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Abstract

There are already some text-based visual question answering (TextVQA) bench-
marks for developing machine’s ability to answer questions based on texts in
images in recent years. However, models developed on these benchmarks cannot
work effectively in many real-life scenarios (e.g. traffic monitoring, shopping ads
and e-learning videos) where temporal reasoning ability is required. To this end,
we propose a new task named Video Text Visual Question Answering (ViteVQA in
short) that aims at answering questions by spatiotemporally reasoning texts and
visual information in a given video. In particular, on the one hand, we build the first
ViteVQA benchmark dataset named M4-ViteVQA — the abbreviation of Multi-
category Multi-frame Multi-resolution Multi-modal benchmark for ViteVQA,
which contains 7,620 video clips of 9 categories (i.e., shopping, traveling, driving,
vlog, sport, advertisement, movie, game and talking) and 3 kinds of resolutions
(i.e., 720p, 1080p and 1176×664), and 25,123 question-answer pairs. On the
other hand, we develop a baseline method named T5-ViteVQA for the ViteVQA
task. T5-ViteVQA consists of five transformers. It first extracts optical character
recognition (OCR) tokens, question features, and video representations via two
OCR transformers, one language transformer and one video-language transformer,
respectively. Then, a multimodal fusion transformer and an answer generation
module are applied to fuse multimodal information and generate the final pre-
diction. Extensive experiments on M4-ViteVQA demonstrate the superiority of
T5-ViteVQA over the existing approaches of TextVQA and VQA tasks. The
ViteVQA benchmark is available in https://github.com/bytedance/VTVQA.

1 Introduction

Several datasets [1, 2, 3, 4, 5, 6, 7] have been built to facilitate the development of visual question
answering (VQA) [1] methods and systems, but none of them consider the high-level scene text
information that is ubiquitous in real-life scenarios and urgently needed for visually-impaired users [8].
Thus, researchers later proposed some text-based VQA (TextVQA) benchmarks [8, 9] to promote the
research on jointly understanding both visual information and scene texts in images.

Though existing TextVQA benchmarks have greatly advanced TextVQA techniques, all these bench-
marks focus on single well-photographed images, which makes the developed TextVQA models
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Q1: How much is the most expensive fruit shown in the video? A: [$4.90, $3.20, $3.50]

Q2: What number is written on the yellow sign? A: [<UNK>, 2, 20]

Q3: Who killed the most in this round? A: [Xyp9x, Xyp9x, JACKZ]

GT: $4.90

GT: 20

GT: JACKZ

Figure 1: Some examples from our M4-ViteVQA dataset. ‘A’ indicates the answers returned by TextVQA
models and wrong answers are colored in red. Leveraging temporal, textual, and visual information in the video
is the only way to correctly answer the questions.

unable to answer questions related to or depending on consecutive video frames or events. This is a
critical weakness of existing TextVQA methods, which has already been realized by some existing
work [10], and seriously limits their applications. To make it simpler, let us see the examples in Fig. 1.
The 1st case in Fig. 1 is querying the highest fruit price. TextVQA models will get three answers, i.e.,
$4.90, $3.20, and $3.50 from three single frames, while the correct answer is $4.90. For the 2nd case
in Fig 1, considering the scene texts in the video usually suffer from low quality due to motion blur
and low resolution, which makes the TextVQA models prone to wrong answers because of lacking
global understanding of the texts. As for the 3rd case, to get the correct answer the models must be
able to infer temporarily. Unfortunately, such mechanism is unavailable in existing TextVQA models.

To solve the aforementioned problems, in this paper we propose a novel task named Video Text Visual
Question Answering (ViteVQA in short), which aims at answering questions by jointly reasoning
textual and visual information in a given video. For better understanding, let us go back to Fig. 1. To
accurately answer the given questions, the models are required to leverage not only the semantics of
texts (in the 1st case, $4.90 is the highest price), visual information (in the 2nd case, the models should
recognize the yellow sign) and the spatial relationships among texts and objects (in the 3rd case,
the models should know who kills who), but also the temporal relationships among different frames
or events (in the 2nd and 3rd cases, the correct answer can be only obtained from the last frame).
As ViteVQA is an extension to the TextVQA task, it is more general and has wider applications.
Meanwhile, ViteVQA is also a more challenging task as it must jointly exploit both textual and visual
information as well as temporal logic among video frames or events.

