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Abstract

Designing learning systems which are invariant to certain data transformations is
critical in machine learning. Practitioners can typically enforce a desired invariance
on the trained model through the choice of a network architecture, e.g. using
convolutions for translations, or using data augmentation. Yet, enforcing true
invariance in the network can be difficult, and data invariances are not always known
a piori. State-of-the-art methods for learning data augmentation policies require
held-out data and are based on bilevel optimization problems, which are complex to
solve and often computationally demanding. In this work we investigate new ways
of learning invariances only from the training data. Using learnable augmentation
layers built directly in the network, we demonstrate that our method is very versatile.
It can incorporate any type of differentiable augmentation and be applied to a broad
class of learning problems beyond computer vision. We provide empirical evidence
showing that our approach is easier and faster to train than modern automatic
data augmentation techniques based on bilevel optimization, while achieving
comparable results. Experiments show that while the invariances transferred to a
model through automatic data augmentation are limited by the model expressivity,
the invariance yielded by our approach is insensitive to it by design.

1 Introduction

Inductive biases encoding known data symmetries are key to make deep learning models gener-
alize in high-dimensional settings such as computer vision, speech processing and computational
neuroscience, just to name a few. Convolutional layers [1] are the perfect illustration of this, as
their translation equivariant property allowed to reduce dramatically the size of the hypothesis space
compared to fully-connected layers, opening the way for modern computer vision achievements [2].
This illustrates one way to encode desired symmetries in deep learning models by hard-coding them
directly in the network architecture. An alternative way is to use data augmentation, where transfor-
mations encoding the desired symmetries are applied to the training examples, thus adding additional
cost when such symmetry is not recognized by the model. While in the first case invariances are built
in the network by design and are therefore a hard constraint, data augmentation promotes certain
invariances more softly. As opposed to being built-in, desired invariances are here trained-in [3].

In both cases, the invariances present in the data are not always known beforehand. While relevant
invariances are intuitive for some tasks such as object recognition (e.g. a slightly tilted or horizontally
flipped picture of a mug, still represents a mug), the same cannot be said for many important
predictive tasks such as classifying brain signals into different sleep stages [4, 5]. In order to be able
to tackle this problem of learning optimal systems from complex data two strategies are pursued in the
literature: neural architecture search (NAS) which aims to find the best architectural elements from
the training data, and automatic data augmentation (ADA) which aims to learn augmentation policies
automatically from a given dataset. Both fields tackle the problem very similarly, by parametrizing the
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network architecture or the augmentation policies, leading to a bilevel hyperparameters optimization
problem [6]. While these techniques allowed to find architectures and augmentations capable of
outperforming the state-of-the-art in some cases, solving such bilevel optimization problems is often
difficult and computationally demanding [7, 8, 9].

This work investigates how to learn data invariances directly from the training data, avoiding the
complex bilevel structure of ADA. To this end, we propose to integrate learnable data augmentation
layers within the network, and train them together with other model parameters using a novel
invariance promoting regularizer. Our approach extends previous works into a very general framework
that goes beyond computer vision tasks, as it can incorporate any type of differentiable augmentations.
We demonstrate the versatility of our method on two well controlled simulated settings, as well as an
image recognition and a sleep stage classification dataset. We show that our approach can correctly
select the transformations to which the data is invariant, and learn the true range of invariance,
even for nonlinear operations. Our experiments also demonstrate that the data augmentation layer
proposed here leads to almost perfect built-in invariances irrespective to the complexity of the original
network it is added to. Moreover, we are able to achieve comparable performance and speed as
state-of-the-art ADA approaches on our sleep staging experiment with a completely end-to-end
approach, avoiding tedious bilevel optimization parameters. The accompanying code can be found at
https://github.com/cedricrommel/augnet.

