robustness. Moreover, under the non-lazy training regime, we
demonstrate how the width of a two-layer ReLU network benefits robustness. Our
theoretical developments improve the results by Huang et al. [2021], Wu et al.
[2021] and are consistent with Bubeck and Sellke [2021], Bubeck et al. [2021].

1 Introduction
It is now well-known that deep neural networks (DNNs) are susceptible to adversarially chosen, albeit
imperceptible, perturbations to their inputs [Goodfellow et al., 2015, Szegedy et al., 2014]. This
lack of robustness is worrying as DNNs are now deployed in many real-world applications [Eykholt
et al., 2018]. As a result, new algorithms are more and more being developed to defend against
adversarial attacks to improve the DNN robustness. Among the current defense methods, the most
commonly used and arguably the most successful method is adversarial training based minimax
optimization [Athalye et al., 2018, Croce and Hein, 2020, Madry et al., 2018]. To study adversarial
attacks and defenses, we need to investigate the robustness of DNNs at first.

A plethora of aspects on the robustness have been studied, ranging from algorithms to their initializa-
tion as well as from the width of neural networks to their depth (i.e., the architecture). On the practical
side, Madry et al. [2018] advocate that adversarial training requires more parameters (e.g., width) for
better performance in minimax optimization, which would fall into the so-called over-parameterized
regime1 [Zhang et al., 2017]. On the theoretical side, recent works suggest that over-parameterization
may damage the adversarial robustness [Huang et al., 2021, Wu et al., 2021, Zhou and Schoellig,
2019, Hassani and Javanmard, 2022]. In stark contrast, Bubeck and Sellke [2021], Bubeck et al.
[2021] argue that the robustness of DNNs needs enough parameters to be guaranteed. See a detailed
discussion in Section 2.

Our work aims to investigate this apparent contradiction in theory, and to close the gap as much as
possible. We begin with a definition of the perturbation stability of DNNs, which can be used to
describe the robustness, following the spirit of Wu et al. [2021], Dohmatob and Bietti [2022].
Definition 1 (perturbation stability). The perturbation stability of a neural network f(x;W ) :
Rd 7→ Ro parameterized by the neural network parameter W under the data distribution DX and a

1Over-parameterized regime requires the number of parameters in DNN to be (much) larger than the number
of training data.
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Figure 1: Schematic of our deep fully connected ReLU neural network.

Table 1: Comparison of the perturbation stability of a deep ReLU neural network (see Fig. 1) under
three common Gaussian initializations with different variances. For a formal definition of this neural
network please refer to Eq. (2).

Initialization name Initialization form Our bound for P(f , ϵ)/ϵ
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Allen-Zhu et al. [2019] β = β1 =
√

2
m

, βL =
√

1
o

, α = 1
√

L3m
o

e−m/L3

+ 1

perturbation radius ϵ is defined as follows:

P(f , ϵ) = Ex,x̂,W

∥∥∇xf(x;W )⊤(x− x̂)
∥∥
2
, ∀x ∼ DX , x̂ ∼ Unif(B(ϵ,x)) , (1)

where x̂ is uniformly sampled from an ℓ2 norm ball of x with radius ϵ, denoted as Unif(B(ϵ,x)).

Since our definition of the perturbation stability takes the expectation of the clean and the adversarial
data points, it is natural to describe the average robustness of a neural network. It can be noticed
that the larger value of the perturbation stability means worse robustness in average, i.e., average
robustness.

Based on the perturbation stability, we study the average robustness of neural networks under
different initializations in (selected) wide and narrow, deep and shallow, as well as lazy and non-lazy2

training settings. Generally, non-lazy training makes the analysis of neural networks intractable as
DNNs in this regime cannot be simplified as a time-independent model [Chizat and Bach, 2018], and
accordingly, the analysis in this regime is mainly restricted to the two-layer setting [Mei et al., 2018,
2019].

Overall, our results suggest that the width (good) helps average robustness in the over-parameterized
regime but the depth (bad) can help only under certain initializations (ugly). To be specific, we make
the following contributions and findings under the lazy/non-lazy training regimes, see Table 1.

In the lazy training regime, the derived upper-bounds for DNNs, suggest that

• along with the increase in width, the robustness firstly becomes worse in the under-
parameterized regime and then gets better, and finally tends to be a constant in highly
over-parameterized regimes, which implies the existence of a phase transition.