To support ViteVQA research, on the one hand, we build the first ViteVQA benchmark dataset,
which is named Multi-category Multi-frame Multi-resolution Multi-modal benchmark for ViteVQA
(M4-ViteVQA in short). M4-ViteVQA consists of 7,620 video clips of nine categories (i.e., shopping,
traveling, driving, vlog, sport, advertisement, movie, game and talking) and three kinds of resolutions
(i.e., 720p, 1080p and 1176×664), and 25,123 question-answer pairs (QA pairs). On the other hand,
we develop a baseline method for the task, which is a novel model called T5-ViteVQA, as it consists
of five transformers to conduct both textual and visual understanding as well as temporal reasoning
over three modalities: texts from the video, a given question and a video. Specifically, T5-ViteVQA
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first extracts optical character recognition (OCR) tokens in the form of temporal representation,
question features, and video features via two OCR transformers, one language transformer and one
video-language transformer, respectively. Then, a multimodal fusion transformer is employed to fuse
and enhance these features. Finally, an answer generation module is applied to infer the answer from
the OCR tokens and a given vocabulary.

Contributions of this paper are as follows: 1) We propose a novel task of video text visual question
answering (ViteVQA), which is an extension to the TextVQA task and has broader applications. 2) To
support ViteVQA research, we build the first high-diversity benchmark dataset M4-ViteVQA. 3) We
develop a baseline method T5-ViteVQA for ViteVQA, which consists of five transformers to conduct
joint reasoning over three modal inputs. 4) We conduct extensive experiments on M4-ViteVQA,
which show that T5-ViteVQA outperforms the existing methods of TextVQA and VQA tasks.

2 Related Work

2.1 Text-based VQA

Text-based visual question answering (TextVQA) [8] is gaining popularity to answer text-related
questions by reading and understanding scene texts in images. As a pioneering work, Singh et
al. [8] proposed the first dataset TextVQA along with a new framework LoRRA that extends the
VQA model Pythia [11] with an OCR attention branch. Following that, several other datasets were
introduced. Biten et al. [9] built the dataset ST-VQA of daily natural scenes where questions can
only be answered with texts in images. OCR-VQA [12] utilizes an existing dataset [13] of cover
images of books, and contains around 200K QA pairs. DocVQA [14] focuses on the understanding
of texts in documents. STE-VQA [15] is the first bilingual dataset containing both English and
Chinese question-answer pairs. It also provides a bounding box for each question to indicate the area
that contains the answer. Nevertheless, all these datasets focus on single static images while many
real-world scenarios provide consecutive videos. Models trained on these TextVQA datasets cannot
work well in the video scenarios where temporal reasoning ability is required.

2.2 Video Question Answering

As an extension of traditional VQA, video question answering (VideoQA) aims to answer questions
about video content, requiring models to have spatiotemporal reasoning ability. There are already a
number of datasets [16, 17, 18, 19, 20, 21, 22] for this task, which contain video clips of different
scenes, while all the questions focus on the visual content of the videos. There are some other
VideoQA datasets [23, 24, 25, 26, 27], most of which are about movies or TV series and provide
additional texts like subtitles to help understand the videos. However, all these texts are explicitly
provided in textual format, and questions in these datasets still focus on visual content while the texts
just play an auxiliary role. Differently, ViteVQA considers all texts appearing in the scenes of videos,
which can be single words or phrases in any possible fonts or orientations, thus cannot be recognized
and understood easily. Furthermore, ViteVQA pays more attention to the interaction between texts
and visual information in the videos.

