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Abstract

Machine learning classifiers have been demonstrated, both empirically and theoret-
ically, to be robust to label noise under certain conditions — notably the typical
assumption is that label noise is independent of the features given the class label.
We provide a theoretical framework that generalizes beyond this typical assumption
by modeling label noise as a distribution over feature space. We show that both the
scale and the shape of the noise distribution influence the posterior likelihood; and
the shape of the noise distribution has a stronger impact on classification perfor-
mance if the noise is concentrated in feature space where the decision boundary
can be moved. For the special case of uniform label noise (independent of features
and the class label), we show that the Bayes optimal classifier for c classes is
robust to label noise until the ratio of noisy samples goes above c−1

c (e.g. 90%
for 10 classes), which we call the tipping point. However, for the special case
of class-dependent label noise (independent of features given the class label), the
tipping point can be as low as 50%. Most importantly, we show that when the
noise distribution targets decision boundaries (label noise is directly dependent
on feature space), classification robustness can drop off even at a small scale of
noise. Even when evaluating recent label-noise mitigation methods we see reduced
accuracy when label noise is dependent on features. These findings explain why
machine learning often handles label noise well if the noise distribution is uniform
in feature-space; yet it also points to the difficulty of overcoming label noise when
it is concentrated in a region of feature space where a decision boundary can move.

1 Introduction

An open question in machine learning is how the quality of training data, especially the labels, affects
the learned model [2, 4, 13, 22, 24]. As an example shown in Figure 1, we imagine a classification
task for detecting cancer based on observed biomarkers. The generative model assumes that there
is a hidden variable, called Y ∗, denoting whether a person actually has cancer or not. Depending
on the state of Y ∗, biomarkers can be observed, denoted as a feature vector x, drawn from some
distribution x ∼ P [X|Y ∗]. The goal of machine learning (ML) is to predict the presence of cancer
given the biomarkers — yet to train and evaluate the ML model, we have diagnoses, {y}, which may
not always be correct (y ̸= y∗ for some samples). The question of label uncertainty is thus: What
happens when the observed labels, y, do not match the hidden true labels y∗? Our theory concludes
that the answer depends on the shape of the noisy distribution P [Y |X] with respect to feature space.
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(b) Effect of label flip

Figure 1: Model of label noise

(a) No noise (b) Uniform 20% noise (c) Class-dependent noise

(d) Resampling noise (e) Resampling inverse (f) Gap min (g) Gap max

Figure 2: Scatterplot of 2-dimensional 10-class (classes are color and shape coded) Gaussian data.
(a) original data without label noise; and with 20% label flip noise for various types of label noise
distributions: (b) uniform, (c) class-dependent, and (d)-(g) feature-dependent.

Empirical research suggests that ML is often able to generalize beyond label noise injected in training
data to make accurate predictions, particularly when the noisy label is sampled independently of
the features and the true label, i.e. P [Y |X,Y ∗] = P [Y ] [2–5, 22, 24, 25]. This is a remarkable
finding considering how messy such data appears, as shown in Fig. 2b. However, this robustness
to label noise drops significantly when these approaches test their findings by synthesizing label
noise with the assumption that the noise is independent of the features given the true class label, i.e.
P [Y |X,Y ∗] = P [Y |Y ∗]. In other words, for a given class, all samples in that class are equally likely
to have the same erroneous label, as demonstrated in Fig. 2c. We theoretically analyze the posterior
likelihood of the true class given noisy training labels to demonstrate that both of these types of label
noise (uniform and class-dependent) behave similarly but with very different tipping points of noise
level beyond which the true labels are not recoverable.

While the assumption of label noise being independent of features is convenient for generating
noisy samples [3, 5, 13, 28], it is not clear that it is an appropriate assumption [4, 24]. More
realistically, we expect that label noise occurs when the features are ambiguous; such as when
contradictory biomarkers are observed in an oncology patient, or when an image to be classified is
blurry. In other words, P [Y |X,Y ∗] ̸= P [Y |Y ∗]. Figs. 2d and 2f show data generated with two noise
distributions such that label noise is most likely to occur in regions of feature-space that are near
class boundaries; while Figs. 2e and 2g show data where label flips are most likely to occur far from
true class boundaries. Our theory and empirical work demonstrate that feature-dependent label flips
that create noisy class boundaries far from the true class boundaries have the most negative impact
on classification accuracy, even at levels of label noise much lower than the tipping points seen in
uniform and class-dependent label noise.

