
Appendix

The appendix is organized into the following sections.

• Appendix A Theoretical results

• Appendix B: Experimental details; pipelines, training and hyperparameter tuning

• Appendix C: Additional experimental details for number of holes

• Appendix D: Additional experimental details for curvature

• Appendix E: Additional experimental details for convexity

• Appendix F: Guidelines for persistent homology in applications; long and short persistence intervals

• Appendix G: Persistent homology detects convexity in FLAVIA data set

A Theoretical results

In this section, we provide the proof of our Theorem 1 that guarantees that PH can be used to detect
convexity. We then formulate Theorem 2 and Theorem 3 from the literature, that summarize known
theoretical guarantees that PH can detect the number of holes and curvature. At the end of the section,
we also discuss some known results about the theoretical computational complexity of PH.

A.1 Convexity

In our pipeline for the detection of convexity we consider tubular filtrations, akin to the concept of
tubular neighborhoods in differential topology. Given a subspace X of Rd, and a line α ⊂ Rd, we
consider all the points in X that are at a specific distance r from the line. By varying r, we then
obtain a filtration of X . We note that while a tubular neighborhood is defined with respect to any
curve, here instead we focus on the special case of (closed) neighborhoods with respect to a line.

Definition 1 (Tubular filtration). Given a line α ⊂ Rd, we define the tubular function with respect
to α as follows:

τα : Rd → R
x 7→ dist(x, α) ,

where dist(x, α) is the distance of the point x from the line α. Given X ⊂ Rd and a line α ⊂ Rd,
we are interested in studying the sublevel sets of τα, i.e., the subsets of X consisting of points at a
specific distance from the line. We define

Xτα,r = {x ∈ X | τα(x) ≤ r} = {x ∈ X | dist(x, α) ≤ r} .

We call {Xτα,r}r∈R≥0
the tubular filtration with respect to α.

We first formulate and prove our main theorem below, and then discuss the need for tubular filtration
in Remark 2.

Remark 1 (Different notions of components). In the proof of Theorem 1 we need to work with
path-connected components. We note that while in the main part of this manuscript we always
only use the term “components”, more precisely one would need to distinguish between “connected
components” and “path-connected components”. For the purposes of the majority of the spaces that
we consider in this work, the two notions are equivalent. Thus, we often simply refer to these as
“components”.

Theorem 1 (Convexity). Let X ⊂ Rd be triangulizable7. We have that X is convex if and only
if for every line α in Rd the persistence diagram in degree 0 with respect to the tubular filtration
{Xτα,r}r∈R≥0

contains exactly one interval.

7Namely, there exists a simplicial complex K and a homeomorphism h : |K| → X from the geometric
realization of K to X.

18

Proof. We first note that the persistence diagram in degree 0 of {Xτα,r}r∈R≥0
exists, since the

singular homology in degree 0 (and with coefficients in a field) of Xτα,r is finite-dimensional for any
r ∈ R≥0; the existence of the persistence diagram then follows from [28, Theorem 2.8].8

Assume that X is convex. By definition, we have that for all p1, p2 ∈ X the straight-line segment
between p1 and p2 is contained in X . Let α be any line in Rd and r ∈ R. By elementary properties
of Euclidean spaces (similarity of triangles, see Figure 7), we have that if dist(p1, α) ≤ r and
dist(p2, α) ≤ r, then also dist(q, α) ≤ r for any point q on the line segment between p1 and
p2 (Figure 7). By the definition of tubular function, this means that p1, p2 ∈ Xτα,r implies that
q ∈ Xτα,r. Therefore the straight-line segment between p1 and p2 is contained in Xτα,r, which
means that Xτα,r is convex, and thus path-connected. We therefore have that for any line α, the
persistence diagram in degree 0 of {Xτα,r}r∈R contains a single interval.

. ..p1 p2qβ

α
. ..
p′1 p′2q′

. ..p1 p2qβ

α

.z
.

..
p′1

p′2
q′

. ..p1 p2qβ

α

.z.
.

.
p′1

p2

q′

(a) (b) (c)

Figure 7: The distance dist(p, α) from a point p to a line α is defined as the distance between p
and the projection p′ of p to line α (denoted with dotted lines in the figure). For any two points
p1, p2 ∈ Rd, q ∈ Rd on a line segment between p1 and p2, and a line α in Rd, we have that the
lines β passing through p1 and p2 is either (a) parallel, or (b)-(c) intersects the line α in a point
z = β∩α. In the former case, per definition of parallel lines, we have that dist(p1, α) = dist(q, α) =
dist(p2, α) = dist(β, α). In the latter cases, we have a similarity of triangles4p1p′1z, 4qq′z and
4p2p′2z, since they all have a 90°angle, and share the angle ∠(β, α). Since dist(q, s) lies between
dist(p1, s) and dist(p2, s), the triangle similarity implies that dist(q, α) lies between dist(p1, α) and
dist(p2, α).

Assume now that X is concave. Then by definition there exist p1, p2 ∈ X and a point q on the
straight-line segment between p1 and p2 such that q /∈ X . Since X is closed, we have that there
exists ε > 0 such that B(q, ε) ⊂ Rd \X (Figure 8). Let α be the line passing through p1 and p2,
and let 0 ≤ r ≤ ε. We then have that dist(p1, α) = dist(p2, α) = 0 ≤ r, so that p1, p2 ∈ Xτα,r. We
claim that the subset Xτα,r is not path-connected.

Let us assume otherwise, i.e., that that Xτα,r is path-connected. Equivalently, there is a path
connecting p1 and p2 and which is contained in Xτα,r. Then such a path would have to intersect
the hyperplane β passing through q and orthogonal to line α. To see why, we first note that
the complement Rd \ β of the hyperplane is disconnected with two connected components, each
containing one of the two points p1 and p2. If the path would not intersect the hyperplane, it would
be contained in the complement of the hyperplane, but not entirely contained in one of the connected
components, which yields a contradiction to the path being connected. By construction, this point
of intersection z ∈ X lies on the path between p1 and p2, and therefore z ∈ Xτα,r, or equivalently,
τα(z) = dist(z, α) ≤ r. Since z is also contained in the hyperplane β orthogonal to the line α and
passing through q, we have that dist(z, q) = dist(z, α) ≤ r, i.e., z ∈ B(q, r) ⊂ Rd \X, which is a
contradiction to z ∈ X. Therefore, for any 0 ≤ r ≤ ε, the set Xτα,r is not path-connected, so that the
0-dimensional PD on the tubular filtration with respect to α contains at least two intervals.

Remark 2 (Relationship with the height filtration). To illustrate the need for the tubular filtration, we
discuss how it compares to the height filtration that is well-established in the literature. For a given

8We note that while in this proof we need to consider singular homology, when computing PH in practice
one works with either simplicial or cubical homology. For the types of spaces that we consider in our work, all
homology theories are equivalent. See [60] for a discussion of the equivalence between simplicial and cubical
homology, and [53, Chp. 2] for the equivalence of singular and simplicial homology.

