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Abstract

Temporal Difference (TD) learning is ubiquitous in reinforcement learning, where
it is often combined with off-policy sampling and function approximation. Un-
fortunately learning with this combination (known as the deadly triad), exhibits
instability and unbounded error. To account for this, modern RL methods often
implicitly (or sometimes explicitly) assume that regularization is sufficient to miti-
gate the problem in practice; indeed, the standard deadly triad examples from the
literature can be “fixed” via proper regularization. In this paper, we introduce a
series of new counterexamples to show that the instability and unbounded error
of TD methods is not solved by regularization. We demonstrate that, in the off-
policy setting with linear function approximation, TD methods can fail to learn
a non-trivial value function under any amount of regularization; we further show
that regularization can induce divergence under common conditions; and we show
that one of the most promising methods to mitigate this divergence (Emphatic
TD algorithms) may also diverge under regularization. We further demonstrate
such divergence when using neural networks as function approximators. Thus,
we argue that the role of regularization in TD methods needs to be reconsidered,
given that it is insufficient to prevent divergence and may itself introduce instability.
There needs to be much more care in the practical and theoretical application of
regularization to RL methods.

1 Introduction

Temporal Difference (TD) learning is a method for learning expected future-discounted quantities
from Markov processes, using transition samples to iteratively improve estimates. This is most
commonly used to estimate expected future-discounted rewards (the value function) in Reinforcement
Learning (RL). Advances in RL allow us to use powerful function approximators, and also to use
sampling strategies other than naively following the Markov process (MP). When TD, function
approximation, and off-policy training are all combined, learned functions exhibit severe instability
and divergence, as classically observed by Williams and Baird III [18], Tsitsiklis and Van Roy
[15]. This combination is known in the literature as the deadly triad [11, pg. 264], and while many
contemporary variants of TD are designed to converge despite the instability, the quality of the
solution at convergence may be arbitrarily poor.

A common technique to avoid unbounded error is ℓ2 regularization [14], i.e. penalizing the squared
norm of the weights in addition to the TD error. This is generally understood to bound the worst-case
error in exchange for biasing the model and potentially increasing the error everywhere else. When
used on three common examples of the deadly triad [6, 18, 11, pg.260], regularization appears to
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mitigate the worst aspects of the divergence in practice. Consequently, it has become an essential as-
sumption made by many RL algorithms [1, 10, 12, 19, 20, 21, 8] and is seen as routine and innocuous.

We argue that this perspective on regularization in off-policy TD is fundamentally mistaken. While
regularization is indeed reasonably well-behaved and innocuous in classic fully-supervised contexts,
the use of bootstrapping in TD means that even small amounts of model bias induced by regularization
can cause divergence. This is an oft-ignored phenomenon in the literature, and so we introduce
a series of new counterexamples (summarized in Table 1) to show how regularization can have
counterintuitive and destructive effects in TD. We show that vacuous solutions and training instability
are not solved by the use of regularization; that applying regularization can sometimes induce
divergence and increase worst-case error; and that Emphatic TD algorithms–which are the most
promising solution to this divergence–can themselves diverge when regularized. We finally also
illustrate misbehaving regularization in the context of neural network value function approximation,
demonstrating the general pitfalls of regularization possible in RL algorithms. Regularization needs
to be treated cautiously in the context of RL, as it behaves differently than in supervised settings.

Our counterexamples demonstrate these core ideas:

TD learning off-policy can be unstable and/or have unbounded error even when it converges.
Following well-established methods we show there is some off-policy distribution under which TD
with linear value function approximation diverges and learns a model with unbounded error (even
if it were able to converge to the TD fixed point). This concisely demonstrates key features of the
training error: the error is small when the distribution is close to on-policy, but the error diverges
around specific off-policy distributions. The intuition behind this, explained in Section 3, is that the
off-policy1 TD update involves a projection operation that depends on the sampling distribution and
can be arbitrarily far away from the true value. This basic fact has already been established by past
work [18, 6], but our example is based upon a particular simple three-state MP, drawn in Figure 1a.

Regularization cannot always mitigate off-policy training error. We next introduce regulariza-
tion into our setting, and show how it changes the relationship between training error and off-policy
training. As explained in Section 2, we penalize the ℓ2-norm of learned (linear) weights with some
coefficient η; as η increases, the learned weights approach zero. However, in Example 1, we show
that there exists an off-policy distribution such that for any η ≥ 0 < ∞, the regularized TD fixed
point attains strictly higher approximation error than the zero solution (i.e., the infinitely regularized
point). We call such examples vacuous. In other words, vacuous value functions never do better than
guessing zero for all states, for any amount of regularization.