2



We demonstrate theoretically and empirically that classification is generally robust to uniform and
class-dependent label noise until the scale of the noise exceeds a threshold that depends on the
“spread" of the noise distribution; but that beyond this tipping point, classification accuracy declines
rapidly. Yet, we also demonstrate that such robustness to label noise is misleading; because our
introduction of feature-dependent label noise shows that classification accuracy can be lowered
significantly even for small amounts of label noise. We evaluate, for the first time, the damaging
effect of feature-dependent label noise on recent strategies for mitigating label noise. We conclude
that the shape of the label noise distribution with respect to feature space is a significant factor in
label noise robustness. Our theoretical findings should guide future theoretical and empirical work on
label noise to focus studies on the most informative combinations of noise scale and shape; saving
significant computational effort while improving the research community’s ability to gain insight
about how label noise affects learned models.

2 Preliminaries

2.1 Problem Statement

We consider the problem of label noise in which, for given data sample, (X,Y ∗); for some fraction of
samples, the true labels Y ∗ ∈ {1, . . . , c} are replaced with incorrect (noisy) labels Y . The fraction of
noisy samples is called the noise level. The typical paradigm for modelling such noise is using label
flips [16, 22], where for each sample, there is some probability that the true label will be flipped to an
incorrect label. Which label it flips to is typically modelled in one of two ways: 1) uniform noise
(also known as symmetric label noise): each incorrect class is equally likely; or 2) class-dependent
noise (also known as asymmetric label noise) in which some classes are more likely than others for a
given true class. In the case of class-dependent noise, the noise function is typically represented as a
c× c label transition matrix describing the probably of a transition from Y ∗ to Y . The number of
non-zero off-diagonal elements in each row of this matrix (or inversely, the sparsity) characterizes the
spread of the noise distribution [13]. In other words, when spread is c− 1, the noise distribution is
uniform, but the lower the sparsity, the further from uniform the distribution is.

2.2 Related Work

Several methods have been developed to improve classifier robustness to noisy labels during training.
CleanLab removes noisy samples from training [13]. Methods like CoTeaching weight the samples
[5, 21]. Approximate expectation-maximization infers the true label [4]. MentorNet uses a teacher-
student learning approach [7]. MixUp interpolates pairs of examples and their labels [28]. SoftLabels
treats the labels as learnable parameters [24]. Symmetric cross-entropy (SCE) uses a robust loss
function [25]. Similar to our paper, [3] evaluates robustness of existing approaches to label noise.
Chen et al. [2] shows that the noisy test accuracy is a quadratic function of the noise level for the case
of uniform label noise. Yet, none of these approaches are yet evaluated on feature-dependent noise.

A few papers argue for the need to consider feature-dependent label noise, but they do not evaluate
their approaches in this setting [4, 24]. Notably, two papers replace the label-flip paradigm with
real-world webly-labeled noise (which is likely feature-dependent) [8, 10], but simultaneously induce
a domain shift which makes analysis challenging; and the dependence on the features is unknown.

3 Theory

We show that the estimation of the true conditional distribution P [Y ∗|X] depends on the level of
noise, as well as the shape of the noise. We define the classification problem of c classes with label
flips; and examine different types of label noise: uniform, class-dependent, and feature-dependent.
Proofs are given in the Supplement.