• the depth has more complex tendency on robustness, which largely depends on the initializa-
tion and the training mode. It can be grouped into two main classes (cf., Table 1): depth
helps robustness in an exponential order under the LeCun initialization [LeCun et al., 2012],
whereas it hurts robustness in a polynomial order under He-initialization [He et al., 2015]
and under Neural Tangent Kernel (NTK) initialization [Allen-Zhu et al., 2019].

Surprisingly, standard tools on training dynamics of neural networks [Allen-Zhu et al., 2019, Du
et al., 2018] are sufficient to obtain our bounds, which explain the relationship between robustness

2Here the lazy/non-lazy training regime indicates that neural network parameters change little/much during
training. These two phases are determined by different initializations [Woodworth et al., 2020, Luo et al., 2021].
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and the structural/architectural parameters of neural network. Our theoretical developments improve
the results by Huang et al. [2021], Wu et al. [2021], and are supported by empirical evidence.

In the non-lazy training regime, we derive upper-bounds for two-layer networks, suggesting that

• the width improves the robustness under different initializations.

• the convergence rates of the average robustness is affected by the initialization.

We also derive a sufficient condition to identify when DNNs enter in this regime, as an initial but
first attempt on understanding DNNs in this regime. Our technical contribution lies in connecting
robustness to changes of neural network parameters during the early stages of training, which could
expand the application scope of deep learning theory beyond lazy training analysis [Jacot et al., 2018,
Allen-Zhu et al., 2019].

Notations: We use the shorthand [n] := {1, 2, . . . , n} for a positive integer n. We denote by
a(n) ≲ b(n): there exists a positive constant c independent of n such that a(n) ⩽ cb(n). The
standard Gaussian distribution is N (0, 1) with the zero-mean and the identity variance. Uniform
distribution inside the sphere is Unif(B(ϵ,x)) with the center x and radius ϵ. We follow the standard
Bachmann–Landau notation in complexity theory e.g., O, o, Ω, and Θ for order notation.

2 Related work
DNNs are demonstrated to be sensitive to adversarially chosen but undetectable noise both empirically
[Szegedy et al., 2014] and theoretically [Huang et al., 2021, Bubeck and Sellke, 2021]. Adversarial
training [Athalye et al., 2018, Croce and Hein, 2020, Zhang et al., 2020b] is a reliable way to
obtain adversarially robust neural network. Nevertheless, improving the overall robustness of
neural networks is still an unsolved problem in machine learning, especially when coupling with
initializations and parameters.

Over-parameterized neural networks under lazy/non-lazy training regimes: Modern DNNs in
practice [He et al., 2016] work under the setting where the number of parameters is (much) larger
than the number of training data. Analysis of DNNs in terms of optimization [Safran et al., 2021,
Zhou et al., 2021] and generalization [Cao and Gu, 2019] has received great attention in deep learning
theory [Zhang et al., 2017].

In deep learning theory, neural tangent kernel (NTK) [Jacot et al., 2018] and mean field [Mei et al.,
2018] analysis are two powerful tools for neural network analysis. To be specific, NTK builds an
equivalence between training dynamics by gradient-based algorithms of DNNs and kernel regression
under a specific initialization, and thus allows the analysis of deep networks [Allen-Zhu et al., 2019,
Du et al., 2019a, Chen et al., 2020]. However, the NTK requires neural networks to belong in the lazy
training regime [Chizat et al., 2019], where neural networks are able to achieve zero training loss
but the parameters change little, or even remain unchanged during training. In contrast, mean-field
theory establishes global convergence by casting the network weights during training as an evolution
in the space of probability distributions under some certain initializations [Mei et al., 2018, Chizat
and Bach, 2018]. This strategy goes beyond lazy training regime, which allows for neural networks
parameters to change in a constant order after training.

If the neural networks parameters change a lot after training, or even tend to infinity, then neural
networks work in the non-lazy training regime. Analysis of DNNs under this setting appears
intractable and challenging, so the current work mainly focus as two-layer neural networks [Maennel
et al., 2018, Luo et al., 2021].