2 Related work

Automatic data augmentation Automatic data augmentation aims to learn relevant data invariances
which increase generalization power. More precisely, ADA is about searching augmentations
that, when applied during the model training, will minimize its validation loss. This objective is
summarized in the following bilevel optimization problem:

min
T

L(θ∗|Dvalid)

s.t. θ∗ ∈ argmin
θ

L(θ|T (Dtrain)) ,
(1)

where T is an augmentation policy, θ denotes the parameters of some predictive model, and L(θ|D)
its loss over the set D. Initial ADA approaches such as AutoAugment [6] and PBA [10] use discrete
search algorithms to approximately solve (1). Despite the impressive results obtained, they are
tremendously costly in computation time, which makes them impractical in many realistic settings. In
an attempt to alleviate this limitation, Fast AutoAugment [11] proposes to solve a surrogate density
matching problem, which breaks the bilevel structure of (1). It is hence substantially faster to solve,
since it does not require to train the model multiple times. However, this method needs a pre-trained
model and its success highly depend on whether the latter was able to learn relevant data invariances
on its own. Another way of carrying ADA efficiently is by using gradient-based algorithms, as
proposed in Faster AutoAugment [12], DADA [13] and ADDA [14]. While Faster AutoAugment
also tackles a surrogate density matching problem, DADA and ADDA solve the bilevel problem (1)
directly. These ADA methods are the most related to our work since we rely on the same differentiable
relaxations of standard augmentation transformations. However, we are mostly interested in building
the learned invariances into the model, which is out of the scope of these methods. Indeed, they
require substantially more overhead than our approach since they learn augmentations from the
validation set and need to retrain the model after the augmentation search is completed. Moreover,
DADA and ADDA are based on an alternating optimization of the inner and outer problems [15],
which suffer from noisy hypergradients on the outer level due to the stochastic inner problem, and
require careful tuning of the outer learning rate [7, 8, 9].

Embedding invariances within neural network architecture A vast literature has focused on
encoding predefined invariances or equivariances into neural network architectures. For instance,
group convolutions allow to extend traditional convolutional layers to groups of affine transformations
other than translations [16]. More related to our work, DeepSets [17] encode permutation invariance
by summing networks predictions. Although related, these methods are not designed for learning
symmetries from the data, which is the objective of this study.

Prior work on this matter from [18] proposes to learn invariances using the marginal likehood in
the context of Gaussian processes. In contrast, we are mostly focused on deep neural networks. [3]
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Figure 1: General architecture of AugNet. Input data is copied C times and randomly augmented by
the augmentation layers forming the augmentation module. Each copy is then mapped by the trunk
model f , whose predictions are averaged by the aggregation module. Parameters of both f and the
augmentation layers are learned together from the training set.

suggests to discover data symmetries and build them into neural networks by learning weight sharing
patterns in a meta-learning framework. Most related to our work is Augerino [19], which allows to
learn invariances to affine transformations from the training data, by adding a learnable sampling brick
to an existing model and averaging its predictions. They propose to learn the range of distributions
from which affine transformations are sampled, by parametrizing the corresponding Lie group in
terms of its Lie algebra. As it is unclear how to extend Augerino beyond Lie groups such as affine
transformations, its scope of application is rather limited, making it mostly taylored for computer
vision tasks. In this work we build on their ideas, extending Augerino to more diverse applications
with hierarchical differentiable data augmentation layers built into the networks. Moreover, in
addition to learning sampling distribution ranges, we also learn to select transformations which
encode the strongest data invariance.

3 AugNet: A general framework to embed data augmentation into neural
networks

3.1 Preliminaries

Let us consider a dataset (x1, y1), . . . , (xN , yN ) of observations sampled from an unknown dis-
tribution PX,Y over X × Y . In a supervised setting, one wants to use this data to train a model
f : X → Y (e.g. a neural network) so that it can predict y from new observations x sampled from
the marginal PX . Now, suppose that the data joint distribution PX,Y is invariant to a certain group
G of transformations acting on X , i.e. for any g ∈ G the distribution PX,Y is close (in some sense)
to the transformed distribution PgX,Y (cf. [20] for further details). This means for example that, if
Y = y is the class "dog", than the probability of sampling an image X = x of a dog is close to the
probability of sampling the transformed image gx. In this situation, one would like the model f to
have this same invariance by design, so that it does not have to learn it from scratch and can better
generalize to new observations of PX,Y . In other words, we would like f(gx) = f(x) for any g ∈ G.
One way of achieving this is to average f over G endowed with a uniform distribution νG:
Proposition 3.1. For a given model f : X → Y and a compact group of transformations G acting
on X , f̄ : X → Y defined as

f̄(x) = Eg∼νG
[f(gx)] ,

where νG is a uniform distribution on G, is invariant through the action of G.