3.1 Problem Definition: Classification with Label Flips

In a classification problem with c classes, we are given an n-sample of pairs (X,Y ∗) ∈ Rd ×
{1, . . . , c}, with joint distribution determined by

fk(x) = P [X = dx|Y ∗ = k], and P [Y ∗ = k] = π∗
k, (1)
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for each k ∈ {1, . . . , c}. We want to estimate the clean posterior:

m∗
k(x) ≜ P [Y ∗ = k|X = x] =

π∗
kfk(x)∑c

i=1 π
∗
i fi(x)

. (2)

Rather than observing Y ∗, we observe the noisy label Y with probability P [Y = i|Y ∗ = k,X =
x] = ηki(x) where

∑c
i=1 ηki(x) = 1. In other words, Y |Y ∗, X is multinomial distributed such that

1− ηkk(x) is the probability of a label flip and each ηki(x) influences which noisy label, i, may be
chosen. The impact of label noise is that the estimate of the noisy posterior is

mk(x) ≜ P [Y = k|X = x] =

c∑
i=1

ηik(x)m
∗
i (x) (3)

3.2 Uniform Label Noise

Classifiers are generally robust to uniform label noise up to a tipping point, as has been well-
demonstrated empirically.

Definition 3.1 (Uniform noise) For a classification problem with c classes, given the scale of label
noise, 0 ≤ ϵ ≤ 1, the distribution of noisy labels is constant such that:

ηki =

{
1− ϵ, for i = k
ϵ

c−1 , ∀i ∈ [1, . . . , c] s.t. i ̸= k
(4)

Plugging the Definition 3.1 into the noisy posterior Eq (3); the noisy posterior under uniform noise is:

mk(x) = m∗
k(x)−

cϵ

c− 1
m∗

k(x) +
ϵ

c− 1
(5)

Lemma 3.2 (Noisy accuracy) Given noisy train and test samples according to Definition 3.1, the
noisy test accuracy of a Bayes optimal classifier is quadratic with respect to the noise level ϵ:

E[I([argmax
i

mi(x)] = k)|Y = k] = m̄∗
k

(
1− cϵ

c− 1

)2

+
ϵ

c− 1

(
2− cϵ

c− 1

)
(6)

Corollary 3.2.1 Given noisy train and test samples according to Definition 3.1, the minimum noisy
accuracy of 1

c occurs at ϵ = c−1
c

Fig 3a plots the quadratic of Eq (6) which shows that models trained on noisy data will at first
decrease in accuracy as tested on noisy labels, but then begin to fit the label noise rather than the true
labels as the fraction of noisy labels increases beyond the minimizing point.

Theorem 3.3 (Clean accuracy) Given noisy train samples according to Definition 3.1 and clean
test samples, the clean test accuracy of a Bayes optimal classifier is logistic with respect to the noise
level ϵ:

E[I([argmax
i

mi(x)] = k)|Y ∗ = k] ≈ m̄∗
k

1 + b
c

c−1 (2m̄
∗
k−1)(ϵ− c−1

c )
, (7)

where b is an arbitrary base of the exponent used in the softmax approximation to the argmax. The
larger the value of b, the closer to the true maximum function.

Corollary 3.3.1 Given noisy train samples according to Definition 3.1 and clean test samples, clean
accuracy drops to m̄∗

k

2 at ϵ = c−1
c .

See Fig 3. For a dataset like ImageNet with 1000 classes, the clean accuracy would only drop off
when the noise level is above 99.9%. This finding is consistent with empirical studies [17] showing
that deep learning models are robust to this type of label noise; particularly when there are large
numbers of classes.

4



(a) Noisy accuracy, Eq (6) (b) Clean accuracy, Eq (7)

Figure 3: Theoretical accuracy of predicting noisy or clean labels for uniform label noise (with
m∗ = 0.9 and b = e50).

3.3 Class-Dependent Flips

We consider the special case of class-dependent label noise that is also well-demonstrated empirically.
Often, this class-dependent noise is defined such that ηki = 0 for several i. We refer to the number
of non-zero elements as the spread of the class-dependent noise function. In the least-spread case,
ηkj = ϵ for some j ∈ {1, . . . , c} \ {k} while ηki = 0 for all other values of i ∈ {1, . . . , c} \ {k, j}.