Robustness and over-parameterization Goodfellow et al. [2015] demonstrate that adversarial
learning helps robustness and reduces overfitting. Many works focus on influencing factors of
adversarial examples and robustness of the neural network [Schmidt et al., 2018, Zhang et al.,
2020a, Allen-Zhu and Li, 2022]. The relation between model capacity and robustness is empirically
investigated by Madry et al. [2018], i.e., a neural network with insufficient capacity can seriously
hurt the robustness. Bubeck et al. [2021] theoretically study the inherent trade-off between the size of
neural networks and their robustness, and they claim that over-parameterization is necessary for the
robustness of two-layer neural networks.

However, some recent works propose the opposite view. Under the lazy training regime, Huang
et al. [2021] demonstrate that when over-parameterized neural networks get wider, the robustness
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decreases in a polynomial order. Similarly, the depth hurts the robustness in an exponential order.
Wu et al. [2021] affirm the view of Huang et al. [2021] on the width. However for depth, they derive
a stronger bound that the robustness gets worse in a polynomial decay as the depth increases, as
suggested by Hassani and Javanmard [2022]: over-parameterization hurts robustness. In addition, Gao
et al. [2019] also make a similar view: an increased model capacity (i.e., wider width and deeper
depth) deteriorates the robustness of neural networks. Nevertheless, we remark that, the results of
Hassani and Javanmard [2022] work in a slightly different setting than that of Bubeck et al. [2021] on
data interpolation, which requires a careful comparison. Accordingly, we adopt a complementary
view to the vast literature. We provide an in-depth theoretical analysis to investigate this apparent
contradiction in theory, and to close the gap as much as possible.

3 Problem setting
Let X ⊆ Rd and Y ⊆ Ro be compact metric spaces. We assume that the training set Dtr =
{(xi,yi)}ni=1 is drawn from a unknown probability measure D on X × Y . Its marginal data
distribution is denoted by DX . The goal of the classification task is to learn a neural network
f : X → Y such that f(x;W ) parameterized by W is a good approximation of the label y ∈
Y corresponding to a new sample x ∈ X . In this paper, we use the empirical risk L(W ) =
1
2n

∑n
i=1 ∥f(xi;W )− yi∥22. Then we make the following assumption.

Assumption 1. We assume that the data satisfy ∥x∥2 = 1.

Remark: This assumption is standard in theory of over-parameterized neural networks and also
commonly used in practice [Du et al., 2019b,a, Allen-Zhu et al., 2019, Oymak and Soltanolkotabi,
2020, Malach et al., 2020].

3.1 Network

We focus on the typical depth-L fully-connected ReLU neural networks admitting the width ml of
the l-th hidden layer, ∀l ∈ [L] (cf., Fig. 1):

hi,0 = xi; hi,l = ϕ(Wlhi,l−1); f(xi;W ) = fi =
1

α
WLhi,L−1; ∀l ∈ [L− 1] , i ∈ [n] ,

(2)
where x ∈ Rd, f(x) ∈ Ro, α is the scaling factor, and ϕ = max(0, x) is the ReLU activation
function. The neural network parameters formulate the tuple of weight matrices W := {Wi}Li=1 ∈
{Rm×d × (Rm×m)L−2 × Ro×m}. According to the property ϕ(x) = xϕ′(x) of ReLU, we have
hi,l = Di,lWlhi,l−1, where Di,l is a diagonal matrix under the ReLU activation function defined as
below.

Definition 2 (Diagonal sign matrix). For each i ∈ [n], l ∈ [L− 1] and k ∈ [m], the diagonal sign
matrix Di,l is defined as: (Di,l)k,k = 1 {(Wlhi,l−1)k ≥ 0}.

In our setting, we consider the standard Gaussian initialization with different variances that includes
three typical initialization schemes in practice.

Initialization: Let m0 = d, mL = o and m2 = · · · = mL−1 = m, we make the standard
random initialization [Wl]i,j ∼ N (0, β2

l ) for every (i, j) ∈ [ml] × [ml−1] and l ∈ [L]. Choosing
a different variance, our work holds for three commonly used Gaussian initializations, i.e., LeCun
initialization [LeCun et al., 2012], He-initialization [He et al., 2015] and Neural Tangent Kernel
(NTK) initialization [Allen-Zhu et al., 2019], refer to the formal definition in Table 1 for details.