The proof follows from the assumption that νG is uniform and G is a group, hence stable by
composition and inverse. So for any u ∈ G, gu−1 is also in G and

f̄(ux) = Eg∼νG
[f(gux)] = Ehu−1∼νG

[f(hx)] = Eh∼νG
[f(hx)] = f̄(x) ,
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where h = gu. In practice, we will consider sets of transformations G which do not necessarily form
a group (e.g. rotations within a given range). Because of this, f̄ is only approximately invariant,
although it can get very close to perfect invariance, as shown in our experiments from Section 4.3.

3.2 Architecture: augment, forward and aggregate

As the averaged model (3.1) is intractable, one can approximate it with an empirical average

f̃(x) =
1

C

C∑
c=1

f(gcx),

where gc’s are sampled from νG. In practice, using a large number C of sampled transformations
would be prohibitive as well. Fortunately, even when C is small, f̃ is an unbiased estimator of f̄ .
Hence stochastic gradient descent can be used to train exactly f̄ by minimizing the loss of f̃ .

Based on these observations, we propose to create nearly invariant neural networks made of three
blocks:

• an augmentation module, which takes an input x ∈ X , samples C transformations from G,
and outputs C transformed copies of x;

• a trunk model f , which can be any neural network mapping transformed inputs to predictions;

• and an aggregation module, which is responsible for averaging the C predictions.

This general architecture is illustrated on Figure 1 and referred to as AugNet hereafter. Note that
unlike standard data augmentation, the transformations distributions is part of the model and kept at
inference.

3.3 Augmentation layers

There are two missing elements from the architecture described in the previous section, namely the
choice of the set of transformations G and how transformations are sampled from it. Indeed, the true
invariances present in a dataset are often unknown, which is why we propose to learn both the set of
transformations and a parametrized distribution used to sample from them.

In this paper, we are mostly interested in transformations T : X → X defining a data augmentation,
such as random rotations in image recognition. Most often, such operations can transform the data
with more or less intensity depending on a parameter µ, called magnitude hereafter. If we take
the same example of random rotations, the magnitude can be the maximum angle by which we
are allowed to rotate the images. In order to have an homogeneous scale for all transformations
considered, we assume without loss of generality that magnitudes lie in the interval [0, 1], with µ = 0
being equivalent to the identity (i.e. no augmentation) and µ = 1 being the maximal transformation
strength considered. By using the reparametrization trick [21] or some other type of gradient estimator
such as straight-through [22] or relax [23], these transformations can be made differentiable with
respect to µ as shown for example by [12] for image augmentations and by [14] for augmentations of
electroencephalography signals (EEG). One can hence learn the right magnitude to use from the data
by backpropagating gradients through T .

But the correct transformation T describing a data invariance is also supposed to be unknown
and needs to be learned in addition to its magnitude. Let T = {T1, . . . , TQ} be a discrete set of
transformations possibly describing a data invariance. We propose to use backpropagation to learn
which transformation to pick from this set by using a layer consisting of a weighted average of all
transformations:

AugLayer(x;w, µ) =
Q∑

q=1

wqTq(x;µq), (2)

where the weights wq sum to 1. In practice, we optimize some other hidden weights w′ which pass
through a softmax activation w = σ(w′). As explained in Section 3.4 and demonstrated in our
experiments, this layer architecture favors a single transformation describing a correct data invariance
and tune its magnitude.
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As the data might be invariant to more than one transformation, these layers can be stacked on top of
each other, so that each one learns a different transformation (see Figure 1). This is justified by the
stability property of invariance for composition. Indeed, if a function h : X → Y is invariant to actions
u and g, then it must be invariant to their composition: h((u ◦ g)x) = h(u(gx)) = h(gx) = h(x).
Hence, we build augmentation modules with sequences of augmentation layers (2) and learn their
parameters w, µ from the training set together with the parameters of the trunk model.

