
Organization We provide in-depth descriptions for our algorithms, experimental setups, i.e. dataset
configurations, implementation & training details, and additional experimental results & analysis that
are not covered in the main document, as organized as follows:

• Section A: We provide the pseudo-code algorithms for Factorized-FL.

• Section B: We describe dataset configurations for label- and domain-heterogenous scenarios.

• Section C: We elaborate on implementation and training details for our methods and the baselines.

• Section D: We provide additional experimental results and analysis.

A Factorized-FL Algorithms

In this section, we describe our pseudo-code algorithms for Factorized-FL ↵ and Factorized-FL
� in Algorithm 1 and 2. Our Factorized-FL ↵ has strength for not only reducing the dimensionality
of model parameters by factorizing them into rank 1 vector spaces and the additional highly-sparse
matrices, but also effectively learning client-general and task-specific knowledge, performing well
on domain heterogeneous scenario. Particularly, Factorized-FL ↵ transmits a small portion of
the models which are a set of u (U) and a single vector vL�1 form the second last layer of neural
networks, which significantly reduces communication costs while showing strong performance in
label- and domain-heterogeneous scenarios, as shown in Section 5 in the main document.

Algorithm 1 Factorized-FL ↵

1: R: number of rounds, E: number of epochs, K:
number of clients, F : a set of clients, ⌦(·): simi-
larity matching function, �: client-wise similarity
score, L: number of layers in neural networks. Uk,
Vk, and Mk: factorized parameters.

2: Function RunServer()
3: initialize F
4: for each round r = 1, 2, . . . , R do
5: F (r) select K(r) clients from F
6: for each client f (r)

k 2 F (r) in parallel do
7: if r > 1 then
8: {�i}K

(r)

i 6=k ⌦(vL�1
fk

, vL�1
f
i 6=k:K(r)

)

9: U (r)
k exp(✏·�i)

PK(r)
i=1 exp(✏·�i)

PK(r)

i=1 U (r)
i

10: end if
11: U (r+1)

k , vL�1
fk
 RunClient(U (r)

k)
12: end for
13: end for
14: Function RunClient(Uk)
15: ✓k Uk ⇥ Vk �Mk

16: for each local epoch e from 1 to E do
17: for minibatch B 2 Dk do
18: ✓k ✓k � ⌘rL(B; ✓k)
19: end for
20: end for
21: return Uk, vL�1

fk

Algorithm 2 Factorized-FL �

1: Function RunServer()
2: initialize F
3: for each round r = 1, 2, . . . , R do
4: F (r) select K(r) clients from F
5: for each client f (r)

k 2 F (r) in parallel do
6: if r > 1 then
7: {�i}K

(r)

i 6=k ⌦(vL�1
fk

, vL�1
f
i 6=k:K(r)

)

8: U (r)
k exp(✏·�i)

PK(r)
i=1 exp(✏·�i)

PK(r)

i=1 U (r)
i

9: V(r)
k exp(✏·�i)

PK(r)
i=1 exp(✏·�i)

PK(r)

i=1 V(r)
i

10: M(r)
k exp(✏·�i)

PK(r)
i=1 exp(✏·�i)

PK(r)

i=1 M(r)
i

11: end if
12: U (r+1)

k ,V(r+1)
k ,M(r+1)

k

13: RunClient(U (r)
k ,V(r)

k ,M(r)
k)

14: end for
15: end for
16: Function RunClient(Uk,Vk,Mk))
17: ✓k Uk ⇥ Vk �Mk

18: for each local epoch e from 1 to E do
19: for minibatch B 2 Dk do
20: ✓k ✓k � ⌘rL(B; ✓k)
21: end for
22: end for
23: return Uk,Vk,Mk

B Dataset Configurations

In this section, we describe detailed configurations for datasets that we used in label- and domain-
heterogeneous scenarios.

13

Table 2: Label permutations for label-heterogeneous scenario We provide permutations of labels for each
dataset. These permutations are randomly generated based on different seeds.