3.2 Discussion on various robustness metrics

In Section 1, we have proposed our robustness metric: perturbation stability (cf., Definition 1). This
metric can be viewed as an expectation of the inner product of first-order approximation of adversarial
risk [Madry et al., 2018] and the perturbations with the uniform distribution, which measures the
average robustness of the neural network. As we mentioned before, under the same perturbation
radius ϵ, a smaller value of P(f , ϵ) implies better perturbation stability, that is better average
robustness. Previous works [Hein and Andriushchenko, 2017, Weng et al., 2018, Wu et al., 2021,
Bubeck and Sellke, 2021] use Lipschitzness to describe the robustness of the network, suggesting that
smaller Lipschitzness leads to robust models. However, Lipschitzness is only a worst-case measure,
and cannot reasonably describe the average changes of the entire dataset. Instead, we follow the
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measure of Wu et al. [2021], Dohmatob and Bietti [2022], that aims to comprehensively consider the
overall distribution of the data, not only the extreme case. Besides, the worst-case robustness can be
extended to a probabilistic robustness view [Robey et al., 2022], which shares a similar spirit as our
average robustness concept. Schmidt et al. [2018] present another definition of robustness, depending
on the misclassified error of an adversarial data point. Instead, our perturbation stability measures the
function value changes at the clean data point via Taylor expansion which can exclude the influence
of the learning capacity of the network.

4 Main results
In this section, we state the main theoretical results. Firstly, in Section 4.1 we provide the upper
bound of the perturbation stability in lazy training regime for deep neural networks defined by Eq. (2).
The sufficient condition that the neural network Eq. (2) is under non-lazy training regime is given
in Section 4.2. Finally, in Section 4.3, we provide the upper bound on the perturbation stability
during early training of two-layer network under the non-lazy training regime.

4.1 Upper bound of the perturbation stability of DNNs under the lazy training regime

We are now ready to state the main results under the lazy training regime. The following theorem
provides the upper bound of the perturbation stability and connects to the width, and the depth of
a deep fully-connected neural network under different standard Gaussian initializations. The proof
of Theorem 1 is deferred to Appendix B.
Theorem 1. Given an L-layer neural network f defined by Eq. (2) trained by {(xi,yi)}ni=1 satisfy-
ing Assumption 1, for the convenience of analysis, we set α = 1 and β := β2 = · · · = βL−1, define

a constant γ := β/
√

2
m . Then, under a small perturbation ϵ, we have the following:

P(f , ϵ)

ϵ
≲

(√
L3m2β2

1β
2
Le

−m/L3

+
√
moβ2

1β
2
L

)
γL−2 . (3)

Remark: Our results cover the effect of the width and depth of neural network on robustness under
various common initializations depending on γ ⪌ 1.

Comparison with three commonly used initializations: For the initializations used in practice,
our theoretical results can be mainly divided into two classes: 1) The depth helps robustness in

an exponential order under the LeCun initialization: Theorem 1 implies that
(√

L3m
d e−m/L3

+√
o
d

)
(
√
2
2 )L−2. 2) The depth hurts the robustness in a polynomial order under He-initialization(√

L3m
d e−m/L3

+
√

o
d

)
and under the NTK initialization

(√
L3m
o e−m/L3

+ 1

)
derived by Theo-

rem 1. When employing other initializations, the robustness could be hurted in a exponential order.
Below, we elaborate on these three initalizations:

1) LeCun initialization (γ =
√
2
2 ): The order has three main parts:

√
L3m
d , e−m/L3

and (
√
2
2 )L−2.

Regarding the width m, the first part
√

L3m
d is an increasing function of m and the second part

e−m/L3

is a decreasing function of m. Accordingly, in the under-parameterized region (e.g., m

is small),
√

L3m
d plays a major role, so the stability will increase as m increases. After a critical

point, e−m/L3

plays a major role, so the stability will decrease as m increases. When m tends to
infinity, the first term of the bound tends to 0. Hence the perturbation stability tends to be a constant
and independent of the width m as the width m tends to infinity. It means that there exists a phase
transition phenomenon between the perturbation stability and over-parameterization in terms of the
width m.

Regarding the depth L, the constant γ =
√
2
2 implies that the third part has a faster decrease speed

than the first and second parts and plays a major role in the tendency. The perturbation stability of
the neural network exponentially decreases with respect to the depth. That means, for the LeCun
initialization, the deeper the network, the better the robustness. Nevertheless, the energy of the LeCun
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Table 2: Comparison of the orders of the proposed bound with other two recent works. Our results
are general to cover both under- and over-parameterized regimes, which expands the application
scope of previous results [Wu et al., 2021, Huang et al., 2021]. (The original result of [Wu et al.,
2021] can be reduced to

√
mL as the m

(logm)6 ≥ L12 condition is required).