19

X

B(q, ε). ..
p1 p2qα

β

.
z

Figure 8: For a concave shape X , there exists a tubular filtration line α so that the resulting 0-
dimensional PD sees multiple path-connected components (in green). Note that the path in the figure
can exist, but it cannot lie completely in the particular sublevel set (in green).

shape X ∈ Rd and a unit vector v ∈ Sd−1, the height function ηv : Rd → R is defined via the scalar
product, ηv(x) = x · v. If we consider the hyperplane that is orthogonal to the vector v and passes
through the origin (0, 0, . . . , 0) ∈ Rd, the sublevel set Xηv,r corresponds to the area in X above or
in the hyperplane and below or at height r ∈ R, and the complete area of X below the hyperplane
(where the scalar product is negative) (Figure 9, column 1). Note that it is possible to recenter the
shape at the origin, so that the hyperplane does not need to pass through the origin.

We note that 0-dimensional PH with respect to the height filtration can help us detect some concavities
in Rd, what is the case for panel (a) in Figure 9, where we clearly see multiple path-connected
components in green. However, for shapes in R2 where a source of concavity is a hole within the
shape, such as the annulus-like shape in row 2 of Figure 9, the sublevel sets with respect to the height
filtration will only see a single path-connected component, see panel (d) in Figure 9. Indeed, there
is no unit vector v for which the sublevel set Xηv,r = {x ∈ X | ηv(x) = x · v ≤ r} contains more
than one path-connected component. If we adjust the definition of the filtration function and let
η′v(x) = |x · v|, the sublevel set Xη′v,r

corresponds to the area in X above and below the hyperplane,
and within height r ∈ R in both directions. In other words, Xη′v,r

is the area of X within a given
distance from the hyperplane. 0-dimensional PH with respect to the absolute height function η′v
enables us to detect any concavity in R2, see (b) and (e) in Figure 9, since the sublevel set consists
of multiple path-connected components (in green). In R2, the tubular filtration corresponds to the
absolute height filtration. However, neither the height nor the absolute height filtration can detect
concavity in higher dimensions. Indeed, consider a sphere-like shape as an example concave shape
in R3 (Figure 9, row 3). The sublevel sets Xηv,r and Xη′v,r

will result in a single path-connected
component, see the green areas respectively in panels (g) and (h) in Figure 9. On the other hand, the
area within a distance from some line (points in X that are within a given tube) can result in two
(disconnected) disks on polar opposites on the sphere, see panel (i) in Figure 9.

However, we note that there are likely alternative approaches that can rely on PH with respect to the
(absolute) height filtration to detect concavity. One possibility would be to also consider homology in
higher dimensions (although, we note that 0-dimensional PH is faster to compute, see Appendix A.4).
For shapes in R2, it is sufficient to consider the 0- and 1-dimensional PH with respect to the height
filtration. Indeed, although the annulus-like shape (Figure 9, row 2) does not see multiple path
components with respect to any height filtration function, there is a 1-dimensional hole which points
to a concavity. This, however, does not generalize to higher dimensions: Indeed, a sublevel set of a
sphere with respect to any height filtration will result in a spherical cap which has trivial homology in
dimensions 0, 1 and 2, see panel (g) in Figure 9. On the other hand, the sublevel set of the absolute
height function on the sphere will always consist of a single path-connected component, but we can
capture 1-dimensional holes, see panel (h) in Figure 9. Another interesting example of a concave
surface in R3 is a ball with a dent on the north pole, i.e., a crater. This concavity cannot be detected
with 0-dimensional PH with respect to any (absolute) height filtration. For the example surface, an
interesting direction would be looking at the surface "from the top" (horizontal hyperplane), but PH

20

would start by seeing a circle, and then the crater itself — always a single path-connected component.
However, 1-dimensional PH with respect to this filtration would capture a hole, implying that the
surface is concave.

Another possibility could be to study (the computable) multiparameter 0-dimensional PH by scanning
shapes from multiple directions simultaneously. For the sphere, 0-dimensional PH would capture
the two path-connected components with the bi-filtration that looks at the shape with respect to the
horizontal hyperplane denoted in the panel (h) in Figure 9, and the orthogonal hyperplane passing
through the shape. We note that while the theory and computations for multiparameter persistence are
hard, there have been some recent advances, see, e.g., [101]. This is similar to slicing the shape with
a hyperplane, and then studying the single-parameter 0-dimensional PH of the slice. The alternative
approaches that we briefly discuss here are an interesting avenue for further work.

height absolute height tubular

scalar product distance from hyperplane distance from line
ηv(x) = x · v η′v(x) = |x · v| = dist(x, α) τα(x) = dist(x, α)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9: Sublevel sets of the height (column 1), absolute height (column 2) and tubular function
(column 3) for three example concave shapes in R2 and R3. Concavity is detected with multiple
0-dimensional persistence intervals, which reflect the multiple path-connected components in the
filtration. The sublevel set (in green) has multiple path-connected components for the height function
only for the shape in row 1, for the absolute height only for shapes in rows 1 and 2, whereas for the
tubular function this is the case for any concave shape in Rd.

Remark 3 (Relationship with the Persistent Homology Transform). There is a lot of work done on
studying the so-called Persistent Homology Transform (PHT), which is given by considering the PH
on the height filtration with respect to all unit vectors [41, 49, 104]. Such a topological summary that
has been shown to be a sufficient statistics for probability densities on the space of triangulizable
subspaces of R2 and R3, respectively [104].

For practical purposes it would not be feasible to have to consider all unit vectors in the PHT.
Luckily, there are known results on the sufficient number of directions [41]. In computational
experiments in [104] on the MPEG-7 silhouette database of simulated shapes in R2 [67, 96] and
point clouds in R3 obtained from micro-CT scans of heel bones [13], the PHT is approximated by
looking respectively at 64 evenly spaced directions and 162 directions constructed by subdividing
an icosahedron. Furthermore, 0- and/or 1-dimensional PH with respect to the height and/or related

21

radial filtration has also been used as a 3-dimensional shape descriptor in [22], for analysis of brain
artery trees [8], or classification of MNIST images of handwritten digits [48].

We note that the theoretical results related to the Persistent Homology Transform focus on a complete
description of shapes, whereas here we are interested in investigating to what extent PH can detect
convexity and concavity.
Remark 4 (Detection of convexity with PH in practice). To calculate PH in practice, the sublevel sets
Kr need to be approximated with simplicial or cubical complexes (see Section 2.1). The PH pipeline
in our computational experiments for convexity detection (Section 5) relies on cubical complexes, but
it is possible to do so also with the Vietoris-Rips complex relying on geodesic distances. For details,
see Appendix E.1, where we conclude that it is important to ensure that the singular homology of each
of the sublevel sets is properly reflected with the homology of the complex. For convexity detection,
this means that the complexes of concave shapes should also see multiple connected components
(that do not connect with a simplex).

Furthermore, we note that, to simply differentiate between convex and concave shapes (binary
classification problem), it would be sufficient to only consider 0-dimensional homology of the
intersection of X with the line α, i.e.,

Xτα,0 = {x ∈ X | τα(x) = dist(x, α) ≤ 0} = X ∩ α,

which is easier to compute than the multi-scale PH. This intersection is a line segment for convex
shapes, and for concave shapes it is a union of disconnected segments on a line. Therefore, convex
shapes will have β0(X∩α) = 1, and concave shapes will have β0(X∩α) > 0 (one could think of this
as persistence intervals [0,+∞) that all have the same lifespan). However, in practical applications,
it is often useful to capture a more detailed information about concavity. For example, for the plant
morphology application we consider in Appendix G, the goal is to capture a continuous measure of
concavity (regression problem). Then, the (different) lifespans of the second (or also third, fourth,
...) most-persisting connected component can provide important additional information. Moreover,
in applications X is typically finite, e.g., a point cloud, so that one would still need to approximate
X ∩ α (points on a line segment) with a complex in order to calculate the homology (see paragraph
above). In other words, we would need to choose an appropriate scale r ∈ R that would ensure that
the complex faithfully reflects the homology of X ∩ α, which is a non-trivial task.

