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Abstract

In consequential decision-making applications, mitigating unwanted biases in
machine learning models that yield systematic disadvantage to members of groups
delineated by sensitive attributes such as race and gender is one key intervention
to strive for equity. Focusing on demographic parity and equality of opportunity,
in this paper we propose an algorithm that improves the fairness of a pre-trained
classifier by simply dropping carefully selected training data points. We select
instances based on their influence on the fairness metric of interest, computed
using an infinitesimal jackknife-based approach. The dropping of training points is
done in principle, but in practice does not require the model to be refit. Crucially,
we find that such an intervention does not substantially reduce the predictive
performance of the model but drastically improves the fairness metric. Through
careful experiments, we evaluate the effectiveness of the proposed approach on
diverse tasks and find that it consistently improves upon existing alternatives.

1 Introduction

Among the many possible interventions to improve equity in society (most of them involve structural
policy change), bias mitigation algorithms constitute one narrow sliver that has emerged in the
machine learning literature to address distributive justice in high-stakes automated decision mak-
ing. These algorithms may be categorized into pre-processing, in-processing, and post-processing
approaches [37]. In the case of in-processing algorithms [20], the bias mitigation intervention occurs
at the model training stage. This is usually achieved by minimizing the empirical risk regularized by
a fairness metric surrogate that captures the dependence of the prediction and the sensitive attribute.
Pre-processing methods typically learn transformations of the data distribution such that they do not
contain information about the sensitive attributes [43, 26]. Task specific models are then learned
from scratch on these debiased representations. Retraining a model from scratch is intractable in
many real-world situations for a variety of reasons including policy, cost, and technical feasibility;
post-processing approaches are the only viable option in such cases. For example, consider trying to
refit large foundation models. Limiting ourselves to notions of group fairness such as demographic
parity and equality of opportunity, existing post-processing bias mitigation algorithms tend to either
randomly or deterministically alter the hard or soft predicted label of individual test data points that
have been scored by a model [19, 17, 30, 8, 25, 39].
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Figure 1: Fairness influence. We plot the sorted influence scores of training instances on the average
demographic parity of a held-out validation set for different datasets considered in this paper. Only
training instances with positive influence on demographic parity are plotted. The points to the right
of the black line are the 500 most influential training instances. Models adjusted to mitigate the
influence of these instances are substantially more fair. On held-out test sets of the Adult, Coverage,
CivilComments datasets, demographic parity improves from 0.18 to 0.01, from 0.22 to 0.01, and 0.17
to 0.03.

In this paper, we propose a more “global” bias mitigation algorithm. Our procedure alters the
entire model without a focus on individual test points. Similar to post-processing approaches,
our method mitigates pre-trained models without requiring any additional refitting of the model.
Unlike standard post-processing approaches, however, our method does require access to the training
data. In exchange for this additional requirement, we find that our approach typically substantially
outperforms other post-processing techniques and can even augment in-processing approaches for a
better fairness/accuracy trade-off.

Our contributions. Our first contribution is methodological. We use the notion of influence
functions to estimate the “influence” of training instances on various group fairness metrics of interest.
We then perform post-hoc unfairness mitigation by approximately removing training instances that
have a disproportional impact on group (un)fairness. We theoretically analyze the proposed approach
and establish conditions under which it provably improves group fairness.

Next, we observe that influence calculations require the inversion of a Hessian matrix, a pro-
hibitively expensive operation for models with a large number of parameters. Existing approximations
[21, 1, 34] can either be expensive, inaccurate, or unstable [29, 4, 35]. We develop IHVP-WoodFisher,
a WoodFisher [35] based Inverse-Hessian Vector Product (IHVP) scheme for computing the fair-
ness influence score of the training instances that is stable, easy to compute, and does not require
constraints, such as restricted Eigenspectrum of the loss curvature, that are hard to satisfy in practice.