Metrics Our result Wu et al. [2021] Huang et al. [2021]

P(f , ϵ)/ϵ
√

L3m
o e−m/L3

+ 1 L2m1/3
√
logm+

√
mL 2

3L−5
2

√
m

initialization decreases as the network depth increases due to the variance β =
√

1
m . Since the

activation function ReLU loses half of the energy in every layer, training a deep network with the
LeCun initialization is difficult. Hence, we need a trade off between robustness and training difficulty
regarding the network depth in practice for the LeCun initialization.

2) He initialization and NTK initialization (γ = 1): the bounds for these two initializations are
almost the same, and only differ in the feature dimension. We can see that phase transition phenomena
exist under these two initializations regarding the width m, similar to the LeCun initialization.
Regarding the depth, when L is large, the first part

√
L3 plays a major role in the perturbation

stability. So these two initializations hurt the robustness of the neural network at a polynomial order.

All of the three initializations admit γ ≤ 1. If some initialization schemes admit γ > 1, then the
depth L will hurt the robustness of the neural network at an exponentially increasing rate.

Comparison with previous work: Theorem 1 provides a new relationship between the robustness
with width and depth of DNNs. We compare our result with [Wu et al., 2021, Huang et al., 2021]
using a basic NTK initialization [Allen-Zhu et al., 2019] (suppose that m ≫ o and m ≫ d). For
a better comparison, we derive their results under our robustness metric perturbation stability, as
reported by Table 2.

Our results indicate a behavior transition on the width. For the over-parameterized regime, the
robustness of the neural network only depends on the perturbation energy, and it is almost independent
of the width m. The results on the width are significantly better than the previous results increasing
as the square root of m. For depth L, our results provide a tighter and more precise estimate as
compared to [Wu et al., 2021] in a two-degree polynomial increasing order and [Huang et al., 2021]
in an exponential increasing order.

Furthermore, compared with the results of Bubeck et al. [2021] showing that the robustness of the
two-layer neural network becomes better with the increase of the number of neurons (i.e., width), we
provide a more detailed and refined result on the robustness of DNNs under different initializations
and under-parameterized regimes.

4.2 Sufficient condition for neural network under non-lazy training regime

Beyond the lazy training regime, we turn our attention to the non-lazy training regime and provide
a sufficient condition for a (well-chosen) initialization of neural networks when entering into the
non-lazy training regime. This is a first attempt to understand the training dynamics of DNNs in this
regime.

Our result requires a further assumption on the data and the empirical risk as follows.
Assumption 2. For a single-output network defined in Eq. (2), we assume that maxi∈[n] yi ≥ C1 > 0
for some constant C1. We also assume that the neural network can be well-trained such that the
empirical risk is O( 1n ).

Remark: This is a common assumption in the field of optimization [Song et al., 2021] in the under-
and over-parameterized regime, and we can even assume zero risk. Here we follow the specific
assumption of Luo et al. [2021].

Now we are ready to present our result: a sufficient condition to identify when deep ReLU neural
networks fall into the non-lazy training regime, as a promising extension of Luo et al. [2021] on
two-layer neural networks. To avoid cluttering the analysis, we assume a single-output i.e., o = 1.
The proof of Theorem 2 is deferred to Appendix C.
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Theorem 2. Given an L-layer neural network f defined by Eq. (2) with o = 1, trained by
{(xi,yi)}ni=1, under Assumptions 1 and 2, suppose that α ≫ (m3/2

∑L
i=1 βi)

L and m ≫ d
in Eq. (2), then for sufficiently large m, with probability at least 1 − (L − 2) exp(−Θ(m2)) −
exp(−Θ(md))− exp(−Θ(m)) over the initialization, we have:

sup
t∈[0,+∞)

∥Wl(t)−Wl(0)∥F
∥Wl(0)∥F

≫ 1 , ∀l ∈ [L] .