A.2 Number of holes

In our pipeline to detect the number of holes, we use the alpha complex, for which several theoretical
guarantees have been proven.

The Nerve Lemma (see, e.g., [44]) guarantees that the alpha complex of a set of points has the same
homology-type as the space obtained by taking unions of balls of a certain radius centered around
the points. Whether this union of balls has the same homology-type as the space from which the
points are sampled depends on properties of the sample. If the sample is dense enough, then it
has been shown that, for a suitable value of the scaling parameter, the alpha complex has the same
number of holes as the original space, for instance under the assumption on the space being a smooth
manifold [77]. For ease of reference, we reproduce here the result from [77].
Theorem 2 (Number of holes). Let M be a compact smooth manifold, and X a set of points sampled
uniformly at random from M. Then there exists r ∈ R such that the homology of the alpha simplicial
complex α(X, r) is isomorphic to the singular homology of the underlying manifold M.

Proof. [77, Theorem 3.1] implies that there exists r ∈ R such that the singular homology of the
∪x∈XB(x, r) is isomorphic to the singular homology of M. By the Nerve Lemma we then know that
the simplicial homology of the alpha complex α(X, r) is isomorphic to the singular homology of
∪x∈XB(x, r).

The alpha complex is known to approximate the Vietoris–Rips complex, in the sense that the respective
persistence modules are interleaved, see, e.g. [44].

A.3 Curvature

Here we reproduce the theoretical guarantee provided in [17].

22

Theorem 3 (Curvature). Let M be a manifold with constant curvature κ, and Dκ be a unit disk on
M. Let furtherX be a point cloud sampled fromX, according to the probability measure proportional
to the surface area measure. Then, PH of X recovers κ.

Proof. Given κ, [17, Theorem 14] establishes an analytic expression for the persistence (p = d/b) of
triangles to the curvature κ of the underlying manifold. This function is continuous and increasing,
so that persistence recovers curvature.

A.4 Computational complexity

In this section we discuss how our pipelines are affected by the size n of the point cloud and the
dimension d of the embedding space.

There exist several efficient algorithms for the computation of PH, many coming with heuristic
guarantees on speed-ups for the computation (see survey [80] for an overview, and references
therein). For the purposes of this discussion, we will focus on the standard algorithm, which has a
computational complexity which is cubical in the number N of simplices contained in the filtered
complex [123], i.e., the computational complexity is O(N3). Thus, to better understand how our
pipelines generalize to higher-dimensional point clouds, in the following we explain how the sizes N
of the different types of complexes that we consider are affected by the size n and dimension d of the
point cloud.

Number of holes For the detection of the number of holes, in our experiments we relied on alpha
simplicial complex. In the worst case, the size N of the alpha complex is O

(
ndd/2e

)
.

Curvature We used the Vietoris-Rips simplicial complex for curvature detection. The size N of
the Vietoris–Rips complex is O

(
nk+2

)
, where k is the maximum PH degree that we are interested in

computing.

In general, the choice between the alpha and Vietoris-Rips simplicial complex therefore depends on
the point cloud size n and dimension d (which are also related, since typically exponentially more
points are needed to properly sample a shape in higher dimensions), and the highest homological
dimension k that is of interest for the given problem at hand. For point clouds with a given number n
of points, the alpha complex is better suited in lower dimensions (d = 2, 3), and provided that the
point cloud is embedded in Euclidean space.

Convexity To detect convexity, we relied on cubical complexes. For data sets that have an inherently
cubical structure, using cubical complexes may yield significant improvements in both memory and
runtime efficiency [109]. This is particularly true for high dimensional data, since the ratio between
the size of the Vietoris-Rips simplicial complex compared to a cubical complex is exponential in
dimension d [33].

In our construction, given a point cloud in Rd and a fixed c ∈ N, we bin the points into cd cubes of
the same volume. In the worst case, the size N of the cubical complex of the resulting structure is
O(3dcd) (and thus does not depend on the number n of point cloud points).

In addition, it is important to note that our convexity detection pipelines only uses the 0-dimensional
persistent homology, which has a reduced complexity since one only needs to construct the complex
up to dimension 1. It is fairly easy to compute 0-dimensional PH in near-linear time with respect
to the number N of simplices by using union-find data structures [43, 44, 109]. For this reason, it is
an important advantage of our pipeline that it only relies on 0-dimensional PH, without needing to
calculate PH in higher homological dimensions.

Detecting convexity, however, poses additional challenges. Testing convexity is fundamentally a hard
problem in high dimensions, related to the hardness of computing convex hulls in high dimensions,
and unfortunately we cannot hope for free lunch. In our PH convexity detection pipeline, unlike for
the detection of the number of holes or curvature, we calculate PH across multiple tubular-filtration
lines, whose number also grows with the dimension d since sufficiently many filtrations need to be
considered (and the same would be the case - we would have to consider multiple tubular directions,
if we considered simplicial instead of cubical complexes, see Figure 20). This could be circumvented
by considering (quasi-)random lines. To conclude, specifying a desired computation budget and
number of filtrations in advance (leading to a corresponding accuracy tradeoff), our PH pipeline can

23

be used to obtain fast estimates of convexity. It can also be used to compute a continuous measure of
convexity (as we demonstrate on the real-world FLAVIA data set of leaf images in Appendix G), or
convexity at a given resolution, depending on the resolution of the filtration, which in some cases
may be more useful than the binary label (convex or concave).

B Experimental details

B.1 Reproducibility and computer infrastructure

The data and code developed for this research are made publicly available at https://github.com/
renata-turkes/turkevs2022on. All our computations were conducted using a 2.7Ghz vCPU
core from a DGX-1 + DGX-2 station.

B.2 Hyperparameter tuning and training procedure for the individual pipelines

In this section, we provide more details about the pipelines that were compared in the computational
experiments:

• SVM on persistent homology features (PH),
• simple machine learning (ML) baseline - SVM on distance matrices,
• fully connected neural network (NN) on distance matrices, and
• PointNet (PointNet) on raw point clouds.

For each pipeline, we list the hyperparameters that were tuned. To ensure a fair comparison of
the different approaches, we used the same train and test data across all the pipelines. We used
sklearn GridSearchCV based on cross validation with 3 folds and random splits, and returned the
hyperparameter values that resulted in the highest accuracy for classification problems (Section 3
and Section 5), or the lowest mean squared error for regression problems (Section 4). We also list
relevant software and licenses.

PH The general steps to extract PH features are visualized in Figure 10. To calculate PH in Section 3
and Section 5 we use GUDHI [100], and in Section 4 we use Ripser [7, 102], which are persistent
homology libraries in Python, available under the MIT (GPL v3) license. For the DTM filtration in
Section 3, we choose m = 0.03, so that 0.03× 1 000 = 30 nearest neighbors are used to calculate
the filtration function. Grid search is performed to choose the best persistence signature and classifier
or regressor as described below.