Our final contribution is empirical. First, through careful experiments on tabular data, we show that
our approach is effective at reducing group unfairness, is competitive with existing methods, and can
even augment the latter to achieve a better fairness/accuracy trade-off. Then, we demonstrate how
our approach can be easily adapted to more complex modalities such as natural language and be used
for bias mitigation of large pre-trained language models through prompt-tuning, a use-case that is
likely to become increasingly common with the proliferation of large language models.

2 Background and Related Work

2.1 Empirical and Weighted Risk Minimization

We begin by considering the standard supervised learning setup. Given a dataset D = {zn =
(xn, yn)}Nn=1 of N features (xn 2 Rp), response pairs (yn 2 Y), a model h✓(x) parameterized by a
set of parameters ✓ 2 ⇥ ✓ RD, and a loss function ` : ⇥⇥Y ! R, we minimize the empirical risk,

✓̂ = argmin
✓2⇥

1

N

NX

n=1

`(yn, h✓(xn)), (1)
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to arrive at a trained predictor h✓̂(x). We will denote L(✓) def
= 1

N

PN
n=1 `(yn, h✓(xn)) for notational

convenience. Next, consider a weighted risk minimization problem,

✓̂(w) = argmin
✓2⇥

1

N

NX

n=1

wn`(yn, h✓(xn)), (2)

that weights the loss at each training instance by a scalar weight wn and w denotes the column vector
[w1, w2, . . . , wN ]T 2 RN . Setting all the weights to one, 1 def

= [w1 = 1, w2 = 1, . . . , wN = 1]T ,
and minimizing the right hand side of Equation 2 recovers the standard empirical risk minimization
problem. On the other hand, setting the n

th coordinate to zero recovers the solution to an empirical
risk minimization problem after dropping the n

th training instance. As is clear from Equation 2 and
emphasized by our notation, ✓ is a function of the weights w. Although we typically do not have a
closed form expression for this function, we can form a Taylor approximation to it:

✓(w) = ✓̂ +rw✓(w)

����
w=1

(w � 1) +O((w � 1)2), (3)

where rw✓(w) 2 RD⇥N is the Jacobian matrix. This first order Taylor approximation is often
referred to as the infinitesimal jackknife approximation [18, 14]. The coordinate-wise gradient
d✓(w)
dwn

|wn=1 measures the effect of perturbing the weight of the n
th data point on ✓̂ and is popularly

referred to as the influence function [21], since it measures the “influence” of the nth training instance
on the model’s parameters. When we are at a stationary point of L(✓), i.e., when r✓L(✓) = 0, L(✓)
is twice differentiable in ✓, then,

d✓(w)

dwn

����
w=1

= �H
�1

gn, (4)

where H
def
= r

2
✓L(✓)|✓=✓̂, and gn

def
= r✓`(yn, h✓(xn))|✓=✓̂. Recent work [15] has shown that the

above expression approximates the gradient well in the vicinity of a stationary point with the accuracy
of the approximation deteriorating smoothly with increasing distance from the stationary point. This
result justifies the use of influence functions even when stochastic optimization is used for minimizing
Equation 1. Finally, to measure the influence of a training instance on a differentiable functional, M ,
of ✓(w), we apply chain rule to arrive at,

IM,n
def
=

dM(✓(w),w)

dwn

����
w=1,✓=✓̂

= �r✓M(✓(w),w)

����
T

w=1,✓=✓̂

H
�1

gn, (5)

where our notation makes explicit the dependence of M on w. Recent work has leveraged this
machinery to approximate cross-validation [16, 36, 15], to interpret black-box machine learning
models [21], and to assess the sensitivity of statistical analyses to training data perturbations [6],
among others. Differently from these, we show how this machinery can be leveraged for reducing
disparities of pre-trained models across groups.

2.2 Fair Classification

We further assume that for each data instance we have access to a sensitive attribute sn 2 [k], i.e.,
D = {zn = (xn, sn, yn)}Nn=1, that encodes the protected group membership of the n

th data instance
and that we are interested in binary classification, Y = {1, 0}. In fair classification, we want to learn
accurate classifiers that minimize disparities in predictions across groups.