2.3 Feature Representations in TextVQA and VideoQA Models

Most existing methods [28, 29, 30, 31, 32] for TextVQA utilize an OCR system [33] to detect and
recognize texts in images and an object detector [34] to extract object region proposals. Then, the
two modalities along with the question are reasoned jointly via a multimodal fusion transformer.
Apparently, such a paradigm does not exploit temporal information in videos and our M4-ViteVQA
dataset. While in VideoQA [35, 36, 37, 38, 39, 40], video features are obtained by sampling certain
frames or extracted directly via a 3-D backbone [41, 42]. Some works [43, 44, 45, 46, 40, 47] use
pre-training to obtain more comprehensive feature representations. In this paper, we extend all the
representations of different modalities to the video level.

2.4 Video OCR Systems

Recently, the detection, tracking and recognition of texts in videos [48] have made great progress
thanks to several video text spotting benchmarks [49, 50, 51, 52, 53] and models [54, 55, 56, 57, 58,
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59, 60]. However, as mentioned in [53], there still remains a blank for the downstream application of
texts in videos. This work is the first to propose and address the ViteVQA task, which is expected to
broaden the research of TextVQA to videos and promote the understanding of texts in videos.

3 Benchmark

In this section, we start by describing how we collect and label the videos, and create QA pairs in
M4-ViteVQA. Then, we present the statistics and analysis results of M4-ViteVQA, and compare
our dataset with some related datasets to highlight the uniqueness, difficulty and diversity of the
M4-ViteVQA dataset. Finally, we introduce the tasks and evaluation protocol of the benchmark.
Documents on license, responsibility agreement, and accessibility are given in the supplementary
materials.

3.1 Data Collection and Annotation

Table 1: The numbers of videos, frames and questions
in each category of M4-ViteVQA.

Category #Videos #Frames #Questions
shopping 847 155,275 3,892
traveling 1,154 219,880 4,291
driving 1,316 148,040 3,272

vlog 947 168,715 2,897
sport 665 133,979 2,072

advertisement 623 113,108 1,264
movie 719 103,429 1,449
game 709 155,645 3,672

talking 640 119,321 2,314
Total 7,620 1,317,392 25,123

Data collection. To obtain abundant videos
with various text types, we first selected nine
different text-rich scenarios, which correspond
to nine video categories: shopping, travel-
ing, driving, vlog, sport, advertisement, movie,
game, and talking. Then, 6 workers were em-
ployed to search qualified videos with texts from
YouTube 3. For the driving category, we col-
lected additional videos from [51] to enrich the
dataset. To avoid copyright violation, workers
were required to try their best to download only
videos that are available on YouTube with a Cre-
ative Commons CC-BY (v3.0) License. After
collecting 1,150 raw videos, we further cropped
these videos into shorter clips to discard frames without texts and shorten the lengths of videos. Then,
we masked all private information in the videos, such as faces. Finally, it took about 30 days for the 6
workers to collect 8,511 video clips with texts.
Data annotation. In this stage, 11 native English-speaking workers were employed by crowdsourcing
to create question-answer (QA) pairs. Similar to the annotation phase in [9], the process of designing
QA pairs consists of two steps. In the first step, workers were required to come up with closed-ended
questions that can be unambiguously answered by reasoning the texts in the corresponding video.
The workers were asked to design three to seven QA pairs for each video. As a question may have
different answers, so the workers can list multiple answers for each question, usually a complete
answer plus a simplified one. Additionally, the workers were asked to attach each question two extra
labels. The first label is from {“easy”, “hard”} to indicate the difficulty of question answering. An
“easy” question can be answered by first watching the whole video then picking key information
from one single frame (e.g. the 3rd frame of the 2nd case in Fig. 1), while a “hard” question can
be answered only by leveraging two or more frames (e.g. the 2nd and 3rd frames of the 3rd case
in Fig. 1). It is worth mentioning that the so-called “easy” questions in our dataset are not really
easy, they are just relatively easier than the so-called “hard” questions to answer. Actually, it is still
challenging for TextVQA models to answer these “easy” questions (See Tab. 5 for more details).
Concretely, temporal reasoning is still required to answer these questions.