• In Section 3 and Section 4, we select between:
– simple signature of 10 longest lifespans,
– persistence images with resolution 10× 10, bandwidth σ ∈ {0.1, 0.5, 1, 10}, and weight

function ω(x, y) ∈ {1, y, y2}, and
– persistence landscapes with resolution of 100, and considering the longest 1, 10 or all

persistence intervals.
• We use SVM (sklearn SVC and SVR for classification and regression respectively) on the

PH signature, with the regularization parameter C ∈ {0.001, 1, 100}. The latter tunes the
trade off between correct classification of training data and maximization of the decision
function’s margin.

ML In our experiment, the input for the simple machine learning (ML) pipeline is the nor-
malized matrix of pairwise distances between point-cloud points. For a given point cloud
X = {x1, . . . , xn} ⊂ Rd, the corresponding distance matrix is the n × n matrix D ∈ Rn×n,
with entries Dij = dist(xi, xj) corresponding to the Euclidean distance for the detection of the
number of holes (Section 3) or convexity (Section 5), and hyperbolic, Euclidean or spherical distance
for curvature detection (Section 4). We take the entries above the diagonal flattened into a vector.
Since the dimension of distance matrices scales with the square of the number of points, we work
with subsamples of 100 distinct random points from each point cloud. Similarly as above, we use
cross validation to choose the SVM regularization parameter among C ∈ {0.001, 1, 100}.

24

https://github.com/renata-turkes/turkevs2022on
https://github.com/renata-turkes/turkevs2022on

point cloud filtration 0 and 1-dim PD 0- and 1-dim PH

Figure 10: Persistent homology features. To calculate PH for the given point cloud in R2, we first
construct a filtration {Kr}r∈R which approximates X at different scales r ∈ R,, where Kr is the
Vietoris-Rips simplicial complex. 0-dimensional PD has one persistent cycle, reflecting the single
component, and a number of short cycles that correspond to the individual point-cloud points that are
connected to other ones early in the filtration. 1-dimensional PD summarizes the two holes, whose
birth and death values respectively reflect the sparsity along the hole and the size of the hole, as
these are the scales r ∈ R at which the hole appears and when it is filled in within the filtration.
PDs are then represented by PIs, which are vector summaries that can be used in statistical learning
frameworks, but many other signatures (denoted, in general, with PH) can be used.

We note that while a distance matrix can be taken as input to a classifier, it depends on the particular
and arbitrary labeling of the points in the point cloud and hence it does not account for the label
symmetry of point clouds.

NN The normalized distance matrices are also fed to the multi-layer perceptrons (MLPs). We
consider the following hyperparameters:

• depth in {1, 2, 3, 4, 5} (only for NN deep),

• layer widths in {64, 256, 1 024, 4 096},
• learning rate in {0.01, 0.001},

that are selected through a grid search, with each parameter setting trained for 2 epochs. We use a soft-
max activation function, and cross entropy and mean squared error as loss functions for classification
(Section 3 and Section 5) and regression (Section 4) problems, respectively. Batch normalization
(with zero momentum) and a drop out (with a rate of 0.5) are applied after every (input or hidden)
layer.

PointNet PointNet [88] is a neural network that takes point clouds as inputs, and is inspired by the
invariance of point clouds to permutations and transformations. It incorporates fully-connected MLPs
to approximate classification functions, and convolutional layers to capture geometric relationships
between features.

In our experiments, we rely on the PointNet model from keras [1] under Apache License 2.0. This
model implements the architecture from the original PointNet paper [88], which is supplemented
with a publicly available code [87], licensed under MIT. We use grid search to tune:

• number of filters in {32, 64},
• learning rate in {0.01, 0.001}.

For each of the problems we consider, the model is trained from scratch using the training set
described in the corresponding section. Unlike in the original paper, we do not augment the data
during training by randomly rotating the object or jittering position of each point by a Gaussian noise,
in order to ensure a fair comparison with the other pipelines.

C Additional experimental details for number of holes

C.1 Data transformations

To test the noise robustness of the different pipelines, in Section 3 we consider the test data consisting
of the original point clouds, or point clouds under different transformations (Figure 2). A detailed
description of the data transformations is given in Table 1, and the transformations are visualized on

25

an example point cloud in Figure 11. To define reasonable values for the data transformations, we
took inspiration from the affNIST9 data set of MNIST images under affine transformations.

Table 1: Data transformations.

Transformation Definition of transformation

rotation Clockwise rotation by an angle chosen uniformly from [−20, 20] degrees
clockwise.

translation Translation by random numbers chosen from [−1, 1] for each direction.

stretch Scale by a factor chosen uniformly from [0.8, 1.2] in the x-direction. The
other coordinates remain unchanged, so that the point cloud is stretched.
Stretching factor of 0.8 results in shrinking the point cloud by 20%, and the
factor of 1.2 makes it 20% larger.

shear Shear by a factor chosen uniformly from [−0.2, 0.2]. A shearing factor of 1
means that a horizontal line turns into a line at 45 degrees.

Gaussian noise Random noise drawn from normal distribution N (0, σ) with the standard
deviation σ uniformly chosen from [0, 0.1] is added to the point cloud.

outliers A percentage, chosen uniformly from [0, 0.1], of point cloud points are
replaced with points sampled from a uniform distribution within the range
of the point cloud.

original translation rotation stretch shear Gaussian outliers

Figure 11: An example point cloud under the considered transformations.

C.2 Pipeline

Figure 12 visualizes the PH pipeline. To reduce the computation times, we approximate point
clouds at each scale with the alpha simplicial complex (discussed in Section 2, and in particular,
in Section 2.1). The DTM filtration on the point-cloud points is defined as the average distance
from a number of nearest neighbors. Therefore, outliers appear only late in the filtration, so that
their influence is smoothed out to a great extent. For the example point cloud in the figure, the
1-dimensional PD consists of four persistence intervals with non-negligible persistence or lifespan
(PD points far from diagonal) which correspond to the four big holes, and many short persistence
intervals that correspond to holes that are seen at some scales due to noise. This is clearly reflected in
the vector of sorted lifespans of the 10 most persisting cycles.

C.3 Performance across multiple runs

Table 2 provides a detailed overview of the results for the detection of the number of holes, when
the experiment is repeated multiple times. The accuracy for PointNet varies for different runs, but in
any case, we can clearly see that PH performs the best for each individual run. Note also that the
performance of ML, NN shallow and NN deep does not drop under affine transformations, since they
take the normalized distance matrices as input.

C.4 Training curves

Figure 13 shows the training curves for the NN and PointNet pipelines. The training set performance
of MLPs (shallow and deep) continues improving over epochs, but the validation set performance

9https://www.cs.toronto.edu/~tijmen/affNIST/

26

https://www.cs.toronto.edu/~tijmen/affNIST/

point cloud DTM filtration 1-dim PD

1-dim lifespans, PI or PLSVM

(0.36, 0.35, 0.33, 0.25, 0.05, 0.05, 0.02, 0.01, 0.01, 0.01)

Figure 12: Persistent homology pipeline to detect the number of holes.

quickly saturates and stops improving after a few epochs. PointNet performs well on this task, already
after a short number of training epochs. We do not include training curves for the PH and ML
pipelines, as these are based on SVMs.

NN shallow NN deep PointNet

Figure 13: Training curves for the detection of the number of holes.

