
A Stochastic prerequisites

In this section we give a formal introduction to some of the concepts used in this work. For a more
rigorous treatment, see for example [Klenke, 2013] or [Karatzas and Shreve, 2012].

A.1 Equivalence of measures / Girsanov Theorem

First we define absolute continuity of measures. Let µ and ν be two measures on (Ω,F), where F is
a σ-algebra.
Definition 1. We say that µ is absolutely continuous with respect to ν if µ(A) = 0 for any A ∈ F
such that ν(A) = 0. We also denote this by µ ≪ ν.

Two measures µ and ν are equivalent if µ ≪ ν and ν ≪ µ. Loosely speaking, we can say that µ ≪ ν
if the support of µ is contained in the support of ν and they are equivalent if they share the same
support.

The Radon-Nikodym theorem tells us that if µ ≪ ν, then under mild conditions there exists a density
dµ
dν : Ω → R such that µ(A) =

∫
A

dµ
dν (ω)dν(ω). Therefore, we can obtain µ through a reweighting

of ν. One specific instance of this is the Girsanov Theorem. Assume we are given the solutions to
two SDEs in Rd,

dYt = b(t, Yt)dt+ σ(t, Yt)dWt (13)

and

dỸt = b(t, Ỹt)dt+ σ(t, Ỹt)e(t, Ỹt)dt+ σ(t, Ỹt)dBt. (14)

Both of these induce a measure on the space of continuous functions Ω = C([0, T ],Rd). We denote
them by P and P̃ respectively. Then the Girsanov Theorem equips us with conditions under which
the measures P and P̃ are equivalent. Furthermore, in case of equivalence we get a formula for the
density of P̃ with respect to P. The relative density is given as

ZT = exp

(∫ T

0

e(s, Ys)dWs −
1

2

∫ T

0

∥e(s, Ys)∥2ds

)
.

For a full statement of the Girsanov Theorem and under which conditions it holds, see [Karatzas and
Shreve, 2012, Section 3.5].

A.2 Uniform integrability

Since we are treating the case where the drift explodes as t → T we end up with densities

Zt = exp

(∫ t

0

e(s, Ys)dWs −
1

2

∫ t

0

∥e(s, Ys)∥2ds
)
. (15)

on C([0, t],Rd), but not with a density on C([0, T ],Rd). Uniform integrability is exactly the condition
one needs to extend these local densities.
Definition 2. A family {Xα} of random variables is called uniformly integrable if

sup
α

E
[
|Xα| 1{|Xα|>s}

]
→ 0

as s → ∞.

In the proof of Theorem 2 we implicitly use the following two results which we here state as a lemma.
The filtration Ft is defined as in the proof of Theorem 2.
Lemma 4. Assume the Zt in (15) form a uniformly integrable martingale on [0, T ). Then,

• the limit limt→T Zt exists in L1. We denote this limit by Z.

• Furthermore, P̃ is absolutely continuous with respect to P on F = σ(∪t<TFt) with density
Z.
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Proof. Both of these results are standard. The first one can for example be found in [Karatzas and
Shreve, 2012, Section 1.3.B]. For the second one we compute that for any A ∈ Fs,

EP[1AZ] = EP[1A lim
t→T

Zt] = lim
t→T

EP[1AZt] = EP[1AZs] = EP̃[1A],

where we used L1 convergence in the second equality and the martingale property of Zs in the third
equality. Therefore Z is a density of P̃ with respect to P on each Fs for s < T . Therefore Z is also a
density of P̃ with respect to P on F which concludes the proof.

B Numerics

All numerical experiments can be run on a consumer grade computer within a few minutes.

