
A Proofs

Theorem 2.5. Let C P RdˆT be a matrix with distinct singular values σ1 ą σ2 ą ... ą σT . Let
W,Γ be the SVD solution of (2). Under the Additive noise model defined in 6,
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Now for the SVD solution, we know that Γ “ ΣkV
T and tγiu are the columns of Γ. Hence,
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Then,
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We are going to use the following result due to Ledoux [35].
Lemma A.1 (Ledoux [35]). Let CT : RdˆT be a random matrix whose entries are i.i.d. Gaussian
with variance 1{d. Let CK be the random matrix that submatrix of C that consists of the first K
columns of CT . Then,
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where op1q is a small-term that tends to 0 as d Ñ 8.
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Theorem 2.7. Let C P RdˆT be a random matrix with Gaussian, i.i.d. entries of variance 1{d and
d “ ΩpT 3q. Let Ct, Ct`1 be the matrices that are formed by selecting the first t, pt ` 1q columns of

C respectively. Then, there is a noise level σthres such that with probability ě 1 ´ exp
´

´Ω
´?

d
¯¯

,
the SVD solutions (see (4)) of (2) (for Ct, Ct`1 respectively), under the noise corruption model,
satisfy:
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Proof. From Theorem 2.5, we have that:
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To prove the desired thing, we just need to show that ĘMSE
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has a smaller co-efficient for the
term σ2, because for large enough σ, eventually this term will dominate the sum. Hence, we need to
show that:
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Since Ct is a submatrix of CT , from the Eigenvalue Interlacing Theorem we know that
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We will now bound the difference of the first and k-th singular values.

From Lemma A.1, we have that:
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By union bound, with probability ě 1 ´ 2 expp´dα2{2q, we have that:
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Going back to Eq. 33, it suffices to show that:
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Since t ă T , this is true for d “ ΩpT 3q.

Lemma A.2. Let C be a matrix P RdˆT and cT`1 P Rd. Let also Cnew “ rC cT`1s P RdˆT`1.
Denote with σipCq the i-th singular value of C, sorted from the largest to the smallest. Then,

σi`1pCnewq ď σipCq ď σipCnewq, @i P t1, ..., T u (41)

Proof. We have that:
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Observe that Cnew
TCnew is a symmetric matrix and CTC is a principal submatrix. Hence, from the

Eigenvalue Interlacing Theorem, we have that:

λi`1pCnew
TCnewq ď λipC

TCq ď λipCnew
TCnewq, (43)

where λipAq is the i-th eigenvalue of A, sorted from the largest to the smallest. To finish the proof,
we note that for any matrix A, σipAq “

a

λipATAq.

B Additional Results

In this section, we include additional results that further support the findings of the main paper.

Robustness slope Recall Theorem 2.5 of the paper.
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Robustness slopeAverage MSE under noise

Average MSE without noise

Noise Variance

This theoretical finding implies that the cross-over phenomenon that we observe in our experiments
(at least for the linear case), stems from a lower Robustness Slope in the multitask models. Figure
3 shows that the MSE under noise is lower for models that are trained to do more tasks. In Figure
7 of this Appendix, we show that indeed this is due to a decrease in the robustness slope. Across
three different datasets, MNIST, CIFAR10, NewsGroup20, we see that increasing the number of
tasks leads to a decrease in the robustness slope. We note that this does not necessarily mean a
monotonic decrease in the MSE under noise. Since the total dataset size and the parameter k stay the
same, increasing the number of tasks usually leads to increased noiseless MSE. However, under the
presense of noise, our theory predicts (and our experiments confirm) that eventually the multitask
model will reach superior performance.
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Figure 7: Slope as a function of the number of tasks for different datasets. (1, 1): MNIST, (1, 2):
CIFAR10, (2, 1): NewsGroup20. As shown, adding more tasks decreases the robustness slope which
leads to an increase in robustness (see Theorem 2.5).