C.5 Learning curves

Figure 14 shows the learning curves for every pipeline; i.e., the test accuracy of the trained pipelines
depending on the total amount of training data. This serves to evaluate the data efficiency of the
different methods. The PH-approaches perform well even for a small number of training point clouds.
PointNet also has good performance, although it requires more training data. The other approaches
(NN shallow, NN deep, and ML) have poor performance, which does not improve when more training
data is available. An explanation for this is that these methods are based on distance matrices and
hence cannot directly take advantage of the permutation symmetry of point clouds.

C.6 Computational resources

Figure 15 visualizes the computational efficiency and memory usage. We see that PH pipeline also
performs better with respect to these criteria in comparison to the other methods. The hyperparameter
tuning of the PH pipeline does take time (as we consider a wide range of parameters for the different
persistence signatures), but Figure 2 shows that even PH simple, where the SVM is used directly on
the lifespans of the 10 most persisting cycles (without any tuning of PH-related parameters) performs
well.

We note that the difference in the memory usage for data comes from the different types of input
that are considered by different pipelines: PDs (lists of persistence intervals) for PH simple and PH,
100×100 distance matrices for ML and NNs, and 1000×3 point clouds for PointNet (Appendix B.2).

27

Table 2: Accuracy across multiple runs for the detection of the number of holes.

Transformation Run PH simple PH ML NN shallow NN deep PointNet

original

run 1 0.94 1.00 0.67 0.52 0.50 1.00
run 2 0.94 1.00 0.67 0.51 0.50 1.00
run 3 0.94 1.00 0.67 0.56 0.50 1.00
mean 0.94 1.00 0.67 0.53 0.50 1.00
std dev 0.00 0.00 0.00 0.03 0.00 0.00

translation

run 1 0.94 1.00 0.67 0.52 0.50 0.23
run 2 0.94 1.00 0.67 0.51 0.50 0.17
run 3 0.94 1.00 0.67 0.56 0.50 0.21
mean 0.94 1.00 0.67 0.53 0.50 0.20
std dev 0.00 0.00 0.00 0.03 0.00 0.03

rotation

run 1 0.94 1.00 0.67 0.52 0.50 0.86
run 2 0.94 1.00 0.67 0.51 0.50 0.57
run 3 0.94 1.00 0.67 0.56 0.50 0.78
mean 0.94 1.00 0.67 0.53 0.50 0.74
std dev 0.00 0.00 0.00 0.03 0.00 0.15

stretch

run 1 0.97 0.98 0.64 0.49 0.47 0.85
run 2 0.97 0.98 0.64 0.48 0.45 0.70
run 3 0.97 0.98 0.64 0.52 0.51 0.98
mean 0.94 0.98 0.64 0.50 0.48 0.84
std dev 0.00 0.00 0.00 0.02 0.03 0.14

shear

run 1 0.95 1.00 0.66 0.54 0.51 0.94
run 2 0.95 1.00 0.66 0.51 0.50 0.72
run 3 0.95 1.00 0.66 0.56 0.51 0.96
mean 0.95 1.00 0.66 0.54 0.51 0.87
std dev 0.00 0.00 0.00 0.02 0.01 0.13

Gaussian

run 1 0.94 1.00 0.68 0.54 0.50 1.00
run 2 0.94 1.00 0.68 0.51 0.50 1.00
run 3 0.94 1.00 0.68 0.56 0.51 1.00
mean 0.94 1.00 0.68 0.54 0.50 1.00
std dev 0.00 0.00 0.00 0.02 0.01 0.00

outliers

run 1 0.82 0.93 0.62 0.55 0.49 0.70
run 2 0.82 0.93 0.62 0.51 0.50 0.51
run 3 0.82 0.93 0.62 0.54 0.41 0.44
mean 0.82 0.93 0.62 0.53 0.47 0.55
std dev 0.00 0.00 0.00 0.02 0.05 0.13

28

PH simple PH ML

NN shallow NN deep PointNet

Figure 14: Learning curves for the detection of the number of holes.

Figure 15: Computational resources for the detection of the number of holes.

29

D Additional experimental details for curvature

D.1 Pipeline

Before we visualize the PH pipeline, we give an illustrative figure that provides some intuition on
why PH can detect curvature (Figure 16).

Figure 16: Intuition behind curvature detection with PH. For triangles embedded on a manifold
with constant negative (left, in red), zero (middle, in blue) and positive (right, in green) curvature,
the length of triangle edges clearly reflect the underlying curvature. Since persistence captures the
length of these edges (when the triangle vertices merge into a component), PH can be used to detect
curvature.

The PH pipeline to detect curvature (Section 4) is visualized in Figure 17. The example point
cloud shown in the figure is in the Euclidean plane. We start by calculating the Euclidean distance
matrix, and then construct the Vietoris-Rips filtration from these distances, which approximates the
point cloud at different scales. 0-dimensional PD registers one persisting cycle reflecting the single
component of the disk (which we ignore, since it is shared by every disk in the data and thus does not
contribute to the classification), and many other components which have a short lifespan as they get
connected to other point-cloud points early in the filtration. There are no persistent 1-dimensional
holes since disks are contractible, but there are many holes with short persistence. PDs are then
transformed to a vector summary such as a PI.

point cloud Euclidean, spheric or hyperbolic distance matrix Vietoris-Rips filtration

0- and 1-dim PD0- and 1-dim lifespans, PI or PLSVM

Figure 17: Persistent homology pipeline to detect curvature.

D.2 Performance across multiple runs

Table 3 shows that (0-dimensional) PH outperforms the other machine- and deep-learning approaches
for curvature detection, across multiple experimental runs.

D.3 Computational resources

Figure 18 visualizes the computational time and memory usage of the different pipelines for this
task. The superior performance of the PH pipelines in comparison to other methods (Figure 4) can
come at a high cost with respect to the usage of computational resources. However, the simple 0-dim
PH pipeline (that only focuses on the lifespans of the PH cycles), which achieves the best predictive
power (Figure 4), is the most efficient.

30

Table 3: Mean squared error across multiple runs for curvature detection.

Run 0-
di

m
PH

si
m

pl
e

0-
di

m
PH

si
m

pl
e

10

0-
di

m
PH

1-
di

m
PH

si
m

pl
e

1-
di

m
PH

si
m

pl
e

10

1-
di

m
PH

M
L

N
N

sh
al

lo
w

N
N

de
ep

Po
in

tN
et

run 1 0.06 0.21 0.08 0.34 0.29 0.18 0.34 0.42 0.46 12.28
run 2 0.06 0.21 0.08 0.34 0.29 0.18 0.34 0.43 0.46 0.25
run 3 0.06 0.21 0.08 0.34 0.29 0.18 0.34 0.66 0.43 578.28
mean 0.06 0.21 0.08 0.34 0.29 0.18 0.34 0.50 0.45 196.94
std dev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.02 330.31

Figure 18: Computational resources for the detection of curvature.

E Additional experimental details for convexity

E.1 Pipeline

A visual summary of the PH pipeline used for convexity detection (Section 5) is given in Figure 19.
Every shape has at least one 0-dimensional cycle, i.e., connected component. For the given example
point cloud, PD on the cubical complexes weighted by the tubular filtration from the line passing
through the bottom of the image will have a second persistent connected component. A positive
persistence of the second most persisting cycle for at least some line indicates concavity.