Remark: The condition α ≫ (m3/2
∑L

i=1 βi)
L implies that, a neural network falls in a non-lazy

training regime when the variance of the Gaussian initialization is very small. It can be achieved
by a typical case: taking m ≫ L2, choosing α = 1 and ∀l ∈ [L]; βl = 1

m2 . Commonly used
initializations such as NTK initialization, LeCun initialization, He’s initialization lead to lazy training.

4.3 Upper bound of the perturbation stability for two-layer networks in non-lazy training

Unlike lazy training, weights of non-lazy training concentrate on few directions determined by the
input data in the early stages of training [Luo et al., 2021]. The following theorem describes the
neural network perturbation stability in the early training stage as a function of network width in the
non-lazy training regime. For ease of description, here we consider a special initialization scheme
under the non-lazy regime, the proof of Theorem 3 is deferred to Appendix D.

Theorem 3. Given a two-layer neural network with single output ft defined by Eq. (2) and trained
by {(xi, yi)}ni=1 satisfying Assumption 1, using gradient descent under the squared loss, consider
the following initialization in Eq. (2) : L = 2, α ∼ 1, β1 ∼ β2 ∼ β ∼ 1

mc with c ≥ 1.5, m ≫ n2

and training time less than a constant that only depends on n,m and λ0 , then for a small range of
perturbation ϵ, with probability at least 1−n exp(−n

2 )−
3
n over initialization, we have the following:

P(ft, ϵ)

ϵ
≤ Θ

(√
n logm+ n

mc−1

(
1√
n3m

+
1

mc−0.5

))
. (4)

Remark: Under this setting of non-lazy training regime, the robustness and width of the neural
network are positively correlated in the early stages of training. That is, as the width m increases in
the over-parameterized regime, a Gaussian initialization with smaller variance leads to the robustness
increasing in a faster decay. Our result holds for other initialization schemes in the non-lazy training

regime, e.g., c = 2 leads to P(ft, ϵ)/ϵ ≤ Θ

(√
n logm+n
m2.5

)
; and c = 3 leads to P(ft, ϵ)/ϵ ≤

Θ

(√
n logm+n
m4.5

)
.

5 Numerical evidence
We validate our theoretical results with a series of experiments. In Section 5.2 we firstly verify that
our initialization settings belong in the lazy and the non-lazy training regimes. In Section 5.3, we
explore the effect of varying widths from under-parameterized to over-parameterized regions on
the perturbation stability of neural networks. In Section 5.4, we finally compare the effect of two
different initializations and the network depth on the perturbation stability. Additional experimental
results can be found in Appendix E.

5.1 Experimental settings

Here we present our experimental setting including models, hyper-parameters, the choice of width
and depth, and initialization schemes. We use the popular datasets of MNIST [Lecun et al., 1998]
and CIFAR-10 [Krizhevsky et al., 2014] for experimental validation.

Models: We report results using the following models: fully connected ReLU neural network named
“FCN” in main paper and convolutional ReLU neural network named “CNN” in Appendix E.

Hyper-parameters: Unless mentioned otherwise, all models are trained for 50 epochs with a batch
size of 64. The initial value of the learning rate is 0.001. After the first 25 epochs, the learning rate is
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Figure 2: (a) Tendency with respect to time (training epochs) and (b) relationship between width and
lazy training ratio of neural networks. Fig. 2(a) shows that ratio κ is small and almost unchanged,
recognized as lazy training. In Fig. 2(b), we can see that the κ decreases with the increasing width.

multiplied by a factor of 0.1 every 10 epochs. The SGD is used to optimize all the models, while the
cross-entropy loss is used.

Width and depth: In order to verify our theoretical results, we conduct a series of experiments with
different depths and widths of the same type neural network. Specifically, our experiments include 11
different widths from 24 to 214, and four different choices of depths, i.e., 2, 4, 6, 8, 10.

Initialization: We report results using the following initializations: 1) He initialization where
Wij ∼ N (0, 2

min
), 2) LeCun initialization where Wij ∼ N (0, 1

min
) and 3) an initialization that

allows for non-lazy training regime on two-layer networks, i.e., β1 = β2 = 1/m2 and α = 1.

5.2 Validation of lazy and non-lazy training regimes

Before verifying our results, we need to identify the lazy and non-lazy training regime under
different initializations. To this end, we define a measure for the lazy training ratio, i.e., κ =∑L

l=1∥Wl(t)−Wl(0)∥F∑L
l=1∥Wl(0)∥F

. This measure evaluates whether the neural network is under the lazy training
regime. A smaller κ implies that the neural network is close to lazy training.