We further analyze this vacuous example in the context of the algorithm in [21]. In this work, the
authors assume the use of regularization to derive bounds on the learned error under off-policy
sampling. Although these bounds are technically correct in the case of our counterexample, they are
very loose, at about 2000 times the threshold of vacuity. This highlights the challenge of formally
relying on regularization to bound model error.

Small amounts of regularization can cause model divergence or large errors. There is a
general implicit assumption in much ML literature that regularlization monotonically shrinks learned
weights. This intuition comes from classic fully-supervised machine learning where it typically holds.
But because TD bootstraps value estimates (i.e. learns values using its own output), it is possible for
small amounts of bias to be arbitrarily magnified. We dub this phenomenon “small-eta error” and
illustrate it in Example 2. We relate this to the presence of negative eigenvalues in an intermediate
step of the solution and show that, in some settings, the error of the TD solution may be relatively
small when applied with no regularization but adding regularization causes the model to have worse
error than the zero solution.

One common solution to this problem is to lower-bound η to guarantee that reguarlization behaves
monotonically. However, we further show that such a lower bound may occur after the point of
vacuity: a model that is not vacuous becomes vacuous for any regularization parameter above this
lower bound. We also show that it is not always possible to select a single η a priori, with examples of

1We consider a sampling distribution to be on-policy if it follows the stationary distribution of the MP; we do
not explicitly consider a separate policy in this paper.

2



Example 1 There exist off-policy distributions under which TD learns a vacuous model (one which–
despite any amount of regularization–never does better than guessing zeros).

Example 2 Small values of the regularization parameter η can make TD diverge in models that
otherwise converge. This is an unavoidable effect of bootstrapping in TD, and setting a
lower-bound to exclude this may render models vacuous.

Example 3 Emphatic-TD-inspired algorithms are a promising way to reweight samples and mitigate
the effects of training off-policy. But if this reweighting is learned using TD, then using
regularization can bias the emphasis model and cause the value model itself to diverge.

Example 4 Training instability and increased error due to the deadly triad also occur when neural
networks are used. We construct an empirical example and draw qualitative comparisons.

Table 1: Summary of theorems.
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(b) Nine-state MP.

Figure 1: Our three- and nine-state counterexample MPs. We use these to illustrate how TD models
can fail despite common mitigating strategies in linear and neural network cases respectively.

mutually-incompatible off-policy distributions where there is no η that achieves better than vacuous
or nearly-vacuous results at different distributions.

Emphatic-TD-based algorithms are vulnerable to instability from regularization. Emphatic-
TD [13] fundamentally solves the problem of training off-policy by resampling TD updates so they
appear to be on-policy. This technique requires an emphasis model that decides how to scale each TD
update, and learning this has been the key challenge preventing widespread adoption of Emphatic-TD.
A recent paper [20] proposed learning this emphasis model using “reversed” TD while simultaneously
learning the value model using regular TD. The resultant algorithm is called COF-PAC, and employs
regularization to ensure that the two TD models eventually converge.

We show that regularization, while necessary, can be harmful for such models in Example 3.
Specifically, we construct a model that converges to the correct solution without regularization but
to an arbitrarily poor solution when regularized. The intuition behind this is that regularizing the
emphasis model changes the effective distribution of the TD updates to the value model, which can
cause the value model to have arbitrarily large error. We complete the example by showing that
regularizing the value function separately does not restore performance.

Regularization can cause model divergence in neural networks. So far most analysis of the
deadly triad in the literature focuses on the linear case. We extend our example to a nine-state Markov
chain (shown in Figure 1b), and show how the previously identified problems persist into the neural
network case in Example 4. We show two key similarities: first, models trained at certain off-policy
distributions may be vacuous. Second, small amounts of regularization counterintuitively increase
error. This illustrates Example 2 in the NN case.