To quantify disparities across groups, we primarily focus on two common fairness metrics — demo-
graphic (or statistical) parity (DP) [3] and equality of odds (EO) [17]. DP requires the classifier’s
predictions to be statistically independent of the sensitive attribute, h✓(X) ?? S, where X and S

are random variables representing the features and the sensitive attribute. For a binary sensitive
attribute, DP implies, P (h✓(X) = 1 | S = 1) = P (h✓(X) = 1 | S = 0). EO, on the other
hand, requires the classifier’s predictions to be statistically independent of the sensitive attribute
conditioned on the true outcome, h✓(X) ?? S | Y . For a binary sensitive attribute, EO implies
P (h✓(X) = 1 | S = 1, Y = y) = P (h✓(X) = 1 | S = 0, Y = y) for both y = 0 and y = 1.
Equality of opportunity (EQOPP) [17] is a special case of equality of odds where the predictions are
conditionally independent of the sensitive attribute given the true outcome is positive. A common
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strategy for learning fair classifiers is to then require the absolute difference in demographic parity
(DP),

�DP(✓) = |P (h✓(X) = 1 | S = 1)� P (h✓(X) = 1 | S = 0)|,
or the absolute difference in equality of odds,

�EO(✓) =
1X

y=0

|P (h✓(X) = 1 | S = 1, Y = y)� P (h✓(X) = 1 | S = 0, Y = y)|,

to be close to zero while minimizing the empirical risk (Equation 1). Smooth1 surrogates to �DP
and �EO that are estimated from an empirical distribution are commonly used in practice [42],

M
�DP
D (✓) = |EpD(X=x|S=1)[h✓(x)]� EpD(X=x|S=0)[h✓(x)]|

M
�EO
D (✓) =

1X

y=0

|EpD(X=x|S=0,Y=y)[h✓(x)]� EpD(X=x|S=1,Y=y)[h✓(x)]|,
(6)

where M
b
a(✓) denotes the surrogate for the fairness metric b estimated from dataset a. When ✓ is

itself a function of w, we will use the notation M
b
a(✓(w),w).

2.3 Other Related Work

Many pre-processing based bias mitigation algorithms, learn low dimensional representations of the
data that are independent of the sensitive attribute [43, 26]. Others aim to learn fairness promoting
transformations in the ambient space of the data [7, 32, 40]. Pre-processing methods that transform
the data points can often run the risk of losing the semantics of the original data points. Often,
they can be expensive, especially for high-dimensional data and large datasets. Furthermore, they
must be performed before training any task-specific models and thus are not applicable when the
goal is to improve a model already trained with an expensive procedure. In [38], the authors first
obtain a counterfactual feature distribution by identifying the test instances, which when dropped
the pre-trained model predictions are fair on the remaining test instances. They then learn a optimal
transport based randomized pre-processor that maps the transforms the new test samples from the
unprivileged group to fair counterfactual distribution. In contrast, our goal is to compute the influence
scores for the training instances, which is more challenging. Additionally, [38] requires the sensitive
attributes be known at test time as the pre-processor is specific to the unprivileged group. Instead, we
aim to directly edit the trained model and eliminate the need of sensitive attribute labels at test time.

In-processing algorithmic fairness methodologies [7, 20] are applicable when we can train models
along with fairness constraints. Mary et al. [27] enforce independence through a relaxation of the
Hirschfeld-Gebelein-Rényi Maximum Correlation Coefficient (HGR) dependency measure. Similarly,
Rebias [2, 41] uses the Hilbert-Schmidt Independence Criterion (HSIC) to reduce the dependence
of the representations on the sensitive attibutes. FairMixup [9] is a data augmentation strategy to
improve the generalization properties of in-processing algorithms. These methods can be sensitive to
the regularization strength and can sacrifice too much accuracy. In contrast, our approach is applicable
when the base model to trained unconstrained on the main task, which can then be updated to remove
the influence of the harmful instances and improve fairness.

