
Appendix

A Loss aware wfair

While this construction of wfair reduces the fairness metric it pays no heed to the original loss, `, and
may lead to classifiers that are less accurate than ✓̂. To account for ` we additionally compute I`,n

the influence of each training instance on the validation loss, LDval(✓) =
1

Nval

PNval
n=1 `(yn, h✓(xn))

and set,
w

fair
n = 1� [IM,n > 0] [I`,n > 0], (15)

i.e., we zero out those coordinates of wfair that correspond to training instances with a positive influ-
ence on both the fairness metric and the loss `. Finally, defining D� = {zn | zn 2 D and IM,n >

0 & I`,n > 0}, we arrive at the post-hoc mitigated classifier by plugging in the zeroed-out wfair in
Equation 9,

✓̂fair = ✓̂ +
X

m2D�

H
�1

gm. (16)

B IHVP-WoodFisher

In this section, we show that the coupled recurrences, that we refer to as IHVP-WoodFisher, computes
the Inverse-Hessian Vector Product (IHVP). We begin by restating Proposition 3.2,
Proposition B.1. Let o1 = r✓`(z1), k1 = v, and N denote the number of training instances. The

Hessian-vector product H
�1

v is approximated by iterating through the IHVP-WoodFisher recurrence

in Equation 14 and computing kN .

Proof. The WoodFisher approximation provides us with the following recurrence relation for esti-
mating the inverse of the Hessian,

H
�1
n+1 = H

�1
n �

H
�1
n r✓`(zn+1)r✓`(zn+1)>H�1

n

N +r✓`(zn+1)>H
�1
n r✓`(zn+1)

(17)

with, H�1
0 = �

�1
ID, and � is small positive scalar.

Multiplying, both sides by r✓`(zn+1), we get,

H
�1
n+1r✓`(zn+1) = H

�1
n r✓`(zn+1)�

H
�1
n r✓`(zn+1)r✓`(zn+1)>H�1

n r✓`(zn+1)

N +r✓`(zn+1)>H
�1
n r✓`(zn+1)

(18)

By substituting H
�1
n r✓`(zn+1) with on and assuming r✓`(zn+1) and r✓`(zn+2) are close, we

construct the following recurrence relation

on+1 = on �
onr✓`(zn+1)>on

N +r✓`(zn+1)>on
(19)

Now, multiplying both sides of Equation 17 by v, gives us the recurrence relation for the IHVP,

H
�1
n+1v = H

�1
n v �

H
�1
n r✓`(zn+1)r✓`(zn+1)>H�1

n v

N +r✓`(zn+1)>H
�1
n r✓`(zn+1)

(20)

By substituting H
�1
n+1v with kn+1 and H

�1
n r✓`(zn+1) with on, we get

kn+1 = kn �
onr✓`(zn+1)>kn

N +r✓`(zn+1)>on
(21)

Thus, under our assumptions, when H
�1
n converges to H

�1, kn converges to the IHVP H
�1

v.

14

C IHVP-WoodFisher Approximation Accuracy

In this section, we discuss the approximation accuracy of IHVP-WoodFisher and compare it with
IHVP-Neumann.

Figure 3: IHVP-WoodFisher Approximation Accuracy. The plots show the accuracy of the IHVP-

WoodFisher and IHVP-Neumann approximations by comparing with influence scores obtained from
IHVP-Exact. We train models with different number of layers on the linearly separable two moon
dataset and report Median Absolute Deviation (MAD) and R

2 scores.

IHVP-WoodFisher relies on the assumption that the empirical Fisher matrix is a good approximation
to the Hessian of the loss. The Hessian of the loss is known to converge to the true Fisher matrix,
when: a) the loss of the model used during training can be expressed as negative log likelihood; and
b) the model likelihood has converged to the true data likelihood [35]. The empirical Fisher matrix
does not have convergence guarantees as the true Fisher but, it is computationally cheap and works
well in practice as an approximation to the Hessian matrix. This is also seen in our experimental
results.

To study the approximation accuracy of IHVP-WoodFisher and compare with the Exact approach of
computing IHVP, we consider a setting where the number of parameters is small; specifically, we
generate a linearly separable variant of the two moon dataset consisting of 10000 points, where each
point has 2 input features and can belong to one of the two classes. We create at 80� 20 train-test
split and train models with depth 1, 2, and 3 to observe the effect of depth. Hidden layers have a
fixed width of 5 units. We use Adam optimizer with learning rate 0.001. After training, we pick

15

Algorithm 2 Fair-IJ (slow)

1: Input: Pre-trained model parameters ✓̂, training set D, loss function `, a validation set Dval and
a smooth surrogate to the fairness metric b 2 {�DP,�EO}, M b

Dval
.

2: Calculate: H
�1

gn for each training instance zn by setting k1 = gn and iterating through
Equation 14 for B iterations.

3: Calculate: the fairness influence Ib,n of each training instance zn on Dval using Equation 7 or
Equation 8.