3.4 Selective regularizer

As illustrated in our experiments from Section 4.1, if we train AugNet with a standard loss such
as the cross-entropy, the model tends to find the most unconstrained model: the one with µ = 0,
which never augments the data. The same was described for Augerino [19], which is why its authors
proposed to add a regularization R pushing towards broader distributions:

min
w,µ,θ

ℓ(f̃(x;w, µ, θ), y) + λR(µ) . (3)

0 1 1.0
w1 1

1

2

2
1.0

w
2

2
w

Figure 2: Illustration of the selective
property of AugNet’s regularizer. As the
norm or the vector w ⊙ µ increases and
µ1 reaches the maximal value allowed
by the training loss µ̄1, µ2 starts getting
greater than µ1, creating an imbalance in
the weights gradients. When µ2 reaches
µ̄2, the only way to keep increasing the
vector’s norm is by decreasing w1 to-
wards 0 and increasing w2 towards 1.

In the previous equation, θ denotes the parameters of the
trunk neural network f and ℓ is a loss function. With our
formalism, the regularization proposed by [19] is equiva-
lent to penalizing the negative L2-norm of the magnitude
vector: R(µ) = −∥µ∥2. As illustrated in the ablation ex-
periments of Section 4.1, this regularizer is not sufficient to
ensure that our augmentation layers do not converge to the
identity transform because we have an additional degree of
freedom than Augerino: the weights w. Hence, the model
may reach low loss values by just maximizing the weight
of a single transform wq = 1 with magnitude µq = 0,
while maximizing all other magnitudes µq ̸=q′ = 1. Be-
cause of this, we propose instead to penalize the norm
of the element-wise product of weights and magnitudes:
R(w, µ) = −∥w ⊙ µ∥2. This has the effect of tying to-
gether wq and µq of the same transformation Tq , avoiding
the problem described before.

Another property of this regularization is that it promotes
the selection of a single transformation per augmentation
layer, as illustrated on Figure 2 for the simple case of
n = 2 transformations. Because

∑
q wq = w1 + w2 = 1,

the vector w ⊙ µ = (x1, x2) ∈ [0, 1]2 is bound to move
within the line of equation x2 = µ2(1 − x1

µ1
) when the

magnitudes µ1 and µ2 are fixed. At the beginning of the
training, with all weights initialized at 0.5 and magnitudes
close to 0, if neither T1 or T2 harm the training, the vector’s norm can grow following the bissector
by increasing the magnitudes equally. Once one of the transformations T1 reaches a magnitude µ̄1, it
will start harming the training loss and its gradient will converge to 0. This introduces an imbalance
between the transformations as µ2 keeps increasing, until it reaches its maximal value µ̄2 > µ̄1. As
w ⊙ µ is still bound to move within the line µ̄2(1− x1

µ̄1
), the only way to keep increasing its norm is

by pointing more and more vertically, until it gets to w2 = 1 and w1 = 0. This can also be seen from
the expression of the gradients of the regularizer:

∂R2

∂wi
(w, µ̄) = 2µ̄2

i − 2wi(µ̄
2
1 + µ̄2

2) .

which implies that:
∇w1R

2(w, µ̄) ≤ ∇w2R
2(w, µ̄) ⇐⇒ µ̄1 ≤ µ̄2 .

Each augmentation layer hence promotes the transformation with the highest admissible magnitude.

4 Experiments with synthetic data

In this section we present experimental results of AugNet in controlled settings in order to verify
empirically some of its properties and compare it to Augerino and standard data augmentations.
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Figure 3: (a) Learned rotation angle during training. Both Augerino [19] (blue) and AugNet (orange)
are able to learn the correct level of rotation invariance in the data. When the regularization is
removed from AugNet (red), it converges to the identity transform (no rotation) as observed in [19].
If we replace the regularizer in AugNet by Augerino’s one, AugNet misses the correct rotation angle
(green). (b) Learned frequency shift invariance. AugNet is able to learn nonlinear invariances from
various types of data.

4.1 Comparison to Augerino

Learning the correct invariance First, we reproduced the Mario-Iggy experiment by [19] to show
that AugNet can also learn affine invariances from image datasets. The data is generated from two
initial images, which are rotated by a random angle either between [−π/4, π/4] (labels 0 and 2)
or between [−π,−3π/4]

⋃
[3π/4, π] (labels 1 and 3). This procedure is illustrated in Figure A.1.