Existing post-processing methods [19, 17, 30, 25, 39, 41] learn to transform the predictions of a
trained model to satisfy a measure of fairness. These can often be limiting as they do not provide
control over the fairness accuracy trade-off, may require that predicted scores to be well-calibrated,
or may lead to excessive reduction in performance. In contrast, our method exploits the training
data and model gradients efficiently to generate stronger, yet computationally inexpensive post-hoc
interventions at minimal loss of predictive performance.

3 Fair Classification through Post-Hoc Interventions

We now develop and analyze a post-processing fairness algorithm that given (i) a pre-trained model,
(ii) access to the training data and optionally a validation set, (iii) a twice differentiable loss function

1Nearly smooth. The absolute value is not differentiable at zero, but this is not a concern since we rarely
encounter exact zeros in practice.
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and a once differentiable surrogate to the fairness metric, and (iv) an invertible Hessian at a local
optimum of the loss, improves the fairness characteristics of a pre-trained model without requiring it
to be refit.

3.1 Influence Functions for Group Fairness

Assuming that we use a held-out validation set Dval = {xn, sn, yn}
Nval
n=1 to estimate M

�DP
Dval

(✓) and
M

�EO
Dval

(✓), we can leverage the result in Equation 5 to compute the influence of the n
th training

instance on �DP,

I�DP,n = �r✓M
�DP
Dval

(✓̂)TH�1
gn,

= �r✓|EpD(X=x|S=1)[h✓(x)]� EpD(X=x|S=0)[h✓(x)]|
��
✓=✓̂

H
�1

gn,
(7)

and on �EO,

I�EO,n = �r✓M
�EO
Dval

(✓̂)TH�1
gn,

= �r✓

��
1X

y=0

EpD(X=x|S=0,Y=y)[h✓(x)]� EpD(X=x|S=1,Y=y)[h✓(x)]
��
����
✓=✓̂

H
�1

gn,
(8)

where we have used M
�DP
Dval

(✓̂) and M
�EO
Dval

(✓̂) to denote M
�DP
Dval

(✓(w),w)
��
w=1,✓=✓̂

and
M

�EO
Dval

(✓(w),w)
��
w=1,✓=✓̂

. We highlight that computing the influence of training instances on

group fairness metrics requires solving a single empirical risk minimization problem to recover ✓̂.
The fairness metrics could also be estimated on the training data if no validation set is available.
However, empirically we find that a validation set improves results.

3.2 Post-Hoc Mitigation

Revisiting Equation 3, we note that the first order Taylor approximation about 1 is a function of w.
This opens up the possibility of post-hoc fairness improvement of a pre-trained ✓̂ by searching for a
weight vector wfair such that M b

a(✓̂fair) ⇡ 0, where,

✓̂fair
def
= ✓̂(wfair) = ✓̂ +

NX

n=1

d✓(w)

dwn

����
w=1

(wfair
n � 1),

= ✓̂ �

NX

n=1

H
�1

gn(w
fair
n � 1),

(9)

and wfair = [wfair
1 , w

fair
2 , . . . , w

fair
N ]T 2 RN . We could use gradient-based methods to learn wfair by

optimizing a desired M(✓(w),w) with respect to w. However, computing and inverting the Hessian
requires O(ND

2 +D
3) operations and is prohibitively expensive for large models. Instead, iterative

procedures involving repeated Hessian-vector products are often used in practice [21]. A gradient-
based procedure would need to either perform this iterative procedure after every gradient step or
pre-compute

P
n H

�1
gn, rendering the procedure computationally intractable for most cases of

interest. Moreover, solely optimizing M(✓(w),w) will likely result in fair but inaccurate classifiers,
and the optimized weights will typically not be interpretable.

We circumvent these issues by constraining the elements of w to be binary. In Proposition 3.1, we
show that we can construct wfair by simply zeroing out coordinates of wfair that correspond to training
instances with a positive influence on the fairness metric of interest. This construction is inherently
interpretable. Setting an element to zero implies training without the corresponding training instance.
Zeroing out instances with positive influence equates to refitting the model after dropping training
instances that increase disparity across groups.