2 Preliminaries and Notation

Consider the n-state Markov chain (S, P,R, γ), with state space S, state-dependent reward R :
S → R, and discount factor γ ∈ [0, 1]. P ∈ Rn×n is the transition matrix, with Pij encoding the
probability of moving from state i to j. We wish to estimate the value function V : S → R, defined
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as the expected discounted future reward of being in each state: V (s)=̇E [
∑∞

t=0 γ
tR(st)| s0 = s]. A

key property is that it follows the Bellman equation:

V = R+ γPV (1)

Using linear function approximation to learn V , we assume a matrix of feature-vectors Φ ∈ Rn×k

that is fixed, and a vector of parameters w ∈ Rk that is learned. The Bellman equation is then:

Φw = R+ γ P Φw (2)

When w is learned with TD, this equation is only valid if the TD updates are on-policy (that is, they
are distributed according to the steady-state probability of visiting each state, written as π ∈ Rn). In
the general case, where TD updates follow a (possibly) different distribution µ ∈ Rn

0 , the TD solution
is a fixed point of the Bellman operator followed by a projection [6]:

Φw = Πµ (R+ γPΦw) (3)

where the matrix Πµ = Φ(Φ⊤DΦ)−1Φ⊤D projects the Bellman backup onto the columnspace of Φ,
reweighted by the diagonal matrix D = diag(µ). This yields the closed-form solution:

w = A−1⃗b (4)

Where A = Φ⊤D(I − γP )Φ and b⃗ = Φ⊤DR. When this solution is subject to ℓ2 regularization,
some non-negative η is added to ensure the matrix being inverted is positive definite:

w∗(η) = (A+ ηI)−1⃗b (5)

As will be important later, we note that as η increases it drives w∗(η) towards zero.

3 Our Counterexamples

When deadly triad conditions are present, TD may learn a value function with arbitrarily large error
even if the true value function can be represented with low error. Consider the three-state MP in
Figure 1a, which we instantiate with the value function V = [1, 2.2, 1.05]⊤ and discount factor
γ = 0.99. The reward function is computed as R← (I − γP )V . We choose a basis Φ with small
representation error ∥ΠµV − V ∥ ≤ ϵ:

Φ =

[
1 0
0 −2.2

1/2(1.05 + ϵ) −1/2(1.05 + ϵ)

]
where ϵ > 0 (6)

We first consider the unregularized (η = 0) case, closely following the derivation in [6]. We wish to
show there is some sampling distribution µ such that error in the learned value function is unbounded.
To do this, we set µ = [0.56(1 − p), 0.56p, 0.44], where p ∈ (0, 1). We set ϵ = 10−4 and find p
around which A is ill-conditioned by solving det(A) = 0:

p = 0.102631 ∨ p = 0.807255 (7)

A−1 (and consequently the error) can be made arbitrarily large by selecting p close to these values,
which completes the introductory example. Now we look at the behavior of TD under regularization,
which is the main contribution of our paper.

3.1 Regularization cannot always mitigate off-policy training error.

There is a belief in the literature that regularization is a trade-off between reducing the blow-up of
asymptotic errors and accurately learning the value function everywhere else [1, 21]. However, this
belief does not accurately capture the nature of regularization: we show that it is possible to learn
models that never perform better than always guessing zero despite any amount of regularization.
That is, the TD error at all η is at least as much as the error as η →∞. We call such models vacuous.
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Example 1. When TD is regularized, there may exist some off-policy distribution at which TD learns
a vacuous model. In notation:

∥Φw∗(η)− V ∥ ≥ lim
η→∞

∥Φw∗(η)− V ∥ = ∥Φ0⃗− V ∥ = ∥V ∥ ∀η ∈ R+
0 (8)

Details. We use the same setting as in Section 3. A detailed derivation is provided in Appendix B.2.

We begin by noting that we can easily find the solution ŵ that minimizes the least-squares error
∥Φŵ − V ∥. If we consider this solution as a vector (as drawn in Figure 2a), we can immediately see
that there is an ℓ2-ball around ŵ corresponding to the set of w∗(η) with no more than ∥V ∥ error.

Similarly, we can trace the trajectory that the TD solution w∗(η) takes as η is increased from 0 to∞.
We know that, as η →∞, w∗(η) is crushed to zero and so all trajectories must eventually terminate at
the origin. When regularized models are not vacuous, the trajectory intersects the non-vacuous-error
ball. We see this in trajectory 2, where the error briefly dips below ∥V ∥ in Figure 2b.