The second label is from {“text”, “vision”, “knowledge”} to indicate what kind of information is re-
quired to answer the question. Concretely, a “text” question can be answered by purely understanding
the semantics of texts in the video (e.g. to answer the question of the 1st case in Fig. 1 by outputting
the highest price). A “vision” question is answered by jointly considering both the semantics of texts
and the visual features of texts (e.g. color and layout) or the video features (e.g. objects and actions)
(e.g. the 2nd case in Fig. 1). And a “knowledge” question can only be answered by exploiting external
knowledge. The workers were encouraged to design “hard” and “vision” questions to increase the
difficulty of the benchmark. After this step, we obtained 31,915 QA pairs. Then, we conducted a
second step or the verification step, for which 8 additional workers (different from the 11 annotators)

3https://www.youtube.com/
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Figure 2: The statistics of questions, answers, OCR tokens and videos of M4-ViteVQA.

were employed to check the previously designed questions. Different from [9], the 8 workers have the
right to delete text-unrelated questions to guarantee the quality of the dataset. As for some ambiguous
questions that may generate inconsistent or contradictory answers, the authors decided whether or not
to correct or delete them. The entire data annotation stage took nearly 50 days. Finally, we obtained
25,123 QA pairs from 7,620 different videos. The statistics of the dataset is given in Tab. 1.

3.2 Statistic, Analysis Results and Comparisons

Table 2: Average lengths of questions and an-
swers of TextVQA [8], STVQA [9], and our
M4-ViteVQA

Dataset Question Answer
TextVQA [8] 7.05 1.63
STVQA [9] 7.79 1.55

M4-ViteVQA 6.75 1.94

We first analyze the numbers of questions, answers and
OCR tokens in our dataset. Fig. 2(a) shows the ques-
tion and answer distributions w.r.t. their lengths. The
lengths of the majority (99%) questions and answers
are under 14 and 10, respectively. Tab. 2 presents the
average lengths of questions and answers of two ex-
isting TextVQA datasets and our dataset. As can be
seen from Tab. 2, the average lengths of questions and
answers of M4-ViteVQA are 6.75 and 1.94 respectively,
they are quite similar to that of [8] and [9]. Concretely, the average length of questions of our dataset
is a little shorter than that of [8] and [9], but the average length of answers of our dataset is longer
than that of [8] and [9]. The distribution of the number of OCR tokens (extracted by methods in
[53, 61]) is given in Fig. 2(b). As can be seen, most videos have 1 to 100 OCR tokens. The average
number of OCR tokens in M4-ViteVQA is 56.92. We also compare the distributions of questions and
answers with that of STVQA [9]. As can be seen in Fig. 2(c), the distributions of the two datasets
basically follow the same law: the length of the questions first rises and then falls, while the length of
the answers shows a downward trend.

Then, we present the statistics of the most frequent questions and the total occurrences of the 500
most common answers in our dataset in Fig. 2(d) and Fig. 2(e), respectively. We can see that there
are common questions (e.g. “what is the video talking about?”), answers (e.g. numbers, shopping)
and category-specific QA pairs (e.g. names of players and products). In what follows, we analyze
the formats of questions and the unique numbers of answers in our dataset to highlight the diversity
of M4-ViteVQA. The sunburst for the first 4 words in questions is given in Fig. 3. We can see
that M4-ViteVQA contains diverse question types that cover various scenes. Concretely, we count
the number of different formats of the first two words of the questions in our dataset, the result is
1,482, a bit larger than that of STVQA [9] (1,468), indicating that our dataset has more different
question formats than [9]. Besides, the distributions of the two types of labels are: 0.87/0.13 for
{“easy”, “hard”} and 0.44/0.54/0.02 for {“text”, “vision”, “knowledge”}. As for the questions, the
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Figure 3: Distribution of the first four words in questions in M4-ViteVQA. Most questions start with “what”.

Table 3: The numbers of videos (#V) and questions (#Q) in the three settings.

Setting Task1Split1 Task1Split2 Task2
#V #Q #V #Q #V #Q

Train 5,373 17,869 5,444 18,220 4,772 14,855
Val 596 1,971 525 1,620 179 762
Test 971 3,183 680 2,103 290 1,221

Extra - - - - 1,018 4,223

percentage of “yes” and “no” in our dataset is very small (only 3.3%) and our dataset has 14,871
different answers among all the 26,293 answers. This means 56.5% of our answers are unique, which
is roughly similar to that in [8] (57.6%) and [9] (60.2%). Considering the percentage of unique
answers and the fact that our average answer length is 0.4 longer than that of the other datasets, we
can say that the answers in our dataset are diverse.