We now establish conditions under which wfair as constructed above leads to classifiers with lower
group disparities. Let 1 2 RN denote an N -dimensional vector of all ones, b denote a fairness metric,
M

b
Dval

(✓(w),w) denote a linearized approximation to M
b
Dval

(✓(w)),w) about 1, and [↵ > �]
denote an indicator function that takes the value one if ↵ > � is true and zero otherwise.
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Proposition 3.1. Let wfair 2 {0, 1}N be a N dimensional binary vector such that its n
th

coordinate

is w
fair
n = 1� [Ib,n > 0], then,

wfair = argmin
w2{0,1}N

M
b
Dval

(✓(w),w)�M
b
Dval

(✓(1),1),

and M
b
Dval

(✓(wfair),wfair)�M
b
Dval

(✓(1),1)  0.

Proof. Denote M
b
Dval

(✓̂) := MDval(✓(1),1). From a first order Taylor approximation about 1, we
have,

M
b
Dval

(✓(w),w) = M
b
Dval

(✓̂) +
NX

n=1

dM
b
Dval

(✓̂(w),w)

dwn

���
w=1,✓=✓̂

(wn � 1),

= M
b
Dval

(✓̂) +
NX

n=1

Ib,n(wn � 1).

(10)

Rearranging terms,

M
b
Dval

(✓(w),w)�M
b
Dval

(✓̂) =
NX

n=1

Ib,n(wn � 1)

=
NX

n=1

[Ib,n > 0]Ib,n(wn � 1) +
NX

n=1

[Ib,n  0]Ib,n(wn � 1).

(11)

Finally, the result follows from observing that wn 2 {0, 1} and noting that the first term can be either
zero (when wn = 1) or negative (when wn = 0 and [Ib,n > 0]) and the second term can be either
zero (when wn = 1) or positive (when wn = 0 and [Ib,n  0]). wfair drives the second term to zero
and sets the first term to the smallest value attainable by a binary w.

It follows that M b
Dval

(✓(wfair),wfair) ⇡ M
b
Dval

(✓̂(1),1), with the inequality holding when the
linearization is accurate. Finally, defining D� = {zn | zn 2 D and IM,n > 0}, we arrive at the
post-hoc mitigated classifier by plugging in wfair from Proposition 3.1 in Equation 9,

✓̂fair = ✓̂ +
X

m2D�

H
�1

gm. (12)

In Appendix A we consider an alternate wfair that is guaranteed to decrease both the loss ` and the
fairness metric on the validation set Dval. In early experiments, we did not see consistent benefits
from using this alternate version and do not consider it further in this paper.

3.3 Practical Considerations

Hessian computation and inversion. The influence function computation involves computing and
inverting the Hessian of the loss function on the training data. This requires O(ND

2+D
3) operations.

Both computing and storing the Hessian becomes prohibitively expensive for large models. While
diagonal approximations to the Hessian are possible, they tend to be inaccurate. Instead, iterative
methods based on the (truncated) Neumann expansion have been proposed in the past [21]. However,
more recent work has found the Neumann approximation to be inaccurate, cf. [36, Appendix C]
and prone to numerical issues when the eigenvalues of the Hessian fall outside the [0, 1] interval.
Motivated by these shortcomings, here we develop an alternative iterative procedure based on the
recently proposed WoodFisher approximation [35].

The WoodFisher approximation provides us with the following recurrence relation for estimating the
inverse of the Hessian:

Ĥ
�1
n+1 = Ĥ

�1
n �

Ĥ
�1
n r✓`(yn+1, h✓(xn+1))r✓`(yn+1, h✓(xn+1)>Ĥ�1

n

N +r✓`(yn+1, h✓(xn+1))>Ĥ
�1
n r✓`(yn+1, h✓(xn+1))

, (13)

with Ĥ
�1
0 = �

�1
ID, and � a small positive scalar.