4: Construct: the set D� and denote its cardinality, |D�| = K.
5: Initialize: ✓̂0

fair := ✓̂
6: for k 2 [1, . . . ,K] do
7: Construct: D

k
� = {zn 2 D� | Ib,n > Ib,(K�k)}, where Ib,(K�k) denotes the (K � k)th

order statistic of the influence scores [Ib,1, . . . , Ib,K].
8: Calculate: ✓̂k

fair by replacing D� with using D
k
� in Equation 12.

9: If bDval(✓̂
k
fair) < bDval(✓̂

k�1
fair) set ✓̂fair := ✓̂k

fair else set ✓̂fair := ✓̂k�1
fair and break out of the for

loop.
10: end for
11: Return: fair model parameters ✓̂fair.

a random point from the test set and compute the influence score of the training instances using
IHVP-WoodFisher and IHVP-Neumann approximations as well as exactly computing the IHVPs.
For both approximations we use 1000 iterations and average over 10 runs. The IHVP-Neumann

approximation has an additional hyper-parameter - scale. This is to ensure that the Eigenvalues of
the Hessian are between [0, 1]. For IHVP-Neumann’s convergence, scale has to be greater than the
largest Eigenvalue of the Hessian. In these experiments, we set this hyperparameter to 25.0 which is
larger than the largest Eigenvalue we observed for all the models we trained.

In Figure 3 we compare the influence scores and report the Median Absolute Deviation (MAD) and R
2

scores. For each depth value, when plotting and computing the metrics we rescale the influence scores
from both approximations to match the mean of the IHVP-Exact. It can be observed that both IHVP-

Neumann and IHVP-WoodFisher approaches match well with the influence scores obtained from Exact

computation. The main benefit of IHVP-WoodFisher is that it does not require higher-order gradients.
Additionally, unlike IHVP-Neumann, this method does not require expensive hyperparameter search
to rescale the Eigenvalues of Hessian to ensure IHVP computation convergence.

D Additional Dataset, Training Details and Results

In Table 2, we provide additional information information about the three datasets – Adult2, Cov-
erage 3, and CivilComments4. We trained our models on NVIDIA A100 Tensor Core GPUs. In
the case of the tabular datasets, 10 runs with a particular fairness metric took less than 2 hours.
This includes training the base model using ERM followed by the application of our Fair-IJ
algorithm. Within the algorithm, we search for the best k among 40 values spread uniformly in
the range in the ranges 0 � 2000. Similarly, for the IHVP scaling we select the best value among
(0.01, 0.1, 1.0, 2.0, 3.0, 5.0, 10.0). This search only requires inference over the validation and hence
is relatively inexpensive. The post-processing baselines (FST and HPS), assume access to a pre-
trained model. Similar to our approach they use the validation data to mitigate bias in the pre-trained
models. For the in-processing baselines (HGR and FairMixup), following standard practice, we train
the models on the training set and use the validation set to select the hyper-parameter that determines
the strength of the fairness regularizer employed by these methods. In Figure 4, we reproduce the
Figure 2 with error bars for both the accuracy and fairness metrics.

We now provide additional details regarding the experiments on CivilComments datasets. Table 3
presents additional results comparing ERM models (built without any fairness adjustment) to models
regularized using Gap Regularization (GapReg) from FairMixup [9], Hirschfeld-Gebelein-Rényi

2https://archive.ics.uci.edu/ml/datasets/adult
3https://github.com/zykls/folktables
4https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/data

16

https://archive.ics.uci.edu/ml/datasets/adult
https://github.com/zykls/folktables
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/data

Figure 4: Accuracy and fairness Pareto frontier with error bars for the Adult and the Coverage datasets
averaged over 10 runs. Points closer to the bottom-left achieve the best fairness/accuracy trade-off.

Table 2: Summary of datasets.

Dataset Target Attribute Size
Train / Valid / Test

Adult Income Sex 21815 / 10746 / 12661

Coverage Health Insurance Coverage Race 44168 / 21755 / 32471

Civil Comments Toxicity Muslim 269038 / 45180 / 133782

Maximum Correlation Coefficient (HGR) dependency measure [27], and Fair-IJ. Reported results
are for the sensitive attribute MUSLIM. They include Equality of odds (�EO), demographic parity
(�DP), and balanced accuracy (BA) and are the means and standard deviations over 5 training runs,
each with a different random seed (i.e. 5 different seeds for each configuration). Each model was
built with 100 epochs of SGD over the training data for a total of 24h of computation time (using a
NVIDIA A100 GPU). All reported results were computed on the test dataset for models with the best
validation loss over the 100 epochs of training (models being validated at the end of each epoch). For
loss-regularized models using GapReg and HGR, values of � = 1.0 and � = 0.2 were used to add
the regularizer term to the training loss; both sets of results are given in Table 3. Inference on the test
dataset is quite fast (3 minutes) on NVIDIA A100 GPUs. Results for both BERTLC (Linear Classifier)
and BERTNC (Non-linear Classifier) are provided for ERM, GapReg, HGR, and Fair-IJ.