Experiments on other languages For our experiments on multilingual generative models, we
decided to use Greek and English because we were looking for a linguistic pair with different
morphology, syntax and phonology. This is inspired by our theory on linear models that shows that
diversity in the tasks (as we have for the Gaussian task vectors) leads to a sublinear increase in the sum
of the top-k singular values of the task matrix and hence an increase in robustness. For completeness,
we include here experiments on a different linguistic pair, English and Spanish. English and Spanish
much closer linguistically and also share the Latin alphabet, so we expect bigger transfer and smaller
robustness benefit in this linguistic pair.
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We compare a monolingual English model (finetuned on English Wikipedia) with a bilingual, English
and Spanish, model. The bilingual model is finetuned on a concatenation of English and Spanish
Wikipedia. We make sure that the total dataset size is the same for the monolingual and the bilingual
model, i.e. the bilingual model is exposed to half English data compared to the monolingual. This
ensures that any benefits in terms of robustness are not coming from exposure to more data. We
present results on random deletions in Figure 8 of the Appendix – this Figure is similar to Figure 1
of the paper, but instead of having English and Greek, we have English and Spanish. As shown in
Figure 8, even though the two models are starting from roughly the same perplexity, the bilingual
model exhibits higher structural robustness in the presence of weight deletions. This is consistent
with the results we showed across this paper and indicates that the increased robustness is not specific
to the choice of the linguistic pair.

Figure 8: Performance of monolingual (English) and bilingual (English/Spanish) GPT-2 models with
the same architecture and training dataset size. The x-axis indicates the probability of erasing an
attention weight parameter (setting to it zero). The y-axis indicates the average perplexity over 20
runs. Models have a close initial accuracy. Perplexity increases (showing lower accuracy) as weight
deletion probability is increased, though bilingual model perplexity rises at a slower rate.

Notice that the gap in the performance is smaller compared to the one presented in Figure 1. This is
aligned with our theory for linear models that predicts that the benefits of multitasking for robustness
are more evident for more diverse tasks. Since English and Spanish are linguistically closer, compared
to English and Greek, our intuition is that the difference in robustness is going to be smaller and
this is also confirmed by this experiment. An interesting future direction is to study this robustness
benefit for multiple linguistic pairs or multi-lingual models. However, this study requires massive
computational resources. Similarly, it would be interesting to study how the robustness gap in
bilingual models scales as the datasets scale, but this also requires training multiple pairs of GPT
models to comparable accuracy, and requires computational resources that were not available to us.
We hope that future research is going to shed more light into these exciting directions.

Experiments with different corruption mechanisms. In the main paper, we primarily presented
results with random deletions of neurons as our corruption model for the language modeling experi-
ments. We include results for additive Gaussian noise for GPT-2 (monolingual and bilingual). We
choose to present additional results with this noise model since it is the one analyzed by our theory.
Table 3 summarizes how the performance of GPT-2 (monolingual and bilingual) changes when we
add different amount of noise to the weights. We evaluate this performance on downstream tasks
from the GLUE paper. Figure 9 visualizes the decrease of performance as the magnitude of the noise
rises for different number of tasks. The results are similar with the results presented in the main paper
for random deletions. In QQP, the monolingual model performs better without perturbations. Both
models decay with a close rate. The monolingual model outperforms in SST-2 with no perturbations.
Both models decay with a close rate. For CoLA, the monolingual model maintains a significantly
better performance regardless of the noise level. Finally, for MRPC we see that although the bilingual
model shows a weaker classification accuracy with no noise, it outperforms the monolingual model
for noise levels higher than 0.035. These results complement Figure 4 of the main paper that shows
robustness of GPT-2 to additive Gaussian noise for the task of language modeling.
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Figure 9: Performance comparison in GLUE tasks: QQP, SST2, CoLA, and MRPC under Gaussian
noise. QQP: The monolingual model performs better without perturbations. Both models decay
with a close rate. SST2: The monolingual model outperforms with no perturbations. Both models
decay with a close rate. CoLA: The monolingual model maintains a significantly better performance
regardless of the noise level. MRPC: Although the bilingual model shows a weaker classification
accuracy with no noise, it outperforms the monolingual model for noise levels higher than 0.035.

Gaussian std. QQP SST2 COLA MRPC RTE
m. b. m. b. m. b. m. b. m. b.