6



For computing influence functions we only need to store the product of the inverse Hessian with a
vector v, i.e., H�1

v, which should only require O(D) storage. However, if we first compute the
inverse Hessian and then compute the Hessian-vector product (HVP), we would need O(D2) storage.
To sidestep this issue, we develop the following coupled recurrences that only use O(D) storage. We
call these coupled recurrences IHVP-WoodFisher,

on+1 = on �
onr✓`(zn+1)>on

N +r✓`(zn+1)>on
, kn+1 = kn �

onr✓`(zn+1)>kn

N +r✓`(zn+1)>on
, (14)

where, we use `(zn+1) as shorthand for `(yn+1, h✓(xn+1)), o1 = r✓`(y1, h✓(x1)), and k1 = v.
Proposition 3.2. Let o1 = r✓`(z1), k1 = v, and N denote the number of training instances. The

Hessian-vector product H
�1

v is approximated by iterating through the IHVP-WoodFisher recurrence

in Equation 14 and computing kN .

We prove Proposition 3.2 in Appendix B. In practice, we observe that even using B ⌧ N iterations
produces useful approximations. In Appendix C, we compare the approximation accuracy of the
the IHVP-WoodFisher and the iterative Neumann approach on cases where it is tractable to exactly
compute the IHVP. Algorithm 2 (see Appendix) summarizes our vanilla approach.

Computational speedups: Although Algorithm 2 suggests running the IHVP-WoodFisher iterations
for each training instance for clarity of exposition, in practice, we use the following trick to run
the IHVP-WoodFisher iterations only once for the entire training dataset. First, for any p ⇤ p

symmetric matrix A and p-dimensional vectors x and y, xT
A, y = y

T
Ax. From Equation 5,

the influence calculation involves computing r✓M(✓̂,1)TH�1
gn for all n in the training dataset.

Since is symmetric, we can equivalently compute g
T
nH

�1
r✓M(✓̂,1). We can then run the IHVP-

WoodFisher iterations to approximate H
�1

r✓M(✓̂,1). Crucially, we need to do this only once.
With the approximation in hand, computing the per data influence requires a single dot product per
data instance between gn and the IHVP-WoodFisher approximated H

�1
r✓M(✓̂,1). In contrast to

other approaches to scaling up influence functions [33] our approach only requires the storage of
a single p-dimensional vector. We call this more efficient version Fair-IJ and is summarized in
Algorithm 1.

Most influential instances. Our development and analysis depends on first order linear approxima-
tions of non-linear functions about 1. We expect the quality of these approximations to deteriorate
further away from 1, i.e., with increasing number of instances dropped. See Theorem 1 in [6] for
additional discussion on the quality of approximation. We find that instead of dropping all instances
with positive influence, dropping the k most influential instances yields better bias mitigation. We
select the hyperparameter k that results in the lowest (best) fairness score on the validation set.
Additionally, [35] observed that the WoodFisher Hessian estimate Ĥ differs from the true Hessian by
a scaling factor, i.e Ĥ / H. We select, from a pre-specified set, the scaling factor that minimizes the
fairness score on the validation set. We then scale the IHVP-WoodFisher estimates using the selected
scaling factor. See Appendix D.

4 Experiments

We first study our method on tabular datasets including the well-known Adult dataset [13] and the
recently released ACSPublicCoverage [11] dataset. ACSPublicCoverage is one among a suite of
datasets aimed to be larger alternatives to previously available fairness datasets. We then investigate
our method on the text modality and larger pre-trained models using the CivilComments dataset [5].

4.1 Tabular Datasets

Setup. The task in the Adult dataset is to predict if a person has an income above a threshold.
We use gender as the sensitive attribute. This dataset comes with a fixed test set. A random 33%
of the training data is used as the validation set for each trial of the experiments. We follow the
pre-processing steps from [27]. The task in the ACSPublicCoverage dataset is to predict if a person
has public health insurance coverage. For our experiments, we only consider instances from the year
2014, from the state of California, and belonging to the white or black race. We consider race as the

7



Algorithm 1 Fair-IJ

1: Input: Pre-trained model parameters ✓̂, training set D, loss function `, a validation set Dval and
a smooth surrogate to the fairness metric b 2 {�DP,�EO}, M b

Dval
.