Intuitively, a sufficient condition for a solution to be vacuous is that it remains in the half-space
that is tangent to and excludes the non-vacuous parameter ball. This is equivalent to finding some
distribution µ such that ŵ⊤w∗(η) ≤ 0 for all η, which we numerically solve to obtain the model in
trajectory 1. From Figure 2a we can see the trajectory remains in the half-space, and from Figure 2b
we can see that the error is never less than ∥V ∥. Trajectory 1 is a vacuous example.

We observe that Example 1, because it remains entirely in the halfspace ŵ⊤w∗(η) ≤ 0, could easily
be generalized to other forms of regularization. We leave this for future work.

Breaking the Deadly Triad and our counterexample. In light of our example we examine the
work of [21] in which the authors derive a bound for the regularized TD error under a novel double-
projection update rule. We apply our example to their bound and show that their method may produce
loose bounds on TD solutions, and so doesn’t quite break the deadly triad:

∥Φw∗(η)− V ∥ ≤ 1

ξ

(
σmax(Φ)

2

σmin(Φ)4σmin(D)2.5
· ∥V ∥η + ∥ΠDV − V ∥

)
(9)

for ξ ∈ [0, 1], where σmax and σmin denote the largest and smallest singular value respectively.
Theorem 2 from [21] bounds η, and therefore also b:

η > arg inf
η
∥Φ− C0∥ = 0.177/(1 − ξ)

2 (10)

inf
ξ
b(ξ, η) = 5.20× 104 ≈ 2000 ∗ ∥V ∥ (11)

Their method bounds the error in our example by 2000 ∗ ∥V ∥, which is tremendously loose. (We
analyze a different example in Appendix B.3, showing a still-loose but improved bound of 8 ∗ ∥V ∥.)
This illustrates the risk of relying on regularization to formally bound model error.

3.2 Small amounts of regularization can cause large increases in training error.

There is a general assumption in the literature that ℓ2 regularization monotonically shrinks the learned
weights. While this is true in classification, regression, and other non-bootstrapping contexts, this is
not true in TD. Because TD bootstraps values, it is possible for model bias to be arbitrarily magnified.

This can be understood in terms of the eigenvalues of the matrix A in Equation 5. By increasing
values along the diagonal, ℓ2 regularization increases eigenvalues of the matrix (A+ ηI) to ensure it
is positive definite. Under off-policy distributions, it is possible for A to have eigenvalues that are
negative or zero. This implies that there are η for which det(A+ ηI) = 0, and selecting η close to
these values allows us to achieve arbitrarily high error. We show one such case in Example 2. This is
not merely theoretical–we demonstrate this in the neural network case in Section 3.4.
Example 2. When TD is regularized, the model may diverge around (typically small) values of η.
Lower-bounding η, a common mitigation, can make well-behaved models vacuous. It is not always
possible to select a single value of η that makes models vacuous at different sampling distributions.
Details. Using our three-state example, we set µ = [0.05, 0.05, 0.9] and solve for det(A+ ηI) = 0:

0 = det(A+ ηI) = η2 + 5.45× 10−2η − 7.47× 10−3 =⇒ η = 0.0634 (12)
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(b) We plot the error curves corresponding to the three
w∗(η) trajectories, along with ∥V ∥. Trajectory 1 is
vacuous because the error is at least ∥V ∥ for all η.

Figure 2: Plotting the trajectory of the parameters on the left and the errors on the right, we show how
our counterexample 1 is never better than ∥V ∥ because it remains in halfspace where ŵ⊤w∗(η) ≤ 0.
For comparison, we show trajectory 2 that is improved by regularization, and 3, which exhibits small-η
errors. (The trajectories are stretched, so the errors in the two plots are not directly comparable.)

As in the introductory example, the error can be made arbitrarily large by setting η ≈ 0.0634.

This small-η divergence effect can appear in several ways, illustrated in Figure 3a. Typically, this
appears as one or more points at which TD error diverges before the region at which regularization
reduces the model error below ∥V ∥. The first and second plot in Figure 3a show two such cases,
where the error increases sharply at two and one points respectively.

In the literature, it is commonly assumed that A is “nearly” positive definite, where only a few
eigenvalues are non-positive, and those are close to zero. This gives rise to the common mitigation
of setting a lower-bound η0 such that (A+ ηI) is positive definite for η > η0. This may render an
otherwise well-behaved model vacuous. The third plot in Figure 3a illustrates this: the model is not
vacuous when unregularized, but is vacuous in the domain η > 10−2 where divergence is prohibited.