Hence, labels depend both on the initial image and on whether it has its head pointing up or down. By
design, the data is invariant to inputs rotations between [−π/4, π/4], and the experiments objective
is to verify whether AugNet can learn this invariance. For this, we use a single augmentation
layer containing 5 geometric augmentations: translate-x, translate-y, rotate, shear-x and
shear-y. Note that while these augmentations are also encoded in Augerino, we don’t use the Lie
algebra and exponential maps to implement them here. Maximal translations are set to half the image
width/height, maximal rotations correspond to an angle of ±π and maximal shearing coefficients are
0.3. The trunk model used is a simple 5-layer convolutional network, whose architecture is described
in Section A.1 together with other experimental details. As shown on Figure 3a, both Augerino (blue)
and AugNet (orange) are capable of learning the correct angle of invariance from the data.

Ablation study As explained in Section 3.4, the regularizer plays a crucial role both in AugNet and
Augerino. It can be seen on Figure 3a that without regularization the rotation angle converges to 0.
Indeed, our model naturally tends to nullify any transformations of the input, similarly to what is
shown by [19] for Augerino. Furthermore, we also see that when we replace AugNet’s regularizer
by Augerino’s one (−∥µ∥2), the model does not learn the correct angle. This happens because this
penalty is not sufficient to prevent the model from converging to the identity transform, as shown
by the learned weights and magnitudes depicted at the bottom of Figure 4. We see indeed that the
model maximizes the weight for translate-x and minimizes its magnitude, while maximizing the
magnitude of other transformations which have very small weights. In contrast, we can see at the top
of Figure 4 that the regularizer we propose allows to both select the rotate operation and correctly
tune its magnitude.

4.2 Application to problems beyond computer vision

In this experiment we demonstrate that AugNet is also applicable to other types of data and can
learn non-linear transformations which go beyond the scope of Augerino. For this, we create a
dataset consisting of four classes corresponding to 4 generating frequencies: ω = 2, 4, 6 and 8 Hz.
For each of these frequencies, 10 seconds long sinusoidal waves of unit amplitude are created with
frequencies sampled uniformly between ω± 0.5 Hz. Moreover, the phase of these waves are sampled
uniformly and they are corrupted with additive Gaussian white noise with a standard-deviation of
0.5 (cf. Figure A.4). We generate 400 training examples and 200 test examples. The learning task
consists in predicting the correct generating frequency ω from the noisy signals. Note that, because
classes are separated by 1 Hz, the dataset presents an invariance to frequency shifts of the inputs
between ±0.5 Hz.
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Figure 4: Top: With its standard regularizer, AugNet quickly learns to maximize the probability
weight of rotation and adjusts the corresponding magnitude, ignoring other irrelevant transformations.
Bottom: With Augerino’s regularizer, the model may still converge to the identity map by maximizing
the probability weight of any (irrelevant) transformation and minimizing its magnitude towards 0.

In order to learn this invariance, we use a single augmentation layer implementing three augmentations
from the EEG literature: frequency shift [14], FT surrogate [24] and Gaussian noise [25].
The trunk model used is a simple 3-layer convolutional network described in Section A.2 together
with other experimental settings. As shown in Figure 3b, AugNet is able to learn the correct range of
invariance, and select the correct transformation. This experiment was repeated in Section B.1 with
multiple augmentation layers to show that AugNet is robust to the chosen number of layers.

4.3 Insensitivity to model capacity
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Figure 5: Top: Model invariance (4) to the true fre-
quency shift in the data across different architectures.
We report the median values across the test set, with
a 75% confidence interval. Data augmentation helps
to increase the model invariance, but is limited by its
expressivity, even when data invariances are known.
AugNet learns to be almost perfectly invariant and
is insensitive to model capacity. Bottom: AugNet
outperforms a model trained with oracle augmenta-
tion with 3x fewer parameters.

In this experiment we aim to demonstrate that
models trained with our proposed methodol-
ogy are invariant regardless of the capacity of
the trunk model f used, which represents an
advantage over (automatic) data augmentation.
For this, we re-use the sinusoids dataset
from Section 4.2 and compare three methods:
a baseline model trained directly on the
raw data, the same model trained with an
oracle augmentation T (frequency shift
with bounds of ±0.5 Hz) and an AugNet
using the baseline as trunk model. Unlike
in Section 4.2, we use here a very small
multi-layer perceptron with a varying number
of neurons and layers, in order to be able to
assess the impact of the model’s expressivity.

