
A Experimental Settings

All experiments were conducted on a single NVIDIA RTX 3090 GPU.

MORPH II & Adience: For the image encoder, we followed the common practices in [9, 10, 5, 4]
and employed a VGG-16 [11] network for MORPH II, which was pre-trained on the large-scale
IMDB-WIKI dataset [9]. Meanwhile, we adopted an ImageNet pre-trained VGG-16 for Adience
dataset following [1, 7]. The extracted image features were then projected to the CLIP latent space
with an additional Fully-Connected (FC) layer. For the text encoder, we chose the open-sourced
CLIP 1 implementation. We utilized the text encoder which was pre-trained with the modified
ResNet50 [2, 8] image encoder.

The obtained text features were also projected into the CLIP latent space via an FC layer. The
dimension of the CLIP space was set to 1024, following the official release from OpenAI. To validate
the non-trivial choice of bringing ordinal regression into CLIP latent space, we also constructed
another CNN baseline, with a set of learnable embeddings to replace the true text embeddings, We
found that initializing the prompt context gave better performance (Table 4). The prompt context was
initialized to “age estimation: the age of the person is {age}”, where {age} is the label of the image.
We used the RAdam optimizer [6] with a learning rate of 1e-4 for the image encoder, the learnable
context embeddings, and the base rank embeddings for fast convergence since there are more
rank categories in MOPRH II. As for Adience, we took the Adam [3] Optimizer. The model was
trained for 50 epochs and the learning rate was decayed with a factor of 0.1 at epoch 30. To prevent
overfitting, we performed simple data augmentations following [7]. The training images were first
resized to 256 × 256 and then cropped to 224 × 224 randomly, followed by a randomly horizontal
flip operation. The test images followed the same process except that the center cropping was used.
We adopted mean average error (MAE) to measure the absolute differences between the ground
truth labels and the predicted ones. Besides, the classification accuracy is adopted for Adience.

Image Aesthetics Assessment An ImageNet pre-trained VGG-16 was used as the image encoder. The
initial learning rates for the image encoder, the context embeddings, and the base rank embeddings
were set to 1e-4, and the learning rate for the last layer of the image encoder was set to 1e-3 for faster
convergence. The above learning rates decayed by a factor of 0.1 at epochs 25 and 35, respectively.
We trained the model for 50 epochs with Adam [3] and applied the data augmentation mentioned
above. The initial prompt was “aesthetics assessment: the quality of the photo is {rank}”. We
reported mean and standard deviation for both MAE and classification accuracy.

Historical Image Dating: We used an ImageNet pre-trained VGG-16 as the image encoder. The
model was trained for 50 epochs with Adam [3] optimizer. The initial learning rates for the image
encoder, the context embeddings, and the base rank embeddings were set to 1e-4, and the learning
rate for the last layer of the image encoder was set to 1e-3 for faster convergence. The above learning
rate decayed by a factor of 0.1 at epochs 25 and 35, respectively. The initial prompt was “historical
dating: a photo taken in the {label}”. We pre-processed the training data by first resizing them into
256 × 256, then randomly cropped them into 224 × 224. We took random horizontal flipping as data
augmentation. Both classification accuracy and MAE were reported on this dataset.

B Dataset Details

In this paper, we only use the existing publicly available data. For those datasets containing personal
data, we actively contact the dataset creators and consult the progress of IRB.

Figure 1 shows the original and shifted distributions of the MORPH II dataset. We list several
randomly selected samples from the historical image dating dataset (Figure 3) and image aesthetics
assessment dataset (Figure 2) to give better descriptions of the above two tasks.

C More Results of Ordinality of Learned Language Prototypes

In this section, we present comprehensive experimental results of ordinality 2 of language prototypes
on the MORPH II dataset.

1https://github.com/openai/CLIP. MIT License.
2i.e., (

∑N−2,N−2
i=0,j=0,i<=j 1{a′

i,j > a′
i,j+1})/((N − 1)×N/2).

1



20 30 40 50 60 70 80
Age

0.00

0.01

0.02

0.03

0.04

0.05

Fr
eq

ue
nc

y

train
test

(a) Original dist. of MORPH II
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(b) Reduce 80% of top 10 labels
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(c) Reduce 90% of top 10 labels
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(d) Reduce 80% of top 20 labels
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(e) Reduce 90% of top 20 labels
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(f) Reduce 80% of top 30 labels
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(g) Reduce 90% of top 30 labels
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(h) Reduce 80% of top 40 labels
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(i) Reduce 90% of top 40 labels

Figure 1: Original and shifted distributions of the MORPH II dataset.