We note here that the convexity could also be detected with PH with respect to the Vietoris-Rips
filtration, with some important adjustments. Indeed, [31, Theorem 2] provides a guarantee PH of any
function f and shape S can be estimated using an algebraic construction based on Rips complexes
from a point cloud X which is a geodesic dense-enough sample of S (and Theorems 3 and 4 in
this paper obtain guarantees in scenarios where both function values and pairwise distances are
approximate, i.e., defined on the point cloud). To do so to detect convexity, we cannot employ the
standard (so-called vanilla) Vietoris-Rips simplicial complex that relies on the distance function,
since all point cloud points show immediately at b = 0 in the filtration (that all soon get connected
into a single component), so that it never sees the two connected components in concave shapes,
at any scale r ∈ R, which are captured with cubical complexes. Filtering the point cloud points
by their height (yielding a so called weighted Rips filtration) might capture the multiple connected
components, but these components can get connected with an edge as soon as they are born, if they
are close to each other with respect to Euclidean distance (Figure 20). This can be resolved by
considering the geodesic distance (the length of the shortest path along the manifold, or a graph),
which will allow the multiple connected components to persist longer in the filtration. Indeed, the
geodesic distance between points in the “disconnected" regions in concave shapes (the clusters) is
larger than the Euclidean distance, so that these only get connected later in the filtration.

31

point cloud image tubular filtration, for 9 lines

0-dim PD, for 9 lines
maximum lifespan of the 2nd most
persisting cycle, across 9 linesSVM

...

. . .
0.63 = max{0.63, 0.3, 0.21, . . . , 0.00, 0.00}

Figure 19: Persistent homology pipeline to detect convexity.

Figure 20: Convexity detection with PH on simplicial and cubical complexes. The concavity can
be detected with the weighted Vietoris-Rips simplicial complex, with the tubular filtration function
on the vertices (in this figure, with respect to the horizontal line at the top of the point cloud). The
filtration function on edges is defined according to the Euclidean distances, but in way that ensures
that an edge can only appear in the filtration after both vertices incident to this edge appear in the
filtration (for details, see [5]). However, these multiple connected components can still be connected
with an edge, if they are close in the Euclidean space. This could be circumvented by considering the
weighted Vietoris-Rips which relies on the geodesic distances (which are expensive to compute), or
by considering cubical complexes instead, where the connected components remain separate until
they merge with the rest of the shape.

The important thing to keep in mind is to choose a filtration that will see disconnected components for
concave shapes. We choose cubical complexes as they are more straightforward and do not involve
the calculation of geodesic distances. Indeed, as the authors of [31] note, geodesic distances are
not known in advance and have to be estimated through some neighborhood graph distance, and
computing full pairwise geodesic distances is expensive [64, 74] (e.g., there are deep learning efforts
to estimate these geodesic distances on point clouds, such as [54, 86]).

Finally, we also note that the calculation of geodesic distances for curvature detection (Section 4) was
straightforward since the point clouds were sampled from unit disks from manifolds with constant
curvature, which enabled us to directly rely on the analytical formulas for geodesic distance.

32

Table 4: Accuracy across multiple runs for convexity detection.

Experimental setting Run PH ML NN shallow NN deep PointNet

train = regular
test = regular

run 1 1.00 0.74 0.72 0.72 1.00
run 2 1.00 0.74 0.77 0.60 1.00
run 3 1.00 0.74 0.75 0.75 1.00
mean 1.00 0.74 0.75 0.69 1.00
std dev 0.00 0.00 0.02 0.08 0.00

train = random
test = random

run 1 0.85 0.56 0.60 0.46 0.40
run 2 0.85 0.56 0.55 0.52 0.61
run 3 0.85 0.56 0.54 0.59 0.71
mean 0.85 0.56 0.56 0.52 0.57
std dev 0.00 0.00 0.03 0.06 0.16

train = regular
test = random

run 1 0.78 0.59 0.59 0.59 0.51
run 2 0.78 0.59 0.56 0.60 0.47
run 3 0.78 0.59 0.57 0.57 0.57
mean 0.78 0.59 0.57 0.59 0.52
std dev 0.00 0.00 0.02 0.08 0.05

train = random
test = regular

run 1 0.96 0.54 0.55 0.49 0.54
run 2 0.96 0.54 0.54 0.42 0.57
run 3 0.96 0.54 0.56 0.52 0.52
mean 0.96 0.54 0.55 0.48 0.54
std dev 0.00 0.00 0.01 0.05 0.02

E.2 Performance across multiple runs

For any experimental run, PH is better able to distinguish between convex and concave shapes than
the other machine- and deep-learning pipelines (Table 4).

E.3 Computational resources

Results related to the computational efficiency of the different approaches (trained on regular, and
tested on regular shapes) are summarized in Figure 21. In this case, the PH pipeline significantly
outperforms the other methods, since it relies on a scalar summary of a point cloud (the maximum
lifespan of the second most persisting connected component, across 9 tubular filtration function lines,
see Section 5 and Figure 19). On the other hand, PointNet relies on raw point clouds and therefore
has a very high memory consumption, since point clouds have 5 000 points for this task (compared to
1 000 points for the detection of the number of holes, or 500 points for curvature detection).

Figure 21: Computational resources for the detection of convexity.

E.4 Mislabeled point clouds

In order to gain a better understanding of the performance and limitations of our PH pipeline, we
look at some examples of mislabeled point clouds. Figure 22 shows a few point clouds sampled
from concave shapes that are erroneously classified as convex by PH pipeline (trained on regular, and

33

tested on random shapes). The figure also clearly suggests that considering additional lines for the
tubular filtration function would resolve these issues.

Figure 22: Examples of point clouds from concave shapes incorrectly classified as convex.

F Guidelines for persistent homology in applications

Our results demonstrate that PH can be successful in applications for which detecting the number
of holes, curvature and convexity is important. Based on our findings, we delineate guidelines for
the choice of filtrations and signatures, the input and output of PH pipelines, and draw a better
understanding of the topology and geometry properties that are captured by long and short persistence
intervals (see Figure 23).

We again note here that we use the alpha simplicial complex for the detection of number of holes
in order to improve the computational efficiency, but that the same can be done with the standard
Vietoris-Rips filtration. In addition, we discuss in Appendix E.1 that convexity can alternatively be
detected with the weighted Vietoris-Rips filtration, filtered by the tubular function, and relying on
geodesic distances.

(Betti βk) number of
k-dimensional cycles curvature convexity

alpha simplicial
complex, filtered by
Euclidean distance

Rips simplicial
complex, filtered by

geodesic distance

cubical com-
plex, filtered by
tubular function

longest k-
dimensional cycles

many short 0- and
1-dimensional cycles

second longest
0-dimensional cycle

SI
G

N
A

L
FI

LT
R

A
T

IO
N

SI
G

N
A

T
U

R
E

Figure 23: Persistent homology can be useful in applications where k-dimensional cycles, curvature
or convexity are important features. The choice of filtration and persistence signature, including the
focus on the long and/or short persistence intervals, depends on the signal of the particular application.

F.1 Adjustments of PH pipeline for related applications

Some obvious adjustments to the guidelines from Figure 23 can be made for applications related to
the ones that we consider here. Some possible adjustments include the following.

• If it is expected that the data set is noisy, the suggested filtration function should be weighted by
density to achieve robustness to noise (as in Section 3).

• In our experiments, we focused our attention on the PH information relevant to the individual
problem at hand, but for other related applications, one might need to consider a different type of
information given by PH. For example, if we do not only aim to distinguish between convex and

34

concave shapes, but rather to capture more information about the possibly many concavities, we
should not restrict our attention only to the second most persisting cycle, nor consider the maximum
across filtration function directions. Instead, it would be useful to take all PH intervals into account
for such an application.