A common practice in the literature is to set η before training, without regard for the sampling
distribution. This is ill advised, as the value may be under- or over-regularizing depending on
the sampling distribution. One such example is illustrated in Figure 3b, where selecting an η that
minimizes the error for one distribution will lead to vacuous or nearly-vacuous results in the other two.
A second example in Figure 2b has no single η for which trajectories 2 and 3 are both non-vacuous.
This is especially relevant as regularization is commonly used to permit distribution drift during
training, as discussed in Section 4. If the training distribution changes while η is fixed, then algorithms
that can be proven to converge to good solutions under some original distribution may converge to
poor solutions as the distribution drifts.

3.3 Emphatic approaches and our counterexample

Emphatic-TD eliminates instability from off-policy sampling by reweighting incoming data (via an
importance function) so it appears to be on-policy. There is considerable interest in making this
more practical, especially by learning the importance and value models simultaneously. A leading
example of this work is COF-PAC [20], which uses ℓ2-regularized versions of GTD2 [12] to learn
both the value and emphasis models. The authors rely on regularization, particularly because the
target policy changes during learning. This makes COF-PAC vulnerable to regularization-caused
error. We illustrate this with Example 3 in which COF-PAC learns correctly when unregularized, but
has large error when regularized. (Mathematical details are deferred to Appendix B.5.)
Example 3. COF-PAC may learn the value function with low error when unregularized, but with
arbitrarily high error when regularized.
Details. Conceptually, COF-PAC maintains two separate models that are each updated by TD: the
emphasis and the value models. This emphasis model is used to reweight TD updates to the value
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Figure 3: We plot TD error against η to show small-η errors (left) and mututally-incompatible η
(right). We also plot the error at the limit of vacuity ∥V ∥ and the representation error ϵ.
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(c) ηv can’t fix this.

Figure 4: Regularization on the emphasis model (ηm) distorts the effective distribution (Figure 4a).
Specific values of ηm induce the value function to diverge (Figure 4b). The resultant value function
is vacuous (Figure 4c). Under COF-PAC, regularization can greatly increase model error.

function so they appear to come from the on-policy distribution. Our strategy is to first show how
regularization biases the emphasis model, and then how this bias causes the value model to diverge.
We begin with our three-state MP, noting its on-policy distribution is π = [.25 .25, .5]. We wish to
learn the values using COF-PAC while sampling off-policy at µ = [.2 .2 .6].

Now we introduce a key conceptual tool: υ(ηm), which is the effective distribution seen by the
TD-updates, influenced by the emphasis regularization parameter ηm. Unregularized, COF-PAC
is able to resample off-policy updates to the on-policy distribution: υ(0) ≡ π. If the model is
regularized, then the effective distribution moves away from π. Figure 4a illustrates the distance
between υ(ηm) and π as the regularlization parameter increases.

We can use the effective distribution to compute the error in the value model. Plotting the relationship
between the value function error and ηm in Figure 4b, we can see the value function has asymptotic
error around ηm = 2× 10−4. This shows how COF-PAC may diverge with specific regularization.

COF-PAC also allows for the value function to be separately regularized with parameter ηv . We show
the effect of this in Figure 4c, where the value function never does much better than ∥V ∥ making it
(nearly) vacuous. We can conclude that regularizing the emphasis model may cause the value model
to diverge, and this cannot be fixed by regularizing the value function separately.
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Figure 5: We illustrate how regularization interacts with NN value functions, showing that the
problems identified in this paper persist in the NN case.

COF-PAC makes the strong assumption that Kolter’s relaxed-contraction condition [6, eqn. 10] holds
in both the emphasis and value models [20, asm. 4]. We discuss this in Appendix B.5.1.

3.4 Applied to multi-layer networks

We use a 9-state variant of our example to study the deadly triad in multi-layer neural networks
(NNs). A deterministic observation function is chosen so we can control the degree of function
approximation. We train a simple two-layer neural network with 3 neurons in the hidden layer. The
value function is assigned pseudo-randomly in range [−1, 1]. (See Appendix C for details.)
Example 4. Vacuous models and small-η error also occur in neural network conditions.
Details. We train 100 models using simple semi-gradient TD updates under a fixed learning rate. We
plot the mean and the 10th–90th percentile range in Figure 5a, with and without regularization. TD is
known to exhibit high variance, and regularization is the traditional remedy for that. We corroborate
this by noting that the performance of the unregularized model varies widely, but regularization leads
to similar performance across initializations at the cost of increased error.