(a) Unacceptable. (b) Flawed. (c) Ordinary. (d) Professional. (e) Exceptional.

Figure 2: Samples from the animal collections of the Aesthetics dataset.

We list quantitative (Table 1) and qualitative (Table 4) results for CNN Baseline, CLIP without context
initialization, and CLIP with context initialization. We observe that the prototypes for CNN are quite
sparse and unordered. Almost half of the prototypes violate the ordinal property for each model.
The initialized context helps ordinality and can further boost the performance of both CoOp [12]
and OrdinalCLIP. Note that both models start to be optimized from the above two CLIP-produced
language prototypes. Both models can improve the ordinality with their learned prototypes.

Table 1: The ordinality scores of language prototypes for CNN baseline, CLIP without initialized
context embeddings, and CLIP with initialized context embeddings.

Model CNN Baseline CLIP Rand. Ctx CLIP Init. Ctx
Ordinality (%) 49.13 49.71 54.84
MAE 2.63 19.75 14.45

Table 2 and Table 3 show the corresponding ordinality scores for the ablation study. By incorporating
initialized context embeddings, the ordinality and performance can be further improved. Under
all prompt optimization strategies, OrdinalCLIP is constantly better than CoOp [12]. Note that by
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(a) 1930s. (b) 1940s. (c) 1950s. (d) 1960s. (e) 1970s.

Figure 3: Samples from the historical image dating dataset.

(a) CNN Baseline (b) CLIP, Rand. Ctx (c) CLIP, Init. Ctx

Figure 4: The similarity matrices of language prototypes for CNN baseline, CLIP without initialized
context embeddings, and CLIP with initialized context embeddings.

tuning both context and rank embeddings, the ordinality of both models is decreased yet the MAE is
improved. We attribute this to the different optimization difficulties and different capacities of the
prompt learner. Figure 5 and Figure 6 visualize the similarity matrices for each setting. We can see
that OrdinalCLIP learns smoother language prototypes with increased ordinality.

Table 2: CoOp Ablation with ordinality on the MORPH II dataset.

Model CoOp [12]
Tune Rank ! ! ! !

Tune Ctx ! ! ! !

Init Ctx ! ! !
Ordinality (%) 52.67 55.68 55.95 59.92 54.52 55.00
MAE 2.58 2.41 2.44 2.39 2.39 2.39

Table 4 presents the ordinality under few-shot settings. For each few-shot setting, the ordinality of
CNN is not changed due to its sparse prototypes. Figure 7 further illustrates such effect. OrdinalCLIP
can obtain higher ordinality compared with CoOp [12]. With more data involved, the ordinality of
both models is increased. Figure 8 and Figure 9 present their similarity matrices respectively. We
find that OrdinalCLIP can learn more compact and smoother language prototypes.

Table 5 and Figure 10 11 12 illustrate the quantitative and qualitative results under distribution shift
settings. Similar observations as those under few-shot settings are found.

D The Visualization of Interpolation Weight Matrix

The toy visualization of the interpolation weight matrix is shown in Figure 13. This toy example
consists of 17 ranks (in a row) and 10 base ranks (in a column). Each row indicates that how a rank
embeddings is interpolated via the base ones. Two interpolation methods inject different ordinal
properties into the rank embeddings. We observe that linear interpolation gives smoother weights and
inverse property interpolation gives sharper weights
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Table 3: OrdinalCLIP Ablation with ordinality on the MORPH II dataset.

Model OrdinalCLIP
Tune Rank ! ! ! !

Tune Ctx ! ! ! !

Init Ctx ! ! !
Ordinality (%) 73.66 77.10 74.56 80.86 65.20 66.63
MAE 2.38 2.34 2.37 2.34 2.36 2.32

(a) Rand. Ctx; Tune Rank (b) Rand. Ctx; Tune Ctx (c) Rand. Ctx; Tune Both

(d) Init. Ctx; Tune Rank (e) Init. Ctx; Tune Ctx (f) Init. Ctx; Tune Both

Figure 5: The similarity matrices of language prototypes for CoOp [12].