Definition 3.4 (Class-dependent noise) For a classification problem with c classes, given the scale
of label noise, 0 ≤ ϵ ≤ 1, and spread of noisy label distribution, 1 ≤ s ≤ c− 1; the distribution of
noisy labels is constant within each class k ∈ {1, . . . , c}:

ηki =

{
1− ϵ, for i = k

ϵ · tki, ∀i ∈ {1, . . . , c} \ {k} and
∑

i ̸=k |tki|0 = s and
∑

i ̸=k tki = 1
(8)

Plugging Definition 3.4 into the noisy posterior Eq (3) we see that the noisy posterior under class-
dependent noise depends on the spread, s, rather than the total number of classes:

mk(x) = m∗
k(x)

(
1− ϵ(s+ 1)

s

)
+

ϵ

s
(9)

Lemma 3.5 (Noisy accuracy) Given noisy train and test samples according to Definition 3.4, the
noisy test accuracy of a Bayes optimal classifier is quadratic with respect to the noise level ϵ and
spread s:

E[I([argmax
i

mi(x)] = k)|Y = k] = m̄∗
k

(
1− ϵ(s+ 1)

s

)2

+
ϵ

s

(
2− ϵ(s+ 1)

s

)
(10)

Theorem 3.6 (Clean accuracy) Given noisy train samples according to Definition 3.4 and clean
test samples, the clean test accuracy of a Bayes optimal classifier is logistic with respect to the noise
level ϵ:

E[I([argmax
i

mi(x)] = k)|Y ∗ = k] ≈ m̄∗
k

1 + b
s+1
s (2m̄∗

k−1)(ϵ− s
s+1 )

(11)

Class-dependent noise impacts classification accuracy in a similar way to uniform noise; however,
the tipping-point in class-dependent noise is controlled by the spread rather than by the total number
of classes. Thus, even for a large number of classes, the tipping point can be as low as ϵ = 1/2.

3.4 Feature-Dependent Label Noise

We consider the more general paradigm of feature-dependent label noise which has not received
much attention either theoretically or empirically. Consider the simplest feature-dependent label-flip
scenario where a single sample (X = x, Y ∗ = k) for some fixed x with true label k will have noise
introduced as (X = x, Y = j) for some j ∈ {1, . . . , c}. No matter which noisy label j appears,
the posterior likelihood of the noisy data will be reduced to mk(x) = (1− p(x))m∗

k(x); while the
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posterior likelihood of the incorrect label will increase to mj(x) = m∗
j (x) + p(x)m∗

k(x). In the
Bayes optimal classifier, classification errors occur when:

mk(x) < max
i∈{1,...,c}\k

mi(x) , (12)

for true label k for given point x. Therefore, for a fixed x, the label-flip Y = j that would have the
most impact on classification (the greatest increase of the right-hand side of the inequality) is

j = arg max
i∈{1,...,c}\k

mi(x) . (13)

An immediate consequence of this observation is that worst-case label noise is a function of x;
therefore any evaluation of label noise (empirical or theoretical) that does not depend on features is
optimistic.

Now, consider which samples, i.e. the shape of ηkk(x), would have the most impact on clean
classification accuracy. By re-arranging Eq (12), we see that the ratio mk(x)/maxi∈{1,...,c}\k mi(x)
defines the optimal classification boundaries. By targeting label flips on samples x where this ratio is
high, a new (noisy) classification boundary can be created; as illustrated in Fig. 1b.

Claim 3.7 (Worst-case noise) For a classification problem with c classes, the samples, x, that have
the greatest impact on clean label prediction are those that maximize the ratio between the likelihood
of the true class to the likelihood of the most-likely incorrect class:

ηki(x) ∝
{(

P [Y ∗=k|x]
maxj ̸=k P [Y ∗=j|x]

)−1

, for i = k

I[j = argmaxi̸=k P [Y ∗ = i|x]], ∀i ∈ {1, . . . , c} \ {k}
(14)

3.5 Discussion of theoretical results

Relationship to existing theory It is known that label noise is not generally distinguishable from
other label uncertainty (such as class overlap) [19, 20]. Various approaches provide guarantees of label
noise identification through constraints on m∗

k(x) including “purity" of classes [1, 11, 15, 19, 20].
Other methods provide guarantees on robust learning given constraints on the level of label noise
[1, 4, 26], or level of noise in classification [2, 13], or only for binary classification [12], or restricted
to generalized linear models [21]. In contrast, we consider the unconstrained problem to analyze the
effect of label flips for any noise level and feature-dependent noise. Rather than proving guarantees
about effectiveness of models under constraints; we show that when such constraints do not hold,
classification degrades suddenly—not gracefully.