Last, we present two statistics from the perspective of the videos to better demonstrate the diversity
of the dataset: 1) The distribution of videos of different resolutions in M4-ViteVQA is shown in
Fig. 2(f). There are three resolutions in our dataset: 720p (1280×720), 1080p (1920×1080) and
1176×664. 2) The statistics of the number of frames in the videos is illustrated in Fig. 2(g). The
majority of the videos consist of 50 to 250 frames. However, some videos require the models to
reason over 300 or even more frames. The different resolutions and lengths of videos not only enrich
the diversity of the dataset, but also impose strict requirements on models’ reading and temporal
reasoning abilities.

3.3 Tasks and Evaluation Protocol

We define 2 tasks with 3 settings for the ViteVQA problem, namely “regular QA task” (Task1) and
“domain adaption task” (Task2). In Task1, the model is trained and tested on all the nine categories of
M4-ViteVQA, which is a regular setting. In order to meet the different requirements for the robustness
of the model, we consider two data splits for Task1. The first one is called Task1Split1 that is divided
according to the 7,620 cropped videos, the second one is called Task1Split2 that is divided by the
1,150 raw videos. Task1Split2 is more challenging than Task1Split1 since the content of videos of the
same category may be quite different (e.g. various shopping venues and sports). In Task2, the model
is trained with seven categories while tested on the remaining two categories. Task2 requires the
model to deal with unlearned content and completely different category-specific questions, which is
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very challenging. The statistics of the three settings is given in Tab. 3. It is worth mentioning that for
Task2, we provide an extra set, which can be used in different ways (e.g. semi-supervised learning,
weakly supervised learning etc.) to improve the adaption ability of the model.

Two metrics are used in this benchmark to evaluate model performance. The first is accuracy used in
existing TextVQA benchmarks [8, 9]. The second is the average normalized Levenshtein similarity
(ANLS) [62, 9]. Comparing with the widely used accuracy, ANLS is more tolerant to recognition
error, which is more suitable for ViteVQA due to the challenge of reading texts in videos.

4 Baseline

4.1 Architecture

Fig. 4 is the architecture of our baseline T5-ViteVQA, which mainly consists of five transformers and
one answer generation module. Given a sample with a video V and a question Q, we first extract
the features of the question via a language transformer, the OCR token features with a text tracking
transformer and a text recognition transformer, and the video features through a video-language
transformer. Then, we adopt a multimodal fusion transformer to fuse these features. Finally, an
answer generation module is stacked at the end to generate the answer from the OCR tokens and
a given vocabulary. In what follows, we first describe the extraction of multimodal features, then
introduce how to fuse them to answer the question, and finally present the training scheme.

4.2 Feature Extraction

Question features. Let Q = {Qi}
Lq

i=1 be the sequence of the tokenized question tokens, where Lq

is the sequence length of the question, we embed these words into a sequence of d-dimensional
feature vectors Xq = {xq

i }Ki=1 with a pretrained language transformer Tl (i.e., Xq = Tl(Q) where
Xq ∈ RK×d). In T5-ViteVQA, Tl is implemented by a BERT [63] model.
OCR features. Given the video V with Lv frames, we first employ a text tracking transformer
Tt to obtain bounding boxes and tracking ids of the texts in the video frame by frame. After that,
we read the texts according to their bounding boxes via a text recognition transformer Tr. Then,
for the OCR results that have the same tracking id, we merge all the bounding boxes, temporal
ids, and the recognition results to obtain a temporal OCR token representation. Suppose there
are Lo predicted OCR tokens, the i-th OCR representation Oi can be written as follows: Oi =