According to the theory, we employ the He initialization and the non lazy training initialization we
state in Section 5.1 to conduct the experiment under two-layer neural networks to verify that their
lazy training ratio matches the theoretical results of lazy training and non-lazy training (i.e., the
experiment is under the correct regime). Fig. 2(a) and Fig. 2(b) show the tendency of ratio with
respect to time (training epochs) and relationship between width and lazy training ratio of neural
networks under lazy training regime, respectively. We find that the ratio of lazy traing regime is
almost a constant that does not change with time, and this constant decreases as the width of the
network increases. This is in line with what we know about lazy training [Chizat et al., 2019].

Likewise, Fig. 3 shows the ratio tendency with time and width under non-lazy training regime. The
ratio increases almost linearly over time in Fig. 3(a). In epoch 25 we decrease the learning rate, which
decreases the rate that κ increases. At the same time, Fig. 3(b) shows a similar tendency between the
width and lazy training ratio as lazy training. However, the value of κ is much higher than that of
lazy training regime. Combining the results about tendency with time, the ratio will be expected to
increase as the time until infinity.

5.3 Validation for width

We verify the relationship between the perturbation stability and the width of network as illustrated
by Eqs. (3) and (4). We conduct a series of experiments on MNIST dataset using FCN with different
widths. Fig. 4 shows the relationship between the perturbation stability and width of FCN with
different depths and training regimes. Here for lazy training and non-lazy training we use the same
initialization as Section 5.2.

Fig. 4(a) exhibits the relationship between the perturbation stability and the width of neural networks
with different depths for L = 2, 4, 6, 8, and 10. All of the five curves confirm the phase transition
with width: the perturbation stability firstly increases and then decreases with width, which match our
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Figure 3: (a) Tendency with respect to time (training epochs) and relationship with width of non-lazy
training ratio of neural networks. Fig. 3(a) shows that ratio κ is changed a lot (increasing and then
remains unchanged), recognized as non-lazy training. The tendency of κ for non-lazy training is
increasing with the width and then decreasing, i.e., a phase transition in Fig. 3(b).
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Figure 4: Influence of width of neural network on the perturbation stability. (a) phase transition of
the perturbation stability vs. width with five different depths under lazy training. (b) the difference
between lazy training and non-lazy training regimes for two layer neural networks.

theoretical results. Fig. 4(b) shows the difference of the effect of width on the perturbation stability
of lazy and non-lazy training for two-layer neural networks. The perturbation stability of non-lazy
training is significantly smaller than that of lazy training, which means non-lazy training regime is
more robust. Besides, the perturbation stability of non-lazy training decreases with the width of
the neural network increases, which coincides with our theoretical result, i.e., no phase transition
phenomenon.

5.4 Validation for depth and initialization

Let us explore the effect of depth on the perturbation stability under lazy training regime with different
initializations in Fig. 5(a) and Fig. 5(b). Our results show the tendency of the perturbation stability
for FCN with different widths and depths under the He initialization and the LeCun initialization,
respectively. We observe a similar phase transition phenomenon, and find that, the perturbation
stability under He initialization increases with depth, while the LeCun initialization shows the
opposite tendency, which verified our theory.

6 Conclusions
In this work, we explore the interplay of the width, the depth and the initialization of neural networks
on their average robustness with new theoretical bounds in an effort to address the apparent contradic-
tion in the literature. Our theoretical results hold in both the under- and over-parameterized regimes.
Intriguingly, we find a change of behavior in average robustness with respect to the depth, initially ex-
acerbating robustness and then alleviating it. We suspect that this could help explain the contradictory
messages in the literature. We also characterize the average robustness in the non-lazy training regime
for two layer neural networks and find that width always help, coinciding with the results [Bubeck
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Figure 5: Relationship between the perturbation stability and depth of FCN under the He initialization
(a) and the LeCun initialization (b) different depths of L = 2, 4, 6, 8 and 10.

and Sellke, 2021, Bubeck et al., 2021]. We also provide numerical evidence to support the theoretical
developments. Our results demonstrate the rationale behind robustness of over-parameterized neural
networks and might be beneficial to analyze the highly over-parameterized foundation models, which
have demonstrated exceptional performance in zero-shot performance [Brown et al., 2020].
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