• If there are multiple sources of differences in the data, it can be a good idea to combine the different
pipelines. For example, if two classes can be differentiated with some concavities, 0-dimensional
PH on the tubular filtration will be useful, but if it is also the shape curvature that can help make a
distinction, this information can be concatenated with 0- and 1-dimensional PH on Vietoris-Rips
filtration.

F.2 Discussion of PH pipeline for other applications

Step 1: Signal Figure 23 and the discussion above clearly indicate that, when faced with a new
problem, it is essential to first try to identify the important information, the signal. To illustrate
this more clearly, we list some examples of very different types of signal in Appendix F.2.1, Ap-
pendix F.2.2, Appendix F.2.3. Once there is some understanding of the signal, the next steps are to
choose the filtration and signature accordingly.

Step 2: Filtration The aim is for the filtration to capture the signal. For instance, the Vietoris-Rips
filtration encodes the size of cycles, while the height or tubular filtration encodes their position. The
choice of filtration also influences which type of geometric properties will be captured by long or
short persistence intervals. To illustrate the importance of the choice of filtration for the interpretation
of long and short intervals, we consider the example point cloud in Figure 10. PH with respect to any
meaningful filtration can detect the topology of the underlying shape, i.e., the two holes. However,
for the height filtration function from the top of the image, the small circle would have a longer
lifespan of the two (as it is born earlier in the filtration), and the large circle can have a seemingly
very short lifespan (as it is only born at the bottom of the image). For the Vietoris-Rips filtration it is
the opposite (a small cycle has short persistence), and PD on the height filtration from the bottom of
the image would see cycles of comparable persistence.

Step 3: Signature The choice of persistence signature and the corresponding metric further
influences the emphasis on long or short persistence intervals. The Wasserstein distances [20]
between PDs place more importance to long persistence, and the same is true for Lp or lp distances
between other common choices of persistence signatures, with the standard choice of parameters.
However, similarly to our discussion above in F.1, one might want to focus only on short intervals,
e.g., by considering only the intervals with lifespan below a certain threshold (so that the distances
would be computed between this simplified PH information). Some alternative ways to give more
weight to short intervals, or intervals of any persistence, or even birth value, is via persistence
images with the appropriate choice of the weighing function [2], or stable ranks with appropriate
densities to prioritize [24]. Note, however, that the stability results also depend on the choice of
filtration, persistence signature and metric [103]. Finally, we note that there has recently been a lot of
effort in trying to train neural networks to learn what the best PH signature is for specific types of
applications [21, 42, 75, 92].

In the remainder of this section, we consider a few hypothetical applications to discuss the relevance
of signal, filtration and signature that we hope will be useful for practitioners. In particular, the
examples highlight that the importance of long and short persistence intervals depend on the particular
application domain. In this context, it is sensible to try to understand the nature of information that
is captured with PH (e.g., topological or geometric, any of which might or not be important). The
examples thus help us to refine an ongoing discussion in the field about the information detected by
intervals of a specific length in a PD:

• Long persistence intervals as signal. Indeed, this is true in examples from Figure 24
(when long intervals capture important topology) or Figure 27 (where long intervals capture
important geometry). However, an example in Figure 28 (together with results in Section 4
and Section 5) highlights that important information can be encoded in short intervals.

• Short persistence intervals as noise. Figure 28 is an example where important information
is captured by short intervals (or in this case, a short interval). This can also be seen in the
experimental results in Section 4 and Section 5.

35

• Long intervals capture topology. An example in Figure 27 highlights that long intervals,
next to topology, also capture geometric information.

• Many short intervals capture geometry. An example in Figure 28 (together with results
in Section 5) shows that even a single short interval can capture (important) geometry.

F.2.1 Topology is important, geometry is irrelevant

In some applications, it might be useful to make no distinctions between a circle, a circle with a dent,
the circle under translation or scaling, or a square (Figure 24). In this case, “shape” is understood
through the lens of topology — more precisely, what we are interested in is what is called “homology-
type” —, where one object can be deformed into another by bending, shrinking and expanding, but
not tearing or gluing. Indeed, to a topologist, a coffee mug and a donut have the same shape.

Figure 24: An example of an application where topology is the signal. We consider all the shapes to
be the same, i.e., to represent the same class of data, as they all have one connected component and
one hole.

It is possible to obtain the same PH summaries for all of the shapes from Figure 24. Indeed, 1-
dimensional PDs with respect to the standard Vietoris-Rips filtration on a unit circle and a unit
square sampled with same density (reflected in the birth values) could respectively be {(0.1, 1)}
and {(0.1, 1.41)}, since the death value reflects the size of the hole. However, we can focus on the
cardinality |PD| of PDs, that here only encodes topological information. Alternatively, we could
rather consider PDs calculated on cubical complexes filtered by the binary or grayscale filtration.

Let us further assume that point clouds with multiple holes might be present in the data, but that
the only relevant information is the presence of holes, and not their number (Figure 25). An
example of such application could be classification between chaotic and periodic (biological) time
series, since the circularity of the so-called Taken’s embedding point cloud reflect periodicity of
the underlying time series [83]. In this case, we can only focus on the maximum persistence
max{l = d− b | (b, d) ∈ PD}. Although PD captures a lot of topology and geometry, this choice of
summary obviously ignores a lot of this information.

Figure 25: An example of an application where the presence of holes is the signal. The first three
shapes in the left part of the figure belong to the same class as there is at least one hole present,
whereas the remaining three shapes belong to another class with no holes.

F.2.2 Topology is irrelevant, geometry is important

For other type of applications, the shapes from Figure 24 might be representatives of different classes
of objects (Figure 26). Since they all have a single connected component and a single hole, the
topological information has no use in discriminating between the classes. However, the geometric
information about their size and position is useful.

Important geometry encoded in long intervals Consider an example where every shape in the
data set has only two holes (Figure 27), and PH with respect to the Vietoris-Rips filtration. The two
longest intervals reflect these two holes (topological information), but their lifespans reflect their size,
and it is this geometric signal that can help discriminate between the shapes.

36

Figure 26: An example of an application where geometry is the signal. In this case, every shape in
the figure represents a different object, i.e., they all belong to different data classes.

Figure 27: An example of an application where the size of the holes is the signal. The three shapes
all have two holes, but their size is meaningful for this application, so that they all belong to different
data classes.

Important geometry encoded in a single interval with the shortest persistence We consider a
hypothetical cancer-detection application. Let us assume that the data set consists of medical images
of some cells in the human body, which look like a certain number of holes (e.g., a grid-like structure).
Now imagine that the only difference between the healthy and cancerous cells is the presence of a
tiny hole somewhere in the image (which might correspond to some developing cancerous tissue)
(Figure 28). For PH with the Vietoris-Rips filtration, the lifespan of each cycle registers its size,
but it is the very short persistence of the tiniest holes which would be the most important for this
application, as it would be this local geometry signal that would allow to discriminate between the
two classes of data, i.e., to detect the presence of cancer.

Figure 28: An example of an application where the presence of a tiny hole is the signal. The first
three shapes in the left part of the figure reflect the images of healthy cells, whereas the remaining
three shapes indicate developing cancerous tissue.