{{xbbox
i,j }L

i
t

j=1, x
s_tid
i , xe_tid

i , {xocr_text
i,j }L

i
t

j=1} where Li
t ∈ [1, Lv] is the temporal length of the OCR

token, xbbox
i,j ∈ R4 is the bounding box of the i-th OCR token at time j, xs_tid

i ∈ [1, Lv] and xe_tid
i ∈

[1, Lv] record when the OCR token appears and disappears (Ergo, we have Li
t = xe_tid

i − xs_tid
i +1),

and xocr_text
i,j ∈ RLocr

i,j ×|A| is the recognition result of the i-th OCR token at time j (Locr
i,j denotes the

length of the OCR and |A| is the size of the alphabet).
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After obtaining a set of Lo OCR tokens in a video through an external OCR system, as shown in
Fig. 4, for the i-th token in the Lo OCR tokens, we further reduce the redundancy in Oi by extracting
1) the start bounding box xbbox

i,1 and the end bounding box xbbox
i,Li

o
as the representative visual geometric

features; 2) a 2048-dimensional visual appearance feature xfrcn
i from a Faster R-CNN [34] detector

via RoI-Pooling the first bounding box of the OCR token whose recognition result occurs the most
times (denote the index of this token by k); 3) a 300-dimensional FastText [64] embedding of the
recognition result of xocr_text

i,k to provide essential sub-word information, namely xft
i ; 4) a 604-

dimensional Pyramidal Histogram of Characters (PHOC) [65] vector xphoc
i to represent characters

presented in the token, which is more robust to OCR error [28]; 5) the start temporal id xs_tid
i and the

end temporal id xe_tid
i to provide crucial information for temporal reasoning. It is worth mentioning

that for the Lo OCR tokens, we first sort them according to the reading order and then use a two-layer
transformer (red arrows in Fig. 4) to build their contextual dependence for the enhancement of their
semantic features xocr_text

i,k . After rescaling the bounding boxes by dividing the width or height of
the video, we project or embed each feature into d-dimensional space, and sum them up [28] (after
layer normalization) to get the final representation of the OCR feature:

xocr
i = LN(W1x

ft
i +W2x

frcn
i +W3x

phoc
i + E1([x

s_tid
i , xe_tid

i ])) + LN(W4[x
bbox
i,1 , xbbox

i,Li
o
]), (1)

where W1,W2,W3, and W4 are learnable projection matrices, E1 is a embedding layer, LN(·) is
layer normalization, and [·, ·] denotes the concatenate operation. In T5-ViteVQA, Tt and Tr are
implemented by TransVTSpotter [53] and ABINet [61], respectively.

Video features. We apply a video-language transformer Tvl to extract question-guided visual
information to aid the reasoning. Specifically, we uniformly sample Lvl frames from the video V
and combine them with the question to extract the video features. Let the sampled Lvl frames be Vvl.
The final video representation is defined as Xv = Tvl(Vvl, Q) where Xv ∈ RLvf×d and Lvf is the
length of the video features. In our paper, we use All-in-one [40] to implement Tvl.

4.3 Feature Fusion and Answer Generation

Given the three multimodal features Xq, Xocr = {xocr
i }Lo

i=1 and Xv, we first employ a multimodal
fusion transformer Tf that consists of K transformer layers [66] to enhance these features in multi-
modal context via self-attention mechanism. Then, the Lo enhanced d-dimensional OCR tokens are
fed into an answer generation module [28, 44] to infer the answer by selecting words from the OCR
tokens in the video and a given vocabulary that is obtained by merging all the tokens in the training
set in our experiments (see Sec. 5.1).

4.4 Training Scheme

Following [28, 44], we use teacher-forcing technique [67] and multi-label binary cross-entropy loss
Lbce to train the model. Let ypred be the predicted result processed by sigmoid function and ygt be
the ground truth, the loss of T5-ViteVQA can be written as follows:

Lbce = −ygtlog(ypred)− (1− ygt)log(1− ypred). (2)

5 Performance Evaluation

5.1 Implementation Details

T5-ViteVQA is implemented in PyTorch1.8. All experiments are conducted on 8 NVIDIA Tesla V100
GPUs with 32GB memory and the same random seed 13. The model is trained using AdamW [68]
optimizer with a learning rate of 10−4. The batch size is set to 64. The warm-up learning ratio and
warm-up iteration are set as 0.2 and 1,000. Lq, Lo, Lvf , Lvl, d, and K are set to 20, 200, 198, 3,
768 and 4, respectively. The selected frames Vvl are resized to 224× 224 for saving computational
resource. The vocabulary is obtained by merging all the tokens in the training set.
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Table 4: Performance comparison on the M4-ViteVQA dataset.