In addition to the generalization power of the
trained models, evaluated through their test
accuracy, we are interested in how invariant
they are to the true symmetry T encoded in
the data. To gauge this property for a model
f at some input x ∈ X , we use the following
metric adapted from [26]:

InvT (f(x)) =
b− d(f(x), f(T (x)))

b
, (4)

where d is the cosine distance and
b = d(f(xi), f(xj)) is a baseline distance
between randomly shuffled inputs 1. As applying T to the inputs of an invariant model should leave
its outputs unchanged, the closer InvT (f(x)) is to 1 for various inputs x, the more f is invariant to T .

1Here f refers to the activations before the final softmax.
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Figure 5 reports the median invariance across the test set of the three models for different number of
layers and neurons. It can be seen that data augmentation helps to increase the level of invariance of
the baseline model considerably. However, the level of invariance reached for the smallest models
is lower than for larger models, suggesting that the former cannot encode perfectly the invariance
taught to them through data augmentation. This problem would be worse in a realistic setting where
augmentations are more complex and imperfectly learned by ADA approaches rather than known a
priori. On the contrary, results show that AugNet is capable of learning the correct augmentation from
scratch and make the baseline model almost perfectly invariant to it, regardless of its expressivity.
Furthermore, the plot at the bottom of Figure 5 suggests that the level of invariance of each model is
tightly related to its predictive performance.

5 Experiments with real datasets
5.1 Image recognition

In this experiment we showcase AugNet on a standard image recognition task using the CIFAR10
dataset [27]. All models considered in this experiment are trained for 300 epochs over 5 different
seeds on a random 80% fraction of the official CIFAR10 training set. The remaining 20% is used as a
validation set for early-stopping and choosing hyperparameters, and the official test set is used for
reporting performance metrics. The trunk model used here is a pre-activated ResNet18 [28, 29].

We consider five baselines in this experiment: Augerino [19], AutoAugment [6] (pretrained for 5000h),
RandAugment [30], as well as the trunk model trained with and without fixed data augmentations
(horizontal-flip with probability 0.5 and random-crop of 32x32 pixels with a padding of 4
pixels [2]). For Augerino, AugNet and the baseline with fixed augmentations, we apply a standard
normalization of RGB channels to the augmented examples before feeding them to the trunk model.
AugNet’s augmentation module is made of two layers containing the five augmentations detailed in
Section 4.1 and a third layer with the following four different augmentations: horizontal-flip,
sample-pairing [31], contrast, brightness jitter [32]. Both AugNet and Augerino were
trained with a number of copies set to C = 1 and tested with C = 20 to take advantage of the
invariant averaging architecture. Contrary to [6, 30], we do not add the learned augmentations on top
of the fixed baseline transformations. The reader is referred to Section A.3 for further experimental
details, and to Section B.2 for a sensitivity analysis on hyperparameters C and λ.

Figure 6a reports the performance across epochs. For a given epoch, we report the test accuracy corre-
sponding to the best validation accuracy up to that point in training (equivalent to having early-stopped
the model). The performance of the baseline model with no augmentation (86.6±0%) is considerably
improved by Augerino (91.6± 0.1%), AutoAugment (92.0± 0.1%), RandAugment (92.4± 0.2%)
and AugNet (93.2± 0.4%). AugNet consistently outperforms all three baselines over all seeds within
a 90% confidence interval. This is probably due to AugNet selecting transformations which cannot be
learned by Augerino, such as the horizontal flip (cf. Figure B.7), and to the better invariance of
AugNet compared to models trained with data augmentation (cf. Figure B.9). Concerning the baseline
with fixed augmentations (93.6± 0.2%), AugNet reaches a comparable performance. This demon-
strates that in a realistic scenario with data from a real-world application where augmentations have
not been explored as extensively as for CIFAR10, AugNet can be trained end-to-end and lead to a per-
formance comparable to what we would get after manually trying many augmentation combinations.