Dataset Class Original Client No.
Labels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

CIFAR-10

Airplane 0 2 5 3 0 8 2 4 4 2 2 0 6 1 8 4 0 0 6 9 7
Automobile 1 8 4 1 5 1 8 1 0 9 7 7 3 6 2 0 4 1 8 1 4

Bird 2 3 0 5 3 4 9 9 5 4 1 5 5 3 0 1 6 3 7 6 5
Cat 3 5 9 0 7 9 3 8 8 7 6 2 7 8 7 6 7 4 4 3 8

Deer 4 6 2 6 9 6 5 2 1 0 9 6 1 7 3 7 5 5 3 8 9
Dog 5 4 1 4 8 5 6 6 6 3 4 9 4 4 4 5 9 8 1 2 0
Frog 6 9 3 2 1 2 0 3 2 6 3 3 0 5 6 2 1 7 2 5 1
Horse 7 0 7 9 4 3 7 0 3 5 0 1 2 9 5 3 2 9 5 0 6
Ship 8 1 8 7 6 7 4 5 7 8 5 8 9 0 9 8 3 6 0 7 2

Truck 9 7 6 8 2 0 1 7 9 1 8 4 8 2 1 9 8 2 9 4 3

SVHN

Digit 0 10 2 5 3 0 8 2 4 4 2 2 0 6 1 8 4 0 0 6 9 7
Digit 1 1 8 4 1 5 1 8 1 0 9 7 7 3 6 2 0 4 1 8 1 4
Digit 2 2 3 0 5 3 4 9 9 5 4 1 5 5 3 0 1 6 3 7 6 5
Digit 3 3 5 9 0 7 9 3 8 8 7 6 2 7 8 7 6 7 4 4 3 8
Digit 4 4 6 2 6 9 6 5 2 1 0 9 6 1 7 3 7 5 5 3 8 9
Digit 5 5 4 1 4 8 5 6 6 6 3 4 9 4 4 4 5 9 8 1 2 0
Digit 6 6 9 3 2 1 2 0 3 2 6 3 3 0 5 6 2 1 7 2 5 1
Digit 7 7 0 7 9 4 3 7 0 3 5 0 1 2 9 5 3 2 9 5 0 6
Digit 8 8 1 8 7 6 7 4 5 7 8 5 8 9 0 9 8 3 6 0 7 2
Digit 9 9 7 6 8 2 0 1 7 9 1 8 4 8 2 1 9 8 2 9 4 3

B.1 Label Heterogeneous Scenario

We use CIFAR-10 and SVHN for the label-heterogeneous scenario. We first split each
dataset into train, validation, and test sets for CIFAR-10 (48, 000/6, 000/6, 000) and SVHN
(79, 431/9, 929/9, 929). We then split the train set into K local partitions P1:20 (K=20) for IID
partitions (all instances in each class are evenly distributed to all clients) or for the non-IID partitions
(instances in each class are sampled from Dirichlet distribution with ↵=0.5). We further permute the
labels for each class per local partition Pk for permuted IID and permuted non-IID scenarios. We use
different random seed per client, i.e. fixed global seed + client id, for example, 1234 + 0
for Client 1 and 1234 + 19 for Client 20. We provide permutations of labels that we used for each
dataset in Table 2.
B.2 Domain Heterogeneous Scenario

We use CIFAR-100 datasets (60, 000) and create five sub-datasets grouped by 10 similar classes,
such as Fruits&Foods (6, 000), Transport (6, 000), Household Objects (6, 000), Animals (6, 000),
Trees&Flowers (6, 000). We then split train (4, 800), test (600), validation (600) sets for each sub-
datset. To have 20 clients in total, we assign four clients per subdataset, and split each train set into
4 partitions, making a single partition contains 1, 200 instances. Additionally, we further permute
the labels for those 20 partitions to simulate more realistic scenarios where labeling schemes are not
synchronized across all clients even in the same domain (sub-dataset). We provide class division and
label permutation information in Table 3.

C Training Details & Implementations

In this section, we provide detailed implementation and training details that are not described in the
main document.

C.1 Baseline Models

Stand-Alone does not share their locally learned knowledge with other clients. It shows the
pure model performance on the data partitions. In our extremely heterogeneous scenarios, where
knowledge collapse may happen severely, which even deteriorates the local knowledge, this model
shows the comparable performance amongst the existing models.

FedAvg [18] performs weighted aggregation of the model parameters, considering the size of the
local training set. This model is considered as the standard baseline of many federated learning
algorithms.