B.1 Figure 1

We first discuss the top left figure of Figure 1. We set p0 = µdata to a mixture of two Gaussian
N (−2, 1

100 ) and N (2, 1
100 ) with weights w1 = 1

3 and w2 = 2
3 respectively. Then, we draw N =

5 000 000 samples from µdata, denoted by Y n
0 , n = 1, . . . , N . An Euler-Maruyama discretization of

the Brownian motion propagates these samples from time t = 0 to t = 1 by

Xn
i+1 = Xn

i +
√
dtZn

i ,

where Zi
n ∼ N (0, 1) are i.i.d. random variables, independent of Xj

m for m ≤ n and j = 1, . . . , N .
The time index i runs from 0 to I = 2000 and dt is set to dt = 1

I . The initial samples {Xn
0 }Nn=1

are used to create the left line plot of p0 and the final samples {Xn
I }Nn=1 are used to create the right

line plot of p1 using kernel density estimation. The {Xn
i }Nn=1 are approximate samples from pi/I .

Therefore, we create histograms using {Xn
i }Nn=1 to approximate pi/I . The height of the histogram

bars corresponds to the square root of the colour intensity in the heat map. The horizontal axis in
the heat map stands for the time t, whereas the vertical axis stands for the position x. At location
(t, x) we plot an estimate of

√
pt(x). We apply the square root since it improves the contrast in areas

where pt(x) is close to 0 and makes it more visible where pt(x) > 0 to the observer.

For the bottom left figure we show the same plots, just for the reverse SDE (8) instead of the forward
SDE. Since the initial distribution is a Gaussian mixture we can exactly calculate pt using

pt(x) = w1N (x;m1, s
2
1 + t) + w2N (x;m2, s

2
2 + t), (16)

where we use N (x;m, v) for the probability density function of a normal distribution with mean
m and variance v, evaluated at x. With the above expression of pt one could compute an analytical
representation of ∇ log pt. We use automatic differentiation instead. The reverse SDE (8) is simulated
with a disturbance e(x, t) = 1 and initial condition q0 = µprior = N (0, 1). The Euler-Maruyama
method is run with the same step size dt = 1

I . More precisely, the one step transition kernel of the
discretized reverse SDE is

Y n
i+1 = Y n

i + dt (∇ log p1− i
I
(Y n

i ) + 1) +
√
dt Z̃n

i , (17)

where Z̃i
n ∼ N (0, 1) are i.i.d. random variables, independent of Y j

m for m ≤ n and j = 1, . . . , N .
The plots are created in the same way as for the upper left plot, except that we reverse the time axis to
plot pt and q1−t directly underneath each other.

On the right side we plot the same kernel density estimates already plotted on the left side as µsample
and µdata into the same plot for comparison.

B.2 Figure 2b and 2a

Figure 2b is created by setting µdata to be the uniform distribution on M = 9 equally spaced samples
{xi}Mi=1 on the unit sphere S1. This can also be viewed as a Gaussian mixture with 9 components
where each component having mean xi and variance 0. Therefore, we can again explicitly calculate
pt for t > 0 as in (16),

pt(y) =
1

M

M∑
i=1

N (y;xi, t).
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mt(z0) Σt

Brownian Motion z0 tId

OU-Process exp(−t)z0 (1− exp(−2t))Id

Table 1: The mean and covariance of the Gaussian transition kernels of the Brownian Motion and
the Ornstein-Uhlenbeck process SDEs.

The score ∇ log pt(y) is evaluated using automatic differentiation. The reverse SDE 8 is simulated
with q0 = N ((x = −1.5, y = 0), I2) and e((x, y), t) = (x = 0, y = −1). For the numerical
simulation, we again use the Euler-Maruyama scheme. We use a step width of dt = 0.9

1000 ≈ 1
1000

for t = [0, 0.9], dt = 0.09
1000 ≈ 1

10 000 for t ∈ [0.9, 0.99] and of dt = 1
100 000 for t ∈ [0.99, 1]. For a

simulation of N = 50 000 paths of the reverse SDE, we start by drawing Y n
0 = An + Zn, where

An are i.i.d. uniformly distributed on {xi}Mi=1 and Zn ∼ N (0, 1) i.i.d.. The {An} and {Zn} are
also independent from each other. We then propagate the Y n

0 similarly to (17), except that we use
a different values for dt depending on t. This leads to approximate samples Y i

t from qt. At the
displayed times t we plot the function

ht(x) =

N∑
i=1

k(x, Y i
t ),

where k is an unnormalized Gaussian kernel with a very small bandwidth parameter,

k(x, y) = exp(−1000∥x− y∥2).