5.2 Sleep stage classification

Similarly to Section 4.2, this experiment aims to demonstrate the practical usefulness of AugNet in a
realistic setting beyond affine transformations. For this, a sleep stage classification task is considered.
As most commonly done [33], it consists in assigning to windows of 30 s of EEG signals a label
among five: Wake (W), Rapid Eye Movement (REM) and Non-REM of depth 1, 2 or 3 (N1, N2,
N3). The public dataset MASS - Session 3 [34] is used for this purpose (more details in Section A.4).
As done by [14], both the training and validation sets consist of 24 nights each, and the test set
contained 12 nights. The trunk model used for this experiment is the convolutional network proposed
in [4], whose architecture is detailed in section Section A.4 together with other experimental settings.
In this experiment, we compare the proposed approach to ADA methods. For this, two discrete
search methods were considered: AutoAugment [6] and Fast AutoAugment [11]. Additionally, three
gradient-based methods were also tested: Faster AutoAugment [12], DADA [13] and ADDA [14]. All
these methods shared the same policy architecture, consisting in 5 subpolicies made of 2 augmentation
transformations (cf. Section A.4). As for the previous experiment, we used two types of augmentation
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Figure 6: (a) Median test accuracy on CIFAR10, over 5 seeds, where shades represent 90% confidence.
AugNet learns invariances from scratch, outperforms automatic search approaches and achieves a
performance comparable to state-of-the-art fixed data augmentations. (b) Median performance (over
5 folds) on the MASS dataset, as a function of the computation time. AugNet is comparable in speed
and accuracy to ADDA, while being trained end-to-end. This figure is also available with error bars
in the appendix Figure B.10

layers to implement AugNet: two layers capable of sampling time-frequency transformations, and
one layer made of sensors transformations (cf. Table A.4).

Figure 6b presents the balanced accuracy over the test set as a function of the computation time. For
ADA methods, we stopped the search every given number of steps (2 epochs or 5 samplings), used
the learned policy to retrain the model from scratch (leading to a point in Figure 6b) and resumed the
search from where it stopped. For each run, we report the test accuracy of the best retrained model
according to the validation accuracy. Also note that some methods (Fast AutoAugment and ADDA)
require a pretraining of the model. Hence, the reported GPU hours for ADA methods correspond to
the sum of pretraining, search and retraining time, which explains why they start with some horizontal
offset. We see that, given a budget of 12 hours, AugNet is able to outperform four out of the five
state-of-the-art approaches both in speed and accuracy. It reaches a final performance comparable
to the recently proposed ADDA, while requiring considerably less efforts in parameter fine tuning.
AugNet only requires to set two hyperparameters: the regularization parameter λ which is only
one-dimensional, and the number augmentation layers stacked in the network. In contrast bilevel
approaches require to carefully tune jointly the learning rate and the batch size of the validation set for
the outer problem. Moreover, while AugNet is trained end-to-end once on the training set, ADDA re-
quires pre-training the model and a final retraining of the model with the learned augmentation policy.

Conclusion
In this paper we propose a new method coined AugNet to learn data invariances from the training data,
thanks to differentiable data augmentation layers embedded in a deep neural network. Our method
can incorporate any type of differentiable augmentations and is applicable to a broad class of learning
problems. We show that our approach can correctly select the transformation to which the data is
invariant, and learn the true range of invariance, even for nonlinear operations. While (automatic) data
augmentation is limited by the capacity of the model to encode symmetries, our approach leads to al-
most perfect invariance regardless of the model size. On computer vision tasks, this advantage allows
our method to reach high generalization power without hand-crafted data augmentations. Promising
results are also obtained for sleep stage classification, where AugNet outperforms most ADA ap-
proaches both in speed and final performance with end-to-end training, avoiding tedious bilevel setup.

Limitations In order to be able reach top performance, a large number of copies C might be
necessary, increasing AugNet’s computational complexity at test time (cf. Section B.2). This means
that a proper trade-off between performance and speed has to be determined for each use-case.
Moreover, although AugNet is able to learn augmentations in a broader scope than previous end-to-
end methods, it is still limited to augmentations that can be relaxed into differentiable surrogates and
requires the availability of a set of possible augmentations T . These limitations are not specific to
AugNet however, as it is a standard requirement in ADA [6, 12, 13, 11].
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(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] Our work is based on
code from [19] and [12], as well as open-source libraries like MNE-PYTHON [35] and
BRAINDECODE [36]. All of them are cited in the paper and in our open-sourced code.

(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No] Note however that we only use public datasets
and that the EEG dataset used has been anonymized by their creators.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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