2: Calculate: r✓M(✓̂,1) using Equation 7 or Equation 8.
3: Calculate: r = H

�1
r✓M(✓̂,1) by setting k1 = r✓M(✓̂,1) and iterating through Equation 14

for B iterations.
4: Calculate: the fairness influence Ib,n of each training instance zn on Dval by computing dot

product between gn and r.
5: Construct: the set D� and denote its cardinality, |D�| = K.
6: Initialize: ✓̂0

fair := ✓̂
7: for k 2 [1, . . . ,K] do
8: Construct: D

k
� = {zn 2 D� | Ib,n > Ib,(K�k)}, where Ib,(K�k) denotes the (K � k)th

order statistic of the influence scores [Ib,1, . . . , Ib,K ].
9: Calculate: ✓̂k

fair by replacing D� with using D
k
� in Equation 12.

10: If bDval(✓̂
k
fair) < bDval(✓̂

k�1
fair ) set ✓̂fair := ✓̂k

fair else set ✓̂fair := ✓̂k�1
fair and break out of the for

loop.
11: end for
12: Return: fair model parameters ✓̂fair.

Figure 2: Accuracy and fairness (DP, EO, and EQOPP) Pareto frontier for the Adult and the Coverage
datasets averaged over 10 runs. Points closer to the bottom-left achieve the best fairness/accuracy
trade-off.

sensitive attribute. In the rest of the paper, we refer to this subset simply as Coverage dataset. We
randomly split the dataset into train/validation/test with partition 50% / 20% / 30%, respectively, for
each trial. Additionally, for both datasets we standardize the features before training our methods and
the baselines.

We first train a 1-hidden layer fully connected neural network with SeLu activation function and 100
hidden units. This initial model is trained using standard ERM loss with batch size set to 256. We use
the Adam optimizer with learning rate set to 10�4. We train the ERM and baselines for 100 epochs
and pick the checkpoint with best accuracy on the validation set. We then employ Algorithm 1 to
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arrive at the Fair-IJ solution. We select k and the IHVP scaling term based on the same validation set
used to compute the influence scores.

Compared algorithms. We compare our method to several in-processing and post-processing bias
mitigation algorithms that are applicable to a wide range of model classes including deep neural
networks. We omit the comparisons with pre-processing methods as our goal is to improve a given
pre-trained model. Among in-processing algorithms, we compare with: FairMixup [9] and HGR

[27]. FairMixup achieves fairness through a mixup based regularization employed during training.
The HGR approach proposes a surrogate to HGR dependence measure and promotes fairness during
training by enforcing conditional independence implied by the fairness metrics. On both of these
methods, the fairness accuracy trade-off is achieved through the strength of the regularizer.

Among post-processing methods, we compare with FST [39] and HPS [17]. FST optimally transforms
the pre-trained model’s prediction scores to satisfy a specified fairness constraint and supports DP
and EO metrics. To improve the performance of FST we re-calibrate the prediction scores using
isotonic Regression. HPS is designed to enforce EO and requires knowledge of the sensitive attribute
at test time. We use a fixed pre-trained model, architecture and training procedure for all the baselines.
We also run the baselines on the edited model obtained from the output of our Fair-IJ algorithm,
✓̂fair. Specifically, we fine-tune the Fair-IJ solution using the in-processing algorithms. In the case
of post-processing algorithms, we directly apply these to the Fair-IJ edited model.

Results. Figure 2 shows the accuracy and fairness Pareto frontier for the Adult and the Coverage
datasets averaged over 10 runs. It can be seen that Fair-IJ consistently produces lower disparities
across datasets and metrics. Moreover, we observe that baselines operating on ✓̂fair, FairMixup-IJ,
HGR-IJ, FST-IJ, and HPS-IJ often achieve substantially better accuracy/fairness trade-off over their
counterparts. In Figure 1, we plot the sorted influence scores of training instances on the average
demographic parity of a held-out validation set for different datasets considered in this paper.