Normalizing ht gives us a density estimate of qt. We plot these estimates as heat maps for different
values of t.

For Figure 2a we follow the same steps as for Figure 2b, except that µdata is set to the uniform
distribution over M = 256 evenly spaced samples from the unit sphere S1.

B.3 Figure 3

For Figure 3 we used the DDPM++ model from the Github repository for the paper from Song et al.
[2021b]. Then we evaluated the true score using (6), where the sum runs through the N = 50000
training examples of CIFAR-10, Krizhevsky et al. [2009]. A similar experiment using the true
marginals µ̂data has also been conducted in Peluchetti [2021].

C Studying the forward Densities

C.1 Transition kernels

The transition kernels p(z0, ·) for the SDEs from Section 2 are of the from

q0(z0, ·) = N (mt(z0),Σt),

where mt and Σt are given in Table 1 for the Brownian Motion and the Ornstein-Uhlenbeck process.
The form of the transition kernels for the CLD are more involved. They can be found in Dockhorn
et al. [2021, Appendix B.1].

Lemma 5. The marginal densities pt(x) of the SDEs treated in Section 2 depend smoothly on x and
t.

Proof. One can combine the form of mt and Σt and the explicit representation of pt in (11) to see
this. More generally, for the Brownian motion and the OU-Process this is a result of the Hörmander
theorem. For the CLD it is a result of hypocoercivity.
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C.2 Form of the drift

We now prove that we can represent the drift as in (12).
Lemma 6. Assume that pt has the form (11), i.e.

pt(z) =

∫
Rd

N (z;mt(z0),Σt)µdata(z0)dz0.

Then (12) holds true, i.e.

∇ log pt =
∇pt(z)

pz(z)
= Σ−1

t (z − E[mt(Z0)|Zt = z]).

Proof.

∇pt(z)

=
1√

det(2πΣt)

∫
Rd

∇ exp

(
−1

2
(z −mt(z0))Σ

−1
t (z −mt(z0))

)
µdata(z0)dz0

=
1√

det(2πΣt)

∫
Rd

Σ−1
t (z −mt(z0)) exp

(
−1

2
(z −mt(z0))Σ

−1
t (z −mt(z0))

)
µdata(z0)dz0

= Σ−1
t zpt(z)

− 1√
det(2πΣt)

∫
Rd

Σ−1
t mt(z0) exp

(
−1

2
(z −mt(z0))Σ

−1
t (z −mt(z0))

)
µdata(z0)dz0.

If we now divide everything by pt it cancels in the first summand. In the second summand we get the
formula for the conditional expectation (see, for example [Klenke, 2013, Section 8.2]).

D Reverse SDEs: The general case

One can also treat more general forward SDEs than we did in Section 1. This leads to a more
complicated form of the reverse SDE. Our Theorems do not use the specific form of the forward
SDEs and therefore also hold in the general case. We denote the forward SDE by

dXt = β(t,Xt)dt+ σ(t,Xt)dWt,
X0 ∼ µdata,

(18)

where µdata is supported on M ⊂ Rd and Wt is a Rr valued Brownian motion. The drift b maps
from R × Rd to Rd. The dispersion coefficient σ maps from R × Rd to the d × r-matrices. The
time-reversed process Yt := XT−t is then a solution to

dYt = b(t, Yt)dt+ σ(T − t, Yt)dBt,
Y0 ∼ q0,

(19)

with

bi(t, y) = −β(T − t, y) +

∑
j ∇j(aij(T − t, y)pT−t(y))

pT−t(y)
, a(t, y) = σ(t, y)σ(t, y)T ,

and q0 = pT , see Haussmann and Pardoux [1986]. This simplifies to the case discussed in Section 1
if r = d, σ is is a multiple of the identity matrix and β is independent of the time t. In Assumption 1
we treat the case where the SDEs are of the form written-out in Section 1. The items (i)− (iii) need
to be replaced by their more general counterpart as found in Haussmann and Pardoux [1986, Section
2]. In the last item (iv), ∇ log pt needs to be replaced by

∑
j ∇j(aij(T−t,y)pT−t(y))

pT−t(y)
.