14

Table 3: Class division and label permutation information for domain-heterogeneous scenario We provide
class division information and label permutation details for each domain. These permutations are randomly
generated based on the same method used in label-heterogeneous scenario using different seeds.

Domain Class Original Client No.
Labels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Household
Objects

Bed 5 2 5 3 0 - - - - - - - - - - - - - - - -
Chair 20 8 4 1 5 - - - - - - - - - - - - - - - -
Couch 22 3 0 5 3 - - - - - - - - - - - - - - - -
Table 25 5 9 0 7 - - - - - - - - - - - - - - - -

Wardrobe 39 6 2 6 9 - - - - - - - - - - - - - - - -
Clock 40 4 1 4 8 - - - - - - - - - - - - - - - -

Keyboard 84 9 3 2 1 - - - - - - - - - - - - - - - -
Lamp 86 0 7 9 4 - - - - - - - - - - - - - - - -

Telephone 87 1 8 7 6 - - - - - - - - - - - - - - - -
Television 94 7 6 8 2 - - - - - - - - - - - - - - - -

Fruits
& Foods

Apple 0 - - - - 8 2 4 4 - - - - - - - - - - -
Mushroom 9 - - - - 1 8 1 0 - - - - - - - - - - -

Orange 10 - - - - 4 9 9 5 - - - - - - - - - - - -
Pear 16 - - - - 9 3 8 8 - - - - - - - - - - - -

Sweet Pepper 28 - - - - 6 5 2 1 - - - - - - - - - - - -
Bottle 51 - - - - 5 6 6 6 - - - - - - - - - - - -
Bowl 53 - - - - 2 0 3 2 - - - - - - - - - - - -
Can 57 - - - - 3 7 0 3 - - - - - - - - - - - -
Cup 61 - - - - 7 4 5 7 - - - - - - - - - - - -
Plate 83 - - - - 0 1 7 9 - - - - - - - - - - - -

Trees &
Flowers

Orchid 47 - - - - - - - - 2 2 0 6 - - - - - - - -
Poppy 52 - - - - - - - - 9 7 7 3 - - - - - - -
Rose 54 - - - - - - - - 4 1 5 5 - - - - - - - -

Sunflower 56 - - - - - - - - 7 6 2 7 - - - - - - - -
Tulip 59 - - - - - - - - 0 9 6 1 - - - - - - - -

Maple Tree 62 - - - - - - - - 3 4 9 4 - - - - - - - -
Oak Tree 70 - - - - - - - - 6 3 3 0 - - - - - - - -
Palm Tree 82 - - - - - - - - 5 0 1 2 - - - - - - - -
Pine Tree 92 - - - - - - - - 8 5 8 9 - - - - - - - -

Willow Tree 96 - - - - - - - - 1 8 4 8 - - - - - - - -

Transport

Lawn Mower 8 - - - - - - - - - - - - 1 8 4 0 - - - -
Rocket 13 - - - - - - - - - - - - 6 2 0 4 - - - -

Streetcar 41 - - - - - - - - - - - - 3 0 1 6 - - - -
Tank 48 - - - - - - - - - - - - 8 7 6 7 - - - -

Tractor 58 - - - - - - - - - - - - 7 3 7 5 - - - -
Bicycle 69 - - - - - - - - - - - - 4 4 5 9 - - - -

Bus 81 - - - - - - - - - - - - 5 6 2 1 - - - -
Motorcycle 85 - - - - - - - - - - - - 9 5 3 2 - - - -

Pickup Truck 89 - - - - - - - - - - - - 0 9 8 3 - - - -
Train 90 - - - - - - - - - - - - 2 1 9 8 - - - -

Animals

Fox 3 - - - - - - - - - - - - - - - - 0 6 9 7
Porcupine 34 - - - - - - - - - - - - - - - - 1 8 1 4
Possum 42 - - - - - - - - - - - - - - - - 3 7 6 5
Raccoon 43 - - - - - - - - - - - - - - - - 4 4 3 8
Skunk 63 - - - - - - - - - - - - - - - - 5 3 8 9
Bear 64 - - - - - - - - - - - - - - - - 8 1 2 0

Leopard 66 - - - - - - - - - - - - - - - - 7 2 5 1
Lion 75 - - - - - - - - - - - - - - - - 9 5 0 6
Tiger 88 - - - - - - - - - - - - - - - - 6 0 7 2
Wolf 97 - - - - - - - - - - - - - - - - 2 9 4 3

FedProx [15] uses proximal regularization term for alleviating divergence between global parame-
ters and the local parameters. This model is devised to tackle data heterogeneity (also known as the
non-iid problems) across the clients.