Setting m̄∗
k = 1 in our Corollary 3.2.1 yields the special case given in Corollary 1.1 of [2]. Our

generalization beyond the perfect classifiers (defined in our notation as m∗
k(x) = m̄∗

k = 1) assumed
in [2] is important because if we apply our result to the problem of identifying noisy labels (as
presented in [2]); then we see that the accuracy of predicting noisy labels is a function of m∗

k(x) —
i.e. accurate prediction of label noise depends on the features — even when label noise is independent
of the features.

Implications The standard assumption of label noise being independent of features can lead to
overly-optimistic findings on the robustness of classification algorithms. We can see that if label noise
is applied uniformly randomly in feature space (even if it is non-uniform across classes), then even
as the noisy likelihood begins to decrease, classification accuracy remains high until the likelihood
estimate decreases below the tipping point.

4 Synthetic Data Experiments

The theory is validated empirically on synthetic data for which P [Y ∗|X] and P [Y |X] are known.
Data is 2-d Gaussian with up to 10 classes, with some classes overlapping and others easily-separable
as shown in Fig. 2a. We also empirically evaluate 5-d Gaussian data with up to 50 classes. All code
will be made available as open-source.

For uniform noise, we sample y ∼ ηki according to Eq. 4 for varying numbers of classes, c ∈
{2, 4, 6, 8, 9, 10}, and noise ratio, ϵ ∈ {0, 0.1, . . . , 0.9, 1}. For class-dependent noise, we sample
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Noise name ηkk(x) ηkj(x)
Uniform-x = 1− ϵ ∝ P [Y ∗ = j|x]
Resampling ∝ P [Y ∗ = k|x] ∝ P [Y ∗ = j|x]
InverseResampling ∝ P [Y ∗ = k|x]−1 ∝ P [Y ∗ = j|x]
GapMin ∝ P [Y ∗=k|x]

maxj ̸=k P [Y ∗=j|x] = ϵI[j == argmaxi ̸=k P [Y ∗ = i|x]]
GapMax ∝

(
P [Y ∗=k|x]

maxj ̸=k P [Y ∗=j|x]

)−1

= ϵI[j == argmaxi ̸=k P [Y ∗ = i|x]]
Table 1: Types of feature-dependent noise.
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(b) 2d clean test
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(d) 5d clean test

Figure 4: Deep learning results on synthetic data with uniform noise.

y ∼ ηki according to Eq. 8 for varying numbers of classes, c ∈ {2, 4, 6, 8, 9, 10}; noise ratio,
ϵ ∈ {0, 0.1, . . . , 0.9, 1}; and spread ∈ {1, 2, 5}. For feature-dependent noise, we sample y in five
different ways as summarized in Table 1. (1) For uniform-x, the probability of a given sample flipping
is constant: ηkk(x) = 1 − ϵ; while the choice of label to flip to is proportional to the most-likely
incorrect label: ηkj(x) ∝ P [Y ∗ = j|x]. (2) For resampling noise, ηkk(x) ∝ P [Y ∗ = k|x], in other
words, samples that are least likely in a true class are the most likely to flip. (3) For inverse resampling,
ηkk(x) ∝ P [Y ∗ = k|x]−1, i.e., samples with the highest likelihood in the true class are most likely
to flip. (4) For minimum-gap noise, ηkk(x) ∝ P [Y ∗=k|x]

maxj ̸=k P [Y ∗=j|x] , so that the samples nearest decision

boundaries are the most likely to flip. (5) For maximum-gap noise, ηkk(x) ∝ maxj ̸=k P [Y ∗=j|x]
P [Y ∗=k|x] , so

that the samples farthest from decision boundaries are the most likely to flip.