E Proofs

E.1 Proofs of the theorems

We now give proofs of our main results and briefly summarize the key steps in an intuitive way. In our
study we would like to include the case when µdata is degenerate and supported on a low-dimensional
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substructure M. As we have seen in Section ??, this can lead to an exploding drift in the reverse
SDE as t → T . Nevertheless, in order to understand the properties of µdata, it is crucial to study
the properties of solutions to the reverse SDE at time t = T . This is where the main mathematical
difficulties come from. The proofs are mostly independent of the specific form of the forward SDE
and hold for more general forward/backward SDEs than those stated in Section 1, see Appendix D.

E.1.1 Theorem 1

We now proceed with proving Theorem 1.

Proof. Let P be the measure on Ω = C([0, T ],Rn) induced by the forward SDE (1) started in
p0 = µdata. P has marginals pt. Denote by Xt the canonical projections Xt(ω) = ω(t) for ω ∈ Ω.
We define Q through

dQ

dP
(ω) =

dµprior

dπT
(ω(T )).

By the data processing inequality we obtain (see [Liese and Vajda, 2006, Theorem 14]),

KL(qT |µdata) ≤ KL(Q|P ) = KL(µprior|πT ). (20)

It remains to prove that by running Q backwards we obtain a solution to (2) started in µprior. We
denote the generator of the reverse SDE (2) by L. Denote by QR and PR the time reversals of Q and
P . Our assumption are such that PR is a Markov process solving the martingale problem for L (see
[Haussmann and Pardoux, 1986, Theorem 2.1]). A short calculation shows that QR is still Markov
(see, for example [Léonard, 2011, Proposition 4.2]). Furthermore for f ∈ C∞

c (Rn),

EQR

[
f(Xt)− f(Xs)−

∫ t

s

Lf(Xr)dr|Xs

]

=
EPR

[(
f(Xt)− f(Xs)−

∫ t

s
Lf(Xr)dr

)
dµprior

dpT
(X0)|Xs

]
EPR

[
dµprior

dpT
(X0)|Xs

]
=

EPR

[(
f(Xt)− f(Xs)−

∫ t

s
Lf(Xr)dr

)
|Xs

]
EPR

[
dµprior

dpT
(X0)|Xs

]
EPR

[
dµprior

dpT
(X0)|Xs

]
= EPR

[(
f(Xt)− f(Xs)−

∫ t

s

Lf(Xr)dr

)
|Xs

]
= 0.

In the second equality we used the Markov property of PR. In the last one we used that PR solves
the martingale problem for L. Therefore also QR solves the martingale problem for L. Denote by Yt

a solution to (2) on [0, T ). Since solutions to (2) are unique in law on [0, S] for S < T (see [Karatzas
and Shreve, 2012, Section 5.2]) and the solutions are continuous, the law of Y is equal to QR on
[0, T ). But the paths of QR are continuous on [0, T ]. Therefore, Y can be extended to [0, T ], i.e.
the limit YT := limt→T Yt exists almost surely and its distribution is equal to the T -time marginal
distribution of QR, which is the 0-time marginal of Q. We denote the marginals of Q and P by Qt

and Pt. Since Q is absolutely continuous with respect to P , Q0 = µsample is absolutely continuous
with respect to P0 = µdata. Analogously, if µprior and pT are equivalent, then so are P and Q and
therefore P0 and Q0. This proves (i).

(ii) is a consequence of the data processing inequality for f -divergences ([Liese and Vajda, 2006,
Theorem 14]), analogous to (20).