Clustered-FL [23] performs bi-partitioning process for the participants when certain conditions
are satisfied (calculating the norm of the gradient updates and comparing it with given threshold
values). It continues to split the given pool of the clients into two novel clusters and performs
knowledge aggregations for each cluster.

pFedPara [20] uses the Hadamard product of two sets of low rank matrices and reconstructs the
kernel parameters. It shares one of the sets of low rank matrices with other clients and remains
another set of low rank matrices for the personalization.

15

Per-FedAvg [5] adopts Model-Agnostic Meta Learning (MAML) [6] approach to federated learn-
ing algorithm to search the initial global model which participants can easily adapt to their local data
by being trained with only one or a few steps of gradient descent.

FedFOMO [28] leverages other clients’ knowledge for improving their local models. It downloads a
few random models from other clients and validates them on their own validation set at each client.
When some parameters show better validation performance compared to their own local performance,
it aggregates such helpful parameters with their own local parameters.

C.2 Training Details

As default, all training configurations are equally set across all models, unless otherwise stated to
ensure stricter fairness. We use ResNet-9 architecture as local backbone networks and train them on
32⇥ 32 sized images with 256 for batch size. We apply data augmentations, i.e. cropping, flipping,
jittering, etc, during training. Optimizer that we used is Stochastic Gradient Descent (SGD). We set
1e-3 for learning rate, 1e-6 for weight decay, and 0.9 for momentum. For baseline models, we use
the reported hyper-parameters as default, or we adjust hyper-parameters so that they show the best
performance for fairness. For ours and pFedPara, the model capacity is adjusted to around 90%
- 99% of the original size, as we fairly compare with other methods that use full capacity (2.57M
number of parameters). For ours, we use [5e-4, 1e-3] for �sparsity, [0-0.75] for ⌧ , [1, 20] for ✏. We use
8 GPUs (NVIDIA Titan Xp) for experiments.

C.3 ResNet-9 Architecture Table 4: Detailed ResNet-9 Architecture
Layer Input Output Filter Size Stride Dimension of Wl

Conv 1 3 64 3 1 64⇥ 3⇥ 3⇥ 3
Conv 2 64 128 5 2 128⇥ 64⇥ 5⇥ 5
Conv 3 128 128 3 1 128⇥ 128⇥ 3⇥ 3
Conv 4 128 128 3 1 128⇥ 128⇥ 3⇥ 3
Conv 5 128 256 3 1 256⇥ 128⇥ 3⇥ 3
Conv 6 256 256 3 1 256⇥ 256⇥ 3⇥ 3
Conv 7 256 256 3 1 256⇥ 256⇥ 3⇥ 3
Conv 8 256 256 3 1 256⇥ 256⇥ 3⇥ 3
FC 1 256 C - - 256⇥ C

We use ResNet-9 architecture consist-
ing of eight convolutional layers and
one fully connected layer as a classifier,
as described in Table 4. We use max
pooling with size 2 after Conv 5 and an
adaptive max pooling after Conv 8 to
make output width 1 for the following
FC layer. The total number of parame-
ters of the model is 2.57M . As we use
PyTorch framework for implementation and the default data type of tensor of the framework is
32-bits floating point, the model size can be calculated as 2.57⇥ 4 = 10.28 Mbytes.

C.4 Calculation of Communication Cost

We measure the communication cost by {(PS2C+PC2S)⇥4}byte⇥K⇥R, where PS2C is number of
server-to-client transmitted parameters and PC2S is number of client-to-server transmitted parameters.
Depending on the FL algorithms, PS2C and PC2S are differently calculated. For example, FedFOMO
downloads a few random models from the server (10 by default as reported in the paper) but sends
only a single local model to the server. Our Factorized-FL ↵ only sends the small portion of
model parameters, U and vL�1, to server, while receiving a single set of U from server.