There are 100 samples per class in the training set and 100 samples per class in the test set. The
feature matrices Xtrain and Xtest are the same across all trials. The corresponding noisy label vectors
Ytrain and Ytest are sampled for each combination of noise settings. We also evaluate the accuracy
of the held-out clean test labels Y∗

test. The noise level ϵ varies from 0 to 1 in 0.1 increments. A
neural network with 2 hidden layers is trained; and further details of the architecture is given in the
Supplement. The model is trained 5 times starting from a different random seed; with the mean and
standard deviation of the accuracies reported.

Results Affirming existing results [2, 17, 22], and our theoretical analysis, the similarity of Figure 4
to the theoretical expectation of Fig. 3 is striking. The neural network is robust to uniform label noise
up to a point, where that tipping point depends on the number of classes. Figure 4 gives insight into
what is happening during training. We see by the very low accuracies on the noisy test labels that
the model is not able to fit the noise from this uninformative noise distribution. Yet, there is enough
signal still in the data to learn the patterns that generalize to the clean test set. Beyond the tipping
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(c) Spread = 5

Figure 5: Deep learning results on synthetic 2D data with class-dependent noise.
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(b) c = 6
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(c) c = 10

Figure 6: Deep learning results on synthetic 2D data with feature-dependent noise.
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(a) CleanLab
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(b) CoTeaching

Figure 7: Label noise mitigation methods on synthetic 2D data with 10 classes.

point (the minimizing point in the quadratic function of the noisy accuracy), the neural network
begins fitting the noise instead of the true signal, and the clean accuracy drops off steeply.

Results on class-dependent noise as shown in Figure 5, also affirm existing results [13, 25, 28] and
our theoretical analysis. We see that the tipping point depends on the spread rather than the total
number of classes in the classification task. The most harmful class-dependent noise occurs with
spread=1, that is when labels from a given class flip to one specific erroneous label, the tipping point
occurs when the noise level is 0.5.

With the introduction of feature-dependent label noise as seen in Fig. 6, we see that the neural
network is not always robust even at low levels of label noise. In particular, the worst-case label
noise, GapMax, of Claim 3.7 significantly lowers classification accuracy even at ϵ = 0.1 and 0.2.
Interestingly, the classification accuracy from uniform-x noise is statistically indistinguishable from
class-dependent noise; indicating that the dependence of ηkk(x) on x is important.

Fig. 7 highlights the clean test accuracy of two label-noise mitigation methods: CleanLab [13] and
CoTeaching [5]. More methods are detailed in the Supplement. At ϵ = 0.1 both strategies improve
results compard with the baseline of Fig. 6c. But for higher levels of ϵ, CleanLab has little effect
while CoTeaching performs worse than baseline.

Table 2: CIFAR10 clean accuracy. Highest accuracy for each noise setting is highlighted.

Class noise s = 1
ϵ = 0.2
s = 2 s = 5 s = 1

ϵ = 0.4
s = 2 s = 5 s = 1

ϵ = 0.6
s = 2 s = 5 s = 1

ϵ = 0.8
s = 2 s = 5

Baseline 78.15 80.01 80.80 58.94 63.49 66.88 35.26 40.62 48.70 15.07 15.28 19.44
CleanLab 88.41 88.89 88.87 83.39 86.27 86.66 21.74 73.06 81.73 4.51 7.96 50.69
MixUp 90.62 90.45 90.69 77.77 86.33 85.01 12.27 64.29 76.02 5.16 4.59 28.16
Co-Teaching 87.23 88.12 88.09 67.79 71.31 71.21 22.80 43.33 50.17 6.19 8.91 22.22
SCE 86.21 86.62 87.38 57.42 82.71 84.23 15.53 42.86 63.47 10.68 6.26 15.90