Method

Task1 Task2
Split1 Split2 7 others → shopping,talking

Val Test Val Test Val Test
Acc ANLS Acc ANLS Acc ANLS Acc ANLS Acc ANLS Acc ANLS

Random 0.56 0.021 0.60 0.025 1.54 0.030 1.38 0.034 1.57 0.030 0.41 0.023
All “yes” 1.67 0.018 1.51 0.016 1.85 0.019 1.81 0.019 3.41 0.036 2.62 0.026
All “no” 0.96 0.012 1.32 0.016 1.60 0.021 1.66 0.022 2.89 0.029 2.87 0.030

Biggest OCR box 2.59 0.054 2.67 0.060 3.21 0.077 3.02 0.053 2.38 0.056 2.38 0.056
Most frequent OCR 3.86 0.060 3.80 0.056 6.17 0.089 4.61 0.068 5.12 0.070 3.93 0.059

Upper bound 68.44 0.710 68.05 0.714 67.22 0.702 64.76 0.677 66.40 0.698 62.49 0.646
Human 78.08 0.825 85.27 0.893 75.98 0.832 78.41 0.828 83.33 0.859 82.26 0.851
JuskAsk 10.81 0.154 10.05 0.141 7.16 0.100 5.47 0.086 4.86 0.067 3.60 0.067

All-in-one-B 11.47 0.153 10.87 0.148 6.85 0.092 5.66 0.078 4.20 0.050 3.28 0.046
M4C 18.66 0.242 17.91 0.238 13.58 0.172 11.36 0.166 9.16 0.128 7.52 0.125

T5-ViteVQA 23.17 0.301 22.17 0.291 17.59 0.231 16.68 0.238 12.30 0.161 9.29 0.136

Table 5: Detailed performance comparison be-
tween M4C and T5-ViteVQA on the validation
set of Task1Split1. We do not present the results
on the knowledge set because its sample number
is too small in the validation set.

Set M4C T5-ViteVQA
Easy 19.30 25.09
Hard 9.02 14.26
Text 17.26 23.08

Vision 18.36 24.21
Total 17.91 23.17

Table 6: Ablation study on the features of T5-
ViteVQA. The metric is the accuracy on the vali-
dation set of Task1Split1.

Xocr

Xv Val Acc.Text Visual Temporal
✓ ✓ ✓ ✓ 23.17
✗ ✗ ✗ ✓ 11.51
✓ ✗ ✓ ✓ 20.79
✓ ✓ ✗ ✓ 19.78
✓ ✓ ✓ ✗ 22.36

5.2 Experimental Results

We start by giving the performance upper bound and lower bound of ViteVQA as well as human
evaluation on the benchmark, then present the performance comparison between our baseline and
existing methods of related tasks. Finally, we introduce the results of ablation study.
Performance upper/lower bound and human evaluation. Here, we present the performance upper
and lower bounds as well as human evaluation results on the benchmark. All results are given in Tab. 4.
The lower bound values (denoted as “Random”, “All yes”, “All no”, “Biggest OCR box”, “Most
frequent OCR” in Tab. 4) are obtained by randomly picking OCRs from the videos, always outputting
“yes”, always outputting “no”, picking OCRs with the biggest boxes, and picking OCRs with the
most frequent occurrences, respectively, and the upper bound values (denoted as “Upper bound” in
Tab. 4) are achieved by correctly picking texts, which can be used to evaluate the performance of
the OCR system used in the ViteVQA task. Obviously, all the lower bounds perform poorly on the
M4-ViteVQA dataset, which demonstrates the difficulty of the dataset. Besides, we can see that
the upper bounds are lower than human evaluation results (indicated by “Human” in Tab. 4), which
demonstrates the difficulty of reading texts in videos. Besides, the accuracy of human varies from
75.98% to 85.27%, which is very close to the human evaluation result (84.01%) in TextVQA [8].
This also indicates that human can handle ViteVQA well.