For example, PH for healthy and cancerous cells can respectively have lifespans (20, 20, 20, 20, 0)
and (20, 20, 20, 20, 0.05). The stability theorems imply that the difference between the PH on the
healthy and cancerous cells is “small” (or more precisely, it is limited by the difference in their
filtrations), but this difference is important for this problem and hence not “noise.”

PH can be successful for this task even if the number and size of holes varies across images of
healthy cells. In this case, the lifespans for PH of healthy cells could, e.g., be (20, 15, 12, 25, 0),
(13, 21, 15, 17, 0), and (14, 15, 27, 20, 0.05), (19, 21, 15, 17, 0.05), for cancerous cells. Here, the
distance between the PH for healthy and cancerous cells is overwhelmed by the distance between
the long cycles, that reflect irrelevant information for the problem. However, we could consider a
PH signature that only focuses on short intervals, or choose PIs that give a greater weight to short
intervals. Alternatively, if there is a number of labeled images available, the difference with respect
to the short persistence interval can be learned.

In the same way, it might be the case that images can only be distinguished with a hole of medium
persistence, and therefore the importance of different lifespans depends on the application, i.e., data
set. If we know this a priori, we can use PIs and give the greatest weight to the intervals with the
most distinctive persistence.

37

F.2.3 Topology and geometry are important

To conclude our guidelines, we consider an example of an application in which both geometric and
topological information are important. Let us consider a classification problem where the shapes
in Figure 29 represent different objects, i.e., different data classes. In this case, it is topology and
geometry together that provide useful information. The standard choice of PH on the Vietoris-
Rips filtration can help to distinguish between these objects. The PH signature should consider all
persistence intervals, since, as discussed in Section 6, geometry (reflecting the size of cycles) is
captured in every persistence interval, while the topology is reflected in the number of long-enough
intervals.

Figure 29: An example of an application where topology and geometry are both signal.

G Persistent homology detects convexity in FLAVIA data set

In this section, we employ PH on the FLAVIA data set which consists of 1 907 1200× 1600 images
of plant leaves [114]. Figure 30 shows a few examples of images in this data set. The goal of these
experiments is to show that PH can be effective on real-world data, but also to illustrate the above
guidelines about the appropriate choice of filtration and signature for a given application, and the
importance of long and short intervals (Appendix F). We focus on convexity detection, as this is the
main contribution of our work.

We classify the leaves according to following measure of convexity which has been shown to be
useful for plant species recognition [61]:

c(X) =
area(X)

area(CH(X)))
, (1)

where CH(X) is the convex hull of image X. The convexity measure (1) is the most widely used in
the literature, and appears in textbooks [124]. Note that we only use the above formula to properly
label the data set (Figure 30), but that, deriving convexity information in such a way involves
employing a convex hull algorithm.

In the simpler scenario of a binary classification between convex or concave shapes (i.e., signal is the
simple: convex - yes or no), we could rely on the same pipeline as in Section 5, where we consider
the lifespan of the second most persisting connected component, and then store the maximum such
value across all 9 tubular filtration lines (Figure 19, Figure 31). This is sufficient information, since
we are only interested in whether PH sees multiple connected components - source of a concavity,
for at least one line. However, the convexity measure (1), the signal in our application, provides a
more detailed level of information (regression problem), so that we keep the lifespan of the second
most persisting connected component for all lines, in order to capture information about sources of
concavities seen with respect to any of the lines.

Moreover, since the convexity measure is calculated relative to the size of the leaf, the tubular filtration
directions remain the same, but 8 filtration lines pass through the corners of the leaf rather than the
corners of the image (Figure 19), and the lifespans are normalized relative to the area of the leaf (total
number of black pixels in the binary image). In this way, PH depicts information about concavities for
any line and relative to the leaf size, and it is invariant under translation and scaling. We use 30× 30
cubical complexes (on binary images), to capture a higher level of detail for the leaves of different
convexity, in comparison with the 20× 20 resolution for the cruder differences in our synthetic data
set in Section 5. Figure 31 visualizes the tubular filtration for the 9 different lines, and the resulting
0-dimensional PDs, for an example leaf image (bottom image from Figure 30).

38

raw image X CH(X) CH(X)\X

Figure 30: A few example images from the FLAVIA leaf data set. The images are shown, from top
to bottom, with a decreasing label, i.e., convexity measure c(X), 1.00, 0.98, 0.89, 0.71. Note that
the second image from the top is more convex than the third image, since the considered convexity
measure c(X) is given relative to the area of the leaf. The PH lifespans on the tubular filtration with
respect to 9 different lines are respectively from top to bottom, [0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00], [0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00], [0.00, 0.00, 1.09, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00], [0.00, 2.52, 10.08, 3.78, 0.00, 1.26, 0.00, 0.00, 0.00].

Linear regression on the FLAVIA data set, trained on 70% of random images, with each image
represented with the 9-dimensional vector of lifespans of the second most persisting component
across all tubular filtration lines, obtains a mean square error of 0.00065. The regression line in
Figure 32 shows that PH is effective in classifying the FLAVIA leaves according to a measure of
convexity. The convexity of some thin leaves (such as the image in the third panel in Figure 30) gets
overestimated with our PH pipeline, since concavity is not captured well with our crude resolution,
that could easily be improved.

Furthermore, even more detailed information can be captured if the lifespans of the third, fourth,
... most persistent connected component would be kept, because some leaves have more than two
sources of concavity for a single line, that result in more than two connected components. For
example, the 0-dimensional PD of the image in Figure 31 has more than two persistence intervals
for some tubular filtration lines. The accuracy can thus be improved by considering the lifespans
of all short intervals (and across all lines), and again, by considering more tubular filtration lines
(Section 5). This clearly illustrates how the choice of filtration and signature, the input and output
of PH, should be guided by the signal in the given application. Moreover, it shows that one short
interval can be sufficient for some applications, but that in other cases, many short intervals might
store the needed additional level of (geometric) information.

39

Figure 31: The tubular filtration for the 9 considered lines, and the resulting 0-dimensional PDs for
an example image. The concavity is detected with multiple connected components that are seen for a
few lines.

40

Figure 32: Results on the FLAVIA data set. The first two plots show that there is a good correspon-
dence between the concavity measure (1− c(X)) (left panel) and the simple PH signature that only
considers the sum of lifespans across the tubular filtration lines (middle panel). The regression line
on lifespans from all 9 tubular filtration lines shows good performance of our PH pipeline.

41

	Introduction
	Background on persistent homology
	Approximation of a space at scale r R
	Filtration
	Persistence signature

	Number of holes
	Curvature
	Convexity
	Implications for PH interpretation: topology vs. geometry
	Conclusions
	Theoretical results
	Convexity
	Number of holes
	Curvature
	Computational complexity

	Experimental details
	Reproducibility and computer infrastructure
	Hyperparameter tuning and training procedure for the individual pipelines

	Additional experimental details for number of holes
	Data transformations
	Pipeline
	Performance across multiple runs
	Training curves
	Learning curves
	Computational resources

	Additional experimental details for curvature
	Pipeline
	Performance across multiple runs
	Computational resources

	Additional experimental details for convexity
	Pipeline
	Performance across multiple runs
	Computational resources
	Mislabeled point clouds

	Guidelines for persistent homology in applications
	Adjustments of PH pipeline for related applications
	Discussion of PH pipeline for other applications
	Topology is important, geometry is irrelevant
	Topology is irrelevant, geometry is important
	Topology and geometry are important

	Persistent homology detects convexity in FLAVIA data set