Feature noise
Baseline 76.92 77.43 78.73 59.86 60.84 63.72 35.89 39.49 40.70 16.81 16.87 17.55
CleanLab 88.56 88.47 88.55 82.47 84.30 86.03 32.06 56.90 76.04 22.10 22.58 26.37
MixUp 88.70 89.85 89.83 76.14 78.30 82.48 41.75 53.59 60.15 10.96 13.08 25.43
Co-Teaching 87.15 87.24 88.01 64.04 67.77 70.50 28.76 35.09 46.70 12.41 14.23 17.68
SCE 87.26 87.65 87.39 74.71 77.70 83.68 23.97 33.65 66.98 18.81 17.03 15.52
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Table 3: CIFAR100 clean accuracy. Highest accuracy for each noise setting is highlighted.

Class noise s = 1
ϵ = 0.2
s = 2 s = 5 s = 1

ϵ = 0.4
s = 2 s = 5 s = 1

ϵ = 0.6
s = 2 s = 5 s = 1

ϵ = 0.8
s = 2 s = 5

Baseline 57.44 57.20 57.51 42.24 45.49 47.81 24.32 29.43 34.17 10.37 10.63 15.24
CleanLab 51.27 52.79 53.59 32.84 40.95 45.06 9.11 16.36 30.30 3.83 4.10 6.60
MixUp 64.79 65.18 65.68 50.65 57.35 58.27 18.64 34.07 48.23 5.00 7.58 17.93
SCE 54.88 56.18 54.93 33.72 46.87 50.54 12.59 19.96 36.70 6.26 8.72 12.16
Co-Teaching 55.85 58.66 59.65 37.79 41.83 45.29 21.11 24.43 28.00 6.72 9.28 11.57

Feature noise
Baseline 53.80 54.13 54.64 37.17 38.73 39.34 20.38 21.00 22.71 7.94 8.38 8.72
CleanLab 51.74 52.75 53.53 33.42 36.36 40.58 11.91 14.64 22.56 6.56 6.86 8.04
MixUp 63.10 62.67 63.42 47.73 50.34 51.87 27.06 29.86 33.76 9.16 10.55 13.28
SCE 53.43 54.02 55.51 32.43 36.66 42.39 9.42 11.70 17.61 7.29 7.41 7.76
Co-Teaching 58.40 58.16 59.28 35.71 38.93 40.80 14.12 14.40 17.05 6.17 6.28 6.08

5 Image Benchmark Experiments

We compare methods for learning with noisy labels, including CleanLab with the confident joint
[13], MixUp [28], symmetric cross entropy (SCE) [3], and CoTeaching [5]; using the public-license
open-source code provided by the authors. For all methods the base architecture is ResNet-32 [6]
with more details including computational costs, and extended empirical results, in the Supplement.
We also compare the baseline performance which is the ResNet-32 architecture without any label
noise mitigation strategy.

We use the classification benchmarks CIFAR-10 and CIFAR-100 of 32x32-pixel color images in 10
or 100 classes, with 60,000 images per dataset [9]. Class-dependent noisy labels Y |Y ∗ are generated
according to Definition 3.4, assuming that the labels given in the dataset are the true labels Y ∗.

Generating feature-dependent label noise To generate label noise Y |X that is dependent on
features but independent from the learned classification function itself, we use similarity-preserving
image hashes [14, 27]. For each image in the dataset, we compute the similarity-preserving hash,
h(x); which puts visually-similar (rather than semantically-similar) images near each other. Then
for each class, we calculate the average hash, h̄k, which represents the "center" of the class. For
class-conditional noise, we generate label flips between classes that are s-nearest neighbors based
on the hash centers and spread s. For feature-dependent noise, we generate label flips using the
GapMax function of Table 1 based on the distance from a particular sample’s hash to the s-nearest
neighbor hash centers, i.e. P [Y ∗ = k|x] ∝ 1/δk(x) where δk(x) = ∥h(x)− h̄k∥2. We investigate
two different similarity-preserving hashes: 1) VisHash [14] which was designed to detect near-copy
images ignoring changes in color and shading, so it will put images with similar shapes near each
other; and 2) h(x) is a ResNet-50 [6] pre-trained on ImageNet-1000 [18] using the activations of the
layer before the fully connected layers as the hash vector. The results for the VisHash-derived label
flips are provided here with the ResNet-50 driven label flips provided in the Supplement, noting that
the general trends are similar for these two types of feature-driven label flips.