Both our BERTLC and BERTNC architectures are defined based on different classification layer(s) on top
of a pre-trained BERT model. In all our experiments, we use BERTbase model. While BERTLC uses
just a single dense layer on top of the pooled vector from BERT representations, BERTNC has multiple
dense layers on top of the pooled output. For the latter, we use two dense layers with hidden sizes of
768 and 128 intertwined with ReLU non-linearities. As described in 4.2, we also provide quantitative
results on a variant of BERTLC, referred as BERTTT=N, which uses virtual tokens, where N refers to
number of trigger tokens. In this setup, we introduce a new parameterized embedding, called trigger

embeddings, which are learned during the training. Similar to methods introduced in [23] and [24],
we add trigger tokens to each sequence during the training. In our quantitative analysis we use

17

Model BA �EO BA �DP

BERTLC-ERM 58.4±0.229 0.314±0.026 58.4±0.229 0.246±0.011
BERTNC-ERM 59.3±0.025 0.326±0.006 59.3±0.025 0.261±0.003

BERTLC-GapReg (�=0.2) 58.3±0.000 0.198±0.006 58.3±0.000 0.149±0.004
BERTLC-GapReg (�=1.0) 57.9±0.001 0.144±0.010 56.9±0.016 0.071±0.009
BERTNC-GapReg (�=0.2) 59.0±0.000 0.166±0.007 58.8±0.005 0.136±0.010
BERTNC-GapReg (�=1.0) 57.9±0.011 0.144±0.067 58.2±0.003 0.054±0.028

BERTLC-HGR (�=0.2) 56.9±0.018 0.209±0.075 58.3±0.000 0.213±0.002
BERTLC-HGR (�=1.0) 53.0±0.002 0.372±0.015 58.1±0.000 0.149±0.003
BERTNC-HGR (�=0.2) 59.0±0.000 0.169±0.007 59.1±0.003 0.240±0.004
BERTNC-HGR (�=1.0) 54.0±0.003 0.339±0.042 59.1±0.000 0.191±0.002

BERTLC-Fair-IJ 58.6±0.162 0.125±0.011 57.1±0.237 0.011±0.004
BERTNC-Fair-IJ 59.8±0.326 0.126±0.011 58.6±0.170 0.008±0.004

Model BA �EO BA �DP

BERTTT=4-ERM 57.5±0.794 0.360±0.090 57.5±0.794 0.268±0.037
BERTTT=8-ERM 58.2±0.179 0.317±0.060 58.2±0.179 0.254±0.032
BERTTT=10-ERM 58.3±0.842 0.348±0.070 58.3±0.842 0.234±0.043
BERTTT=4-Fair-IJ 56.0±0.922 0.102±0.035 55.2±1.202 0.042±0.060
BERTTT=8-Fair-IJ 56.5±0.690 0.113±0.040 56.4±0.512 0.071±0.069
BERTTT=10-Fair-IJ 57.2±1.483 0.110±0.045 56.6±1.349 0.089±0.056

Table 3: Comparison between ERM, Gap Regularization, Hirschfeld-Gebelein-Renyi Maximum
Correlation Coefficient (HGR) (both for � = 0.2, 1.0), and Fair-IJ for CivilComments on the
sensitive attribute MUSLIM. We report the mean and standard deviation of difference in equality of
odds (�EO), difference in demographic parity (�DP), along with the task balanced accuracy (BA)
on 5 different seeds.

variants with 4, 8, and 10 trigger tokens which are referred as BERTTT=4, BERTTT=8, and BERTTT=10
respectively in Table 3 and Table 1. We fine-tune these models with a maximum epochs of 100 and
choose the best model based on the validation loss over the validation set. Similar to the case of
tabular datasets, we apply Fair-IJ algorithm with same range of k and IHVP scaling.

Model BA �EO BA �DP

T5TT=4-ERM 59.9 0.150 59.9 0.170
T5TT=4-Fair-IJ 52.8 0.019 55.2 0.008
T5TT=8-ERM 59.1 0.141 59.1 0.157
T5TT=8-Fair-IJ 52.6 0.019 56.4 0.002
T5TT=10-ERM 59.3 0.150 59.3 0.158
T5TT=10-Fair-IJ 54.5 0.027 54.9 0.004

Table 4: Comparison between ERM and Fair-IJ for CivilComments on the sensitive attribute
MUSLIM when we use pre-trained T5 model. We report the difference in equality of odds (�EO),
difference in demographic parity (�DP), along with the task balanced accuracy (BA).

Further to validate our approach on larger models, we performed additional experiments (Table 4)
with a much larger transformer model T5, on the CivilComments dataset with the sensitive attribute
set to “Muslim” (i.e., the same setup as 4.2). Our results show similar trends to the experiments with
BERT. Fair-IJ consistently decreases the fairness disparity between groups over the empirical risk
minimization solution.

18

	Introduction
	Background and Related Work
	Empirical and Weighted Risk Minimization
	Fair Classification
	Other Related Work

	Fair Classification through Post-Hoc Interventions
	Influence Functions for Group Fairness
	Post-Hoc Mitigation
	Practical Considerations

	Experiments
	Tabular Datasets
	CivilComments Dataset

	Conclusion
	Loss aware wfair
	IHVP-WoodFisher
	IHVP-WoodFisher Approximation Accuracy
	Additional Dataset, Training Details and Results