0.00 0.876 0.843 0.908 0.862 0.437 0.218 0.828 0.774 0.646 0.595
0.01 0.875 0.843 0.909 0.864 0.432 0.216 0.827 0.772 0.639 0.597
0.02 0.873 0.840 0.907 0.862 0.444 0.213 0.816 0.760 0.641 0.591
0.03 0.866 0.832 0.901 0.853 0.440 0.205 0.776 0.749 0.643 0.590
0.04 0.849 0.813 0.878 0.844 0.316 0.146 0.494 0.711 0.634 0.589
0.05 0.745 0.751 0.795 0.774 0.088 0.074 0.326 0.673 0.622 0.577
0.06 0.653 0.676 0.677 0.639 -0.002 0.004 0.316 0.610 0.602 0.563
0.07 0.632 0.638 0.545 0.568 0.019 0.002 0.316 0.577 0.585 0.562
0.08 0.631 0.634 0.520 0.546 -0.006 -0.006 0.316 0.465 0.539 0.546
0.09 0.631 0.622 0.516 0.522 -0.014 0.002 0.316 0.451 0.536 0.528

Table 3: Performance on GLUE when adding Gaussian noise. Columns labeled with ”m” determine
classification accuracy of monolingual models and columns labeled as ”b” correspond to bilingual
models. CoLA is evaluated using Matthew’s Correlation and other tasks are evaluated by accuracy.

[η εταιρεία παράγει] και διανέμεται στο χρηματιστήριο αθηνών, 
το οποίο παρέχει υπηρεσίες για τη διαχείριση των υπηρεσιών 
της εταιρείας. η εταιρεία είναι επίσης υπεύθυνη για την προώθηση 
του διαδικτύου σε συνεργασία με άλλες εταιρείες που 
δραστηριοποιούνται στην ευρωπαϊκή ραδιοτηλεοπτική ένωση

[the company produces] video games, television programs, 
and online services. the company is headquartered in new 
york city and is the world's second largest entertainment company 
in terms of revenue, after comcast. disney was founded on 
october 16, 1923, by brothers walt disney and roy o'brien, jr.

Table 4: Sample text generated by the bilingual GPT-2 model. Text in the brackets is the starting
prompt provided for model.
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Figure 10: Performance of monolingual and bilingual GPT-2 models with the same architecture and training
dataset size. Models are trained using the truncation length 1024. We show the performance as we randomly
erase weights. The plot indicates the average perplexity over 20 runs with 95% confidence intervals. This plot
indicates that the monolingual model declines faster and performs worse in the highly damaged regime. The
bilingual GPT-2 model is more robust to neuron weight erasures.

C Training Details

Using the GPT-2 small model as our baseline, we fine-tuned a monolingual (English) model and a
bilingual (English and Greek) model on Wikipedia text data. With set the vocabulary size to 50257
tokens. In both training processes, we set the initial learning rate to 3e-4 and configured a cosine
learning rate scheduler with 150 warmup steps, setting AdamW optimizer weight decay to 0.01.
We trained each model for eight epochs, using 4 NVIDIA Quadro RTX 5000 GPUs. Training took
approximately 10 hours per epoch.

To fine-tune another bilingual model on English and Spanish data, we fine-tuned a monolingual
model and a bilingual model on Wikipedia text data. With a vocabulary size of 50257 tokens, the
monolingual model was fine-tuned on 800,000 English articles. The bilingual model was fined tuned
on a mix of 400,000 Spanish and 400,000 English articles, using the same vocabulary size of 50257.
Like the previous experiment, we set the initial learning rate to 3e-4 and configured a cosine learning
rate scheduler with 150 warmup steps, setting AdamW optimizer weight decay to 0.01.

We further tuned bilingual and monolingual models for the text classification experiments using
GLUE datasets. For these experiments, we used the AdamW optimizer with a learning rate of 2e-5,
and epsilon at 1e-8. We used a linear scheduler with no warmup steps and trained models for more
than ten epochs.

For the experiments on the linear representation layer, we used Adam optimizer with weight decay
1e ´ 4. We trained all the models with a batch size of 128 and to a maximum of 50 epochs. To
emulate multiple tasks, we selected different subsets of the classes. We experiments with having class
overlaps (e.g. for MNIST one task might have been predicting 0 vs 1 and some other task predicting
1 vs 2) and without class overlaps (e.g. predicting 0 vs 1 and 2 vs 3). We noticed bigger robustness
benefits when there was no class overlap something that is consistent with our theoretical analysis
that implies that diversity in the tasks is needed. In terms of corruptions, we also did preliminary
experiments on random deletions and we saw similar results. The interested reader might use the
released code to perform other types of weights corruptions and see how this affects robustness trends.
For all our experiments, we fix the representation dimension to k “ 4, which is also why we show the
robustness slope from k “ 4 onwards on Figure 7. Training time of the linear experiments depends
on the dataset size: it took us roughly 1 hour on CIFAR-10 and 3 hours on NewsGroup20.