D Additional Experimental Results

Table 5: The Approximated Space-Time Analysis We provide the approximated space-time analysis for
training, inference, client-to-server communication costs, and server-to-client communication costs.

Method Training Inference C2S Cost S2C Cost
FedAvg W ·N W ·N W W

pFedPara (U + V)2 ·N (U + V)2 ·N U + V U + V
FedFOMO W ·N +H ·W ·Nval W ·N W (H + 1) ·W

Factorized-FL ↵ (U · V +M) ·N (U · V +M) ·N U + v U
Factorized-FL � (U · V +M) ·N (U · V +M) ·N U + V +M U + V +M

16

D.1 The Space-Time Analysis

We provide the approximated space-time complexity in Table 5, compared against those of the
essential baselines. Let W be the model size, N be the number of instances, H be the number of other
models (for FedFOMO algorithms), U be the size of the rank-1 vectors (or matrices for pFedPara) in
U , V be that of V , M be the that of M, v be the vector for the second last layer from V .For training
procedure of FedFOMO, it requires validation step for H number of other model weights on their
validation set at each local client. Note that, for communication costs of our methods (Fac.-FL),
(U ·V +M) ⇡ W and thus (U +V +M) < W for both Client-to-Server (C2S) and Server-to-Client
(S2C) communication costs. Please also refer to the actual size of the data transmission for the
communication cost in Table1.

D.2 Sparsity Analysis on FL Scenarios

In the main document, we show the effect of model size and sparsity controlled by �sparsity for a
single model. In this section, we analyze it under federated learning scenario. In Figure 8 (a), we
show the performance over model size in domain heterogeneous scenarios. As shown, our method
shows superior performance even with around 65% of the model size over the baseline model that
achieves the best performance (Per-FedAvg) amongst other baseline models. With 50% sparsity,
ours still shows competitive performance compared to Clustered-FL and FedAvg, while it starts
being significantly degenerated when sparsity becomes over 50%.

(a) Model size ratio controlled by �sparsity (b) Communication Costs

Figure 8: Model size and communication costs comparison (a) we plot accuracy over model size on domain
heterogeneous scenario. (b) we plot accuracy over transmission costs on domain heterogeneous scenario.

In Figure 8 (b), we show accuracy over communication costs. Note that, in our method, the model size
is not really related to the communication costs since we send very small portion of model parameters.
For example, even though we use almost full model size (�sparsity=3e-4), our communication cost is
significantly lesser than the other baseline models, as shown in the figure.

D.3 Test Accuracy Curves and Plots for Communication Costs

For label-heterogeneous FL scenario (Table 1 (Top), we provide all test accuracy curves over
communication rounds and transmission costs for results of CIFAR-10 and SVHN with stardard
IID/non-IID and permuted IID/non-IID partitions in Figure 10. For domain-heterogeneous FL
scenario (Table 1 (Bottom)), we provide performance of 20 clients In Figure 11.

17

Figure 9: Test accuracy curves over communication round for standard federated learning and label-
heterogeneous FL scenario: We provide test accuracy curves on CIFAR-10 and SVHN in standard iid/non-iid
and permuted iid/non-iid partitions (E=5,R=50).

18

Figure 10: Test accuracy over communication costs for standard federated learning and label-
heterogeneous FL scenario: We provide test accuracy curves on CIFAR-10 and SVHN in standard iid/non-iid
and permuted iid/non-iid partitions (E=5,R=50).

19

Figure 11: Performance of all 20 clients in domain heterogeneous scenario: We plot performance of 20
clients in domain-heterogeneous scenario, of which results are corresponding to Table 1 (Bottom).

20

	Introduction
	Related Work
	Problem Definition
	Preliminaries
	Agnostic Personalized Federated Learning

	Factorized Federated Learning
	Factorization of Model Parameters
	Similarity Matching
	Learning Objective

	Experiment
	Experimental Setup
	Experimental Result

	Conclusion
	Factorized-FL Algorithms
	Dataset Configurations
	Label Heterogeneous Scenario
	Domain Heterogeneous Scenario

	Training Details & Implementations
	Baseline Models
	Training Details
	ResNet-9 Architecture
	Calculation of Communication Cost

	Additional Experimental Results
	The Space-Time Analysis
	Sparsity Analysis on FL Scenarios
	Test Accuracy Curves and Plots for Communication Costs