Results The results for class-dependent label flips on CIFAR-10 in Table 2 show general patterns
of what our theory predicts: accuracy drops severely between ϵ = 0.4 and ϵ = 0.6 when s = 1.
For s = 2, the drop is less severe until ϵ = 0.8. Also supporting our theory, the results for feature-
dependent label flips show more gradual decline in accuracy so that on average the accuracy is lower
for feature-dependent label flips than for class-dependent label flips when ϵ ∈ {0.2, 0.4}, as well
as for higher values of ϵ when spread, s ∈ {2, 5}. Table 3 shows that similar trends hold for a
dataset with a much high number of classes. It is interesting to note that when a mitigation strategy
is performing poorly (e.g. SCE on CIFAR10 at ϵ = 0.2 or CleanLab on CIFAR100 at ϵ = 0.2)
compared with the other methods; then it does not seem to matter whether the noise is feature-
dependent or class-dependent. Therefore, we see that in general the robustness of classifiers with
successful label noise mitigation strategies behave differently whether that noise is feature-dependent.
Feature-dependent noise reduces classification accuracy at lower levels of noise.

CleanLab and MixUp show the strongest results, but there is no clear winner among mitigation
strategies for label noise; as all methods display weaknesses under various noise levels or noise types.
One promising result is that the mitigation strategies tend to narrow the gap in performance between

9



handling class noise and feature noise; which is consistent with our findings on the synthetic data in
Figure 7 . The strong performance of MixUp on CIFAR-100 is probably due to it being particularly
well-suited to the hierarchical nature of the classes [23, 28]. Whereas, CleanLab struggles with
CIFAR-100 probably because the low baseline accuracy even at low levels of noise makes it difficult
to confidently predict clean versus noisy samples.

6 Conclusions

Limitations Our theoretical results are limited to the Bayes optimal classifier. As with most theory,
the degree to which these results apply in practice must be explored empirically.

Future Directions The theory could be extended to explain why learning from massive, noisy
datasets can be so successful, especially when the noisy dataset is used as a pre-training task: major
patterns in data can be learned despite label noise as long as there is some signal within the noise.
Our theory could also be used to guide the curation of datasets as they are being collected. Not all
labels need to be clean, but enough labels in every class across the relevant feature space do need
to be clean. Data-specific approaches may look for regions of feature space where labels tend to be
noisy and focus more effort on cleaning labels for those regions.

Conclusion In both the uniform and class-dependent label flip scenarios, classification is robust to
label noise up to a tipping point; and beyond that tipping point, classification fails catastrophically.
These theoretical findings are helpful in designing evaluation approaches for label noise detection
and mitigation. Considering that label noise mitigation strategies can require training 2 models (such
as for CoTeaching) or even 6 models (such as for CleanLab); we can see why empirical studies are
computationally limited to investigating just a few variations on noise level and shape. We now
know that levels of noise near where the tipping-point occurs will be most informative; that there
is little reason to evaluate various levels of spread of class-dependent noise, and that incorporating
feature-dependent noise is most informative for practical applications.

Classification accuracy is significantly lower at small levels of noise when the noise distribution
depends on features and is targeted at samples with the highest gap between the likelihood of the
true label and the next-most-likely label. While various label noise mitigation strategies provide
guarantees about conditions under which they work; we see that the mitigation strategies on real data
generally fail for similar scale and shape of label noise distributions. Realistically, we expect that
label noise does depend on the features; and this paper demonstrates theoretically and empirically that
the old assumption of label noise—being independent of features given the class—leads to an overly
optimistic expectation of classifier robustness in the face of label noise. While it is challenging to
model feature-dependent label noise; it is clearly necessary as we see significantly lower classification
accuracy when label noise is feature-dependent.
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