First, we show that vacuous models may exist in the neural network case. In Figure 5a, note how
there are some off-policy distributions under which both the regularized and unregularized models
perform worse than the threshold of vacuity. We can numerically verify that vacuous models exist.
Second, we show the small-η error problem in the neural network case in Figure 5b, where we plot
the TD error against η at a fixed off-policy distribution. We observe that around η ≈ 10−3 the TD
Error unexpectedly increases before decreasing, which clearly illustrates this phenomenon.

These qualitative links show a clear connection between the neural network case and the linear case,
and highlights the importance of correctly handling off-policy sampling.

4 Related Work

Three examples of the deadly triad are common in the literature: the classic Tsitsiklis and Van Roy
(w, 2w) example [11, p. 260], Kolter’s example [6], and Baird’s counterexample which shows how
training instability can exist despite overparameterization [18].

ℓ2 regularization is common when proving that an algorithm converges under a changing sampling
policy. This is seen in GTD (analyzed in [19]), GTD2 [12], RO-TD [10], and COF-PAC [20]. This
assumption may also be used to ensure convergence when training with a target network [21]. Despite
the prevalence of regularization, the induced bias from using it is not well studied. It is often dismissed
as a mere technical assumption, as in [1]. We contradict that: using regularization for convergence
proofs may induce catastrophic bias. By showing concrete examples, this work hopes to inspire
further investigation into regularization-induced bias in the same vein as [19].

Alternatives to regularization and TD We focus on ℓ2 regularization in this paper, which penalizes
the ℓ2-norm of the learned weights; it is also possible to use ℓ1 regularization with a proximal
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operator/saddle point formulation as in [10], or any convex regularization term under a fixed target
policy [19]. Instead of directly regularizing the weights, COP-TD uses a discounted update [4].
DisCor [7] propagates bounds on Q-value estimates to quickly converge TD learning in the face of
large bootstrapping error; it is not clear if DisCor can overcome off-policy sampling. A separate
primal-dual saddle point method has also been adapted to ℓ2 regularization [2] and is known to
converge under deadly triad conditions, and recent work [17] has derived error bounds with improved
scaling properties in the linear setting, offering a promising line of research.

Emphatic-TD [13] fixes the fundamental problem in off-policy TD by reweighting updates so they
appear on-policy. The core idea underlying these techniques is to estimate the “followon trace” for
each state, the (weighted, λ- and γ−discounted) probability mass of all states whose value estimates
it influences. This trace is then used to estimate the emphasis, which is the reweighting factor for each
update. While this family of methods is provably optimal in expectation, it is subject to tremendous
variance in theory and practice, especially when the importance is estimated using Monte-Carlo
sampling.2 In practice, these methods learn the follow-on trace using TD [5, 20] or similar [16],
which makes them vulnerable to bias induced by the use of regularization.

5 Conclusion

There is a tremendous focus in the RL literature on proving convergence of novel algorithms, but
not on the error at convergence. Papers like [21] are laudable because they provide error bounds;
even if the current bounds are loose, future work will no doubt tighten them. In this work, we show
that the popular technique of ℓ2 regularization does not always prevent singularities and could even
introduce catastrophic divergence. We show this with a new counterexample that elegantly illustrates
the problems with learning off-policy and how it persists into the NN case.

Even though regularization can catastrophically fail in the ways we illustrate, it remains a reasonable
method that may offer a fair tradeoff – as long as we are careful to check that we are not running afoul
of the failure modes we explain in the paper. It may be possible to design an adaptive regularization
scheme that can avoid these pathologies. For now, testing the model performance over a range of
regularization parameters (spanning several orders of magnitude) is the best option we have to detect
such pathological behavior.

Emphatic-TD is perhaps the most promising area of research for mitigating off-policy TD-learning.
The key problem preventing its widespread adoption is the difficulty in estimating the emphasis
function, but future work in this area may be able to overcome this. Our example shows the risk of
relying on regularization in practical implementations of such methods. It is absolutely critical that
Emphatic algorithms correctly manage regularization to avoid the risks that we highlight in this paper.

2Sutton and Barto’s textbook [11] says about Emphatic-TD that “it is nigh impossible to get consistent results
in computational experiments.” (when applied to Baird’s example).
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