While preparing the camera-ready for this paper we noticed a parameter mismatch between the
training parameters of the monolingual and the bilingual model affecting some of our experiments.
Specifically, the bilingual training dataset was tokenized with sentences truncated at length 128 while
the monolingual dataset was tokenized using truncation length 1024. To check if this hyperparameter
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Figure 11: The plot shows performance of the monolingual and bilingual models during training. We plot
performance at 20 percent random weight deletions to observe robustness behavior as models are trained. Notice
that the bilingual model starts with very poor performance because the tokenizer has been randomized due to the
recycling process. As training progresses, the bilingual model outperforms the monolingual model and becomes
more robust.

mismatch causes the bilingual robustness benefit, we re-trained the bilingual model using sequence
truncation length 1024. This experiment is shown in Figure 10 and shows similar behaviour as before.

We performed an additional experiment to study how robustness changes during training. In Figure 11
we plot the performance of the monolingual and bilingual models as we train, but plotting performance
at 20 percent random deletions, i.e. measuring also robustness. We show that as training progresses,
the bilingual model becomes more robust compared to the monolingual one.

The training datasets for the bilingual and monolingual models have the same size. The bilingual
dataset is a concatenation of half Greek (from Greek Wikipedia) and half English text (from the
cc news dataset [36]). Similar to previous experiments, we use the Language Model Recycling
Technique [13] to pre-trained GPT-2 (small)[6].

D Things that did not work

In the early stages of the project, we attempted to train a bilingual model from scratch, instead of
using the recycling technique [13]. The dataset for the Greek model consists of roughly 2GB of
text from Wikipedia. With such limited amount of data, we found it impossible to train a bilingual
model that reaches a reasonable perplexity. Note that GPT-2 was trained on « 40GB of text, i.e. on
a « 20ˆ bigger dataset. We found that the recycling technique [13] enables learning with much
smaller datasets (on top of the computational benefits it offers).

E Limitations and Ethical Considerations

Limitations Even though the models we train can produce text of reasonable quality (e.g. see Table
4), they do not perform on par with state-of-the-art generative networks. There are many reasons for
that, e.g. we do not have the computational resources to train bigger networks and the dataset size is
small. Nevertheless, the goal of this paper is not to advance the state-of-the-art in text-generation but
to shed light on how multitasking is related to robustness.

The motivation of this paper was a theory from Cognitive Science about increased robustness in
bilingual speakers. We see that bilingual artificial networks are also more robust compared to
monolingual models trained under the same setting. However, it is important to state that no definite
extrapolations should be made to Cognitive Neuroscience without significantly much work. Our
models of corruptions happening to the neural network’s weights are chosen primarily for simplicity
in the implementation and in the analysis. There is no evidence that brain pathologies have any
resemblance to the models of corruption analyzed in this work for artificial neural networks.

21



Finally, our theory did not analyze the learning dynamics for approximating the task vectors. Instead,
it used the SVD solution. Different choices of learning algorithms might lead to different behaviors
regarding robustness. For example, for the linear case we showed that multitasking creates weight
regularization. Higher explicit weight regularization (e.g. with high weight decay) might help
the single task model decrease the robustness gap with the multitask networks. It would also be
interesting to explore how the theory can be generalized to the non-linear case.

Ethical Considerations As part of this work, we are releasing pre-trained bilingual models. Big
language models can be misused in many different ways including spreading of fake news, generation
of toxic speech, etc. We encourage the readers to refer to Bender et al. [37], Brown et al. [38] for
an extended discuss of the risks of releasing powerful language models. In our case, the released
models are not nearly as big or powerful as state-of-the-art networks such as GPT-3. For all our
experiments, we are using the small version of GPT-2 and the main objective is to see how learning
multiple languages affects robustness to weight corruptions. Additionally, we are not training these
models from scratch, but we are using the