The main idea of this proof is that we look at the forward SDE for Xt first. It induces a distribution P
over all continuous paths in Ω = C([0, T ],Rd). If we reverse the time direction of this distribution
on Ω, we get a solution to the reverse SDE, started in pT . This reverse solution is well behaved as
t → T , since YT = X0. The solution for a different initial condition µprior ̸= pT is obtained by
reweighting P. This does not change the qualitative behaviour of YT , which still exists and is well
defined. We then use a uniqueness result to see that any solution of (19) inherits these properties.
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E.1.2 Theorem 2

Proof. Denote the space C([0, T ),Rd) by Ω. We also define the natural filtration Ft = σ(x(s)|s ≤ t).
We denote the distribution of Y on Ω by P. We define P̃ by reweighting P with Zt on Ft. By Girsanov
theorem (see [Karatzas and Shreve, 2012, Section 3.5]) we know that the canonical process under P̃
is a solution to (8) on [0, T ). Since Zt is uniformly integrable, its limit Z := limt→T Zt exists in L1.
Furthermore P̃ is absolutely continuous with respect to P on F = σ(∪t<TFt) = σ(x(t)|t < T ) with
density Z. We define x(T ) := limt→T x(t). Then the event

A = {x(T ) := lim
t→T

x(t) exists and x(T ) ∈ M}

has probability 1 under P (see Theorem 1) and therefore also under P̃. Furthermore, x(T ) is
measurable with respect to F . Therefore the distributions of x(T ) under P and P̃ are equivalent. The
canonical process under P̃ is therefore a solution of (8), with the property that its time T -marginal is
well defined and equivalent to the time T -marginal of (2). We can use uniqueness in law on [0, S) for
any S < T and extend it to [0, T ] as in the proof of Theorem 1. This shows that every solution to (8)
has the desired properties.

Finally we show that if e is bounded, it fulfils Assumptions 2. We define by Ht =
∫ t

0
∥e(s, Ŷs)∥ds.

Then there is a Brownian motion Wt such that we can write Zt as

Zt = exp

(
WHt −

1

2
Ht

)
.

Since e is bounded by M , Ht is bounded by TM . In particular, one can view Zt = E[ZTM |FHt
].

Therefore Zt is uniformly integrable since it can be viewed as a family of conditional expectations.

Here we essentially applied the Girsanov Theorem on [0, T ). Using the uniform integrability of the
Girsanov weights Zt, we are able to extend it to [0, T ]. Therefore, we can infer that the distribution
of Y and Ŷ are actually equivalent on the whole path space C([0, T ],Rd). In particular, their time
T -marginals will be equivalent too, which is the claim of the theorem.

E.2 Proof of the Lemmas

We start by proving Lemma 1.

Proof. The forward drifts are β(x) = 0, β(x) = −α
2 x and β(x, v) = (v,−x− 2v) for the Brownian

Motion, the OU-Process and the Critically Damped Langevin Dynamics respectively. In particular,
these are all linear maps and therefore fulfil conditions (i) and (ii) of Assumption 1.

We show in Appendix C.1 that log pt is C∞ in t and x for t > 0. Therefore we can integrate pt
and its derivative over compact sets, implying that condition (iii) holds. Furthermore, the Hessian
w.r.t. (x, t) is continuous and obtains its maximum and minimum on the compact set [S, T ]×BN ,
where BN is the ball of diameter N around the origin. Therefore the gradient ∇ log pt is Lipschitz
on [S, T ]×BN , which proves (iv).

We now prove Lemma 2.

Proof. We have that X0 ∼ µdata. Denote the mean and covariance of µdata by a and C respectively.
We define

nt = N (mt, Vt)

for some functions mt and Vt. If Vt would not have full rank, nt would be a degenerate distribution.
Since pt > 0 almost everywhere for t > 0, the KL divergence from pt to nt would be infinite.
We can therefore restrict Vt to be an invertible matrix. We denote the entropy of p by H , H(p) =
−
∫
log(p)pdx.
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