4.2 CivilComments Dataset

Setup. The CivilComments dataset [5] consists of human-annotated attributes on hate comments
posted on the internet. The task here is to predict whether a particular comment is toxic. Prior
work has shown that automatic toxicity classifiers can achieve sub-optimal performance on certain
subpopulations [28, 12, 31]. The goal is to apply our approach to mitigate bias in pre-trained toxicity
classifiers. In our experiments we consider Muslim as the sensitive attribute. Similar to [22], we
assign an instance to the unprivileged group whenever it is annotated with that attribute and assign
the rest to the privileged group.

To show the adaptability of our method on large neural networks, we consider three different variants
of the pre-trained frozen BERT [10], where features are augmented with: a) BERTLC: a linear classifier
head, b) BERTNC: a non-linear classifier head and c) BERTTT=n: with n trigger-tokens in the embedding
layer. The last variant is an extension of prompt-tuning [23] or prefix-tuning [24] methods, which
are more powerful ways of fine-tuning large-language models than only updating classifier heads. It
is worth noting that the adaptation of trigger-tokens scale fittingly in optimizing weights in Equation
9. We compare our results to the simple yet effective method of Gap Regularization (GapReg) from
[9] where a model optimization is regularized by a fairness measure added to the training loss while
scaled by � factor to control the regularizer magnitude, as defined in Equation 1 of [9].

Results. We present our results in Table 1. In comparison to the baseline methods ERM and GapReg,
Fair-IJ consistently performs better in mitigating the group disparities. Additionally, Fair-IJ
manages to have a better task performance (balanced accuracy for toxicity classification) trade-off
while attempting to achieve a lower disparity. In Table 1, we also present the results on virtual
trigger-tokens, which we notice to be performing equally well in lowering the disparity. This is
a significant observation as it shows how Fair-IJ can be efficiently integrated with large neural
network through the scalable influence calculations of relatively few trigger parameters. Further
training details, observations and baselines are presented in the Appendix.

5 Conclusion

In this work, we proposed Fair-IJ, an infinitesimal jackknife-based approach to mitigate the
influence of biased training data points without refitting the model. Our approach is limited to
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Model BA �EO BA �DP

BERTLC-ERM 57.3 0.314 58.4 0.246
BERTLC-GapReg 57.9 0.133 57.5 0.185
BERTLC-Fair-IJ 58.6 0.125 57.1 0.011
BERTNC-ERM 59.3 0.326 59.3 0.261
BERTNC-GapReg 59.1 0.144 58.2 0.054
BERTNC-Fair-IJ 59.8 0.126 58.6 0.008

Model BA �EO BA �DP

BERTTT=4-ERM 57.5 0.360 57.5 0.268
BERTTT=4-Fair-IJ 56.0 0.102 55.2 0.042
BERTTT=8-ERM 58.2 0.317 58.2 0.254
BERTTT=8-Fair-IJ 56.5 0.113 56.4 0.071
BERTTT=10-ERM 58.3 0.348 58.3 0.234
BERTTT=10-Fair-IJ 57.2 0.110 56.6 0.089

Table 1: Comparison between ERM, Gap Regularization (for � = 1), and Fair-IJ for CivilCom-
ments on the sensitive attribute MUSLIM when we use pre-trained BERT model. We report the
difference in equality of odds (�EO), difference in demographic parity (�DP), along with the task
balanced accuracy (BA).

settings where the assumptions listed in Section 3 hold. Also, care must be taken to choose an
appropriate fairness criterion and its differentiable surrogate for any given application to avoid
unwanted consequences. We restricted our analysis to binary classification, since this is by far
the most common setup in the fairness literature, but our approach applies to any metric M that
is once differentiable in the model parameters and any training loss that is twice differentiable in
the parameters. This includes standard approaches to multiclass classification and regression.

Future work includes extending our approach to black-box models where the gradients are inaccessible
and incorporating higher-order Taylor approximations to improve the accuracy of the influence
functions. We hope that our method further encourages researchers and practitioners in studying and
applying bias mitigation to diverse and complex models and datasets.
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