(a) Rand. Ctx; Tune Rank (b) Rand. Ctx; Tune Ctx (c) Rand. Ctx; Tune Both

(d) Init. Ctx; Tune Rank (e) Init. Ctx; Tune Ctx (f) Init. Ctx; Tune Both

Figure 6: The similarity matrices of language prototypes for OrdinalCLIP.
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Table 4: We report the ordinality (%) results under few-shot settings on the MOPRH II dataset.

#-Shots 1 2 4 8 16 32 64

CNN Baseline 49.13 49.13 49.13 49.13 49.13 49.13 49.13
CoOp [12] 53.52 51.82 52.09 53.46 56.53 59.28 59.55
OrdinalCLIP 96.77 96.77 96.77 96.77 87.78 88.37 69.65

(a) 1-Shot (b) 2-Shot (c) 4-Shot (d) 8-Shot

(e) 16-Shot (f) 32-Shot (g) 64-Shot

Figure 7: The similarity matrices of language prototypes for CNN Baseline on the few-shot task.

(a) 1-Shot (b) 2-Shot (c) 4-Shot (d) 8-Shot

(e) 16-Shot (f) 32-Shot (g) 64-Shot

Figure 8: The similarity matrices of language prototypes for CoOp [12] on the few-shot task.

Table 5: The ordinality (%) results under the distribution shift setting on the MOPRH II. “re cls”
denotes the number of reduced classes, and “re smp” means the percentage of reduced sampled in
one class.

re cls - re smp 10-80 10-90 20-80 20-90 30-80 30-90 40-80 40-90

CNN Baseline 49.13 49.13 49.13 49.13 49.13 49.13 49.13 49.13
CoOp [12] 59.07 58.59 60.34 56.95 58.59 58.06 57.75 55.47
OrdinalCLIP 63.83 64.36 69.86 71.87 91.54 94.39 84.66 90.85
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(a) 1-Shot (b) 2-Shot (c) 4-Shot (d) 8-Shot

(e) 16-Shot (f) 32-Shot (g) 64-Shot

Figure 9: The similarity matrices of language prototypes for OrdinalCLIP on the few-shot task.

(a) 10-80 (b) 10-90 (c) 20-80 (d) 20-90

(e) 30-80 (f) 30-90 (g) 40-80 (h) 40-90

Figure 10: The similarity matrices of language prototypes for CNN Baseline on the distribution shift
task. The first integer is “re cls”, denoting the number of reduced classes; the second integer is “re
smp”, indicating the percentage of reduced sampled in one class

(a) 10-80 (b) 10-90 (c) 20-80 (d) 20-90

(e) 30-80 (f) 30-90 (g) 40-80 (h) 40-90

Figure 11: The similarity matrices of language prototypes for CoOp [12] on the distribution shift
task. The first integer is “re cls”, denoting the number of reduced classes; the second integer is “re
smp”, denoting the percentage of reduced sampled in one class
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(a) 10-80 (b) 10-90 (c) 20-80 (d) 20-90

(e) 30-80 (f) 30-90 (g) 40-80 (h) 40-90

Figure 12: The similarity matrices of language prototypes for OrdinalCLIP on the distribution shift
task. The first integer is “re cls”, denoting the number of reduced classes; the second integer is “re
smp”, denoting the percentage of reduced sampled in one class
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(a) Linear Interp.
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Figure 13: The visualization of both linear and inverse-property interpolation.
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E Liner Probe Experiment

We conducted experiments with the Linear probe solution on all tasks. The results are presented in
Table 6. We see that our method consistently outperforms the Linear probe method on all datasets,
which demonstrates the effectiveness of our method. It is worth pointing out that since most SOTA
methods use VGG-16 as the vision encoder, we simply follow this setting for a fair comparison.
Moreover, the specific choice of vision encoder does not affect our method and conclusion.

Table 6: The results of zero-shot with or without Language Prior (LP) on MORPH II. We give two
settings, random initialized language prototypes (without LP) and language initialized prototypes
(with LP). The features of images are extracted by the fixed CLIP image encoder. The significant
better performance of CLIP zero-shot indicates that the language prior contain certain level of ordinal
information.

Dataset MAE - lower is better Acc. - higher is better (%)

Linear Probe OdrinalCLIP Linear Probe OdrinalCLIP

MORPH II 4.70 2.32 - -
Adience 0.64 0.47 51.80 61.20
Aesthetics 0.487 0.280 61.60 72.85
Historical 0.86 0.67 41.07 56.44
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