Comparison with existing methods. We reimplement three recent models of related tasks for
performance comparison, including M4C [28] for TextVQA, JustAsk [39] for VideoQA and All-in-
one [40] for video-language pretraining. The experimental results are given in Tab. 4.

Obviously, JuskAsk and All-in-one perform undesirably in the ViteVQA task since they cannot read
texts in videos. M4C performs better than JuskAsk and All-in-one, but is clearly inferior to our
method in all three settings because it cannot do temporal reasoning in videos. Although T5-ViteVQA
outperforms the existing techniques in all three settings, as can be seen in the 3rd row and the last
row in Tab. 4, there is still a huge gap between T5-ViteVQA and human evaluation. This indicates
that ViteVQA is a difficult task for machine and worthy of further investigation. It is also worth
mentioning that the difficulty of the three settings is increasing. All the models perform much worse
in Task2 without applying any domain adaption techniques, while human can answer the questions in
Task2 well. Therefore, how to use additional data to enhance the generalization power of the model
is a significant issue to work on. In addition, we compare the performance of M4C and T5-ViteVQA
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on the subsets introduced in Sec. 3.1. As can be seen in Tab. 5, our method T5-ViteVQA performs
much better than M4C on these different subsets, which demonstrates the advantage of our method
on the ViteVQA task because of its temporal reasoning ability. It is worth mentioning that although
M4C [28] can correctly answer 40.6% questions in traditional TextVQA task [8], it performs poorly
on the “easy” questions in the task of ViteVQA, only 19.3% are correctly answered and much worse
on the “hard” questions. These results show the difficulty of the proposed M4-ViteVQA dataset.

Ablation study. We also conduct ablation study to check the design of T5-ViteVQA. As mentioned in
Sec. 4, three modal features are extracted in our method, and for the OCR features, we extract textual,
temporal and visual information to enrich the representation. In order to see how these features
affect the performance of ViteVQA, we design some variants that ignore some specific features. The
experimental results are given in Tab. 6. As can be seen in Tab. 6, the best performance is achieved
when all the features are used (the 1st row). Besides, the variant that ignores all OCR features has
the worst performance (the 2nd row), which explains the importance of OCR tokens in ViteVQA.
The performance after dropping the video features Xv is also deteriorated (the 5th row), but the
degradation is not as much as that of ignoring visual (the 3rd row) and temporal (the 4th row) features
of OCR. We notice that the recent TextVQA works [28, 45] also report this observation. This shows
that the usage of video features (i.e., the visual object features in TextVQA) should be improved in
both TextVQA and ViteVQA tasks.

6 Limitations and Future Work

This paper has two limitations. On the one hand, M4-ViteVQA supports only question answering.
On the other hand, T5-ViteVQA does not use pre-training or domain adaptation techniques to further
boost the performance. Therefore, it is worthy for future work to extend M4-ViteVQA to text-based
video captioning and retrieval tasks to enrich the video text understanding area. For the second
limitation, pre-training or domain adaptation solutions are interesting and promising research topics.

In summary, as a new problem, ViteVQA opens a new direction for VQA or TextVQA over videos,
and this work may inspire new research momentum to this area.

7 Conclusion

In this paper, we propose and address a novel problem called video text visual question answering
(ViteVQA), which requires the model to answer a given question by reading texts and visual in-
formation from videos and do temporal reasoning over consecutive events or frames in videos. To
support ViteVQA research as a novel problem, we curate the first ViteVQA benchmark dataset named
M4-ViteVQA which consists of nine categories of videos with three different resolutions, 7,620
video clips and 25,123 question-answer pairs. We also develop a ViteVQA model as the baseline
called T5-ViteVQA, which mainly consists of 5 transformers. T5-ViteVQA first extracts question
features, OCR features and video features from three different modal inputs, then fuses these features
to generate the final answer. Extensive experiments on M4-ViteVQA show the superiority of our
method to the existing techniques of TextVQA, VQA and video-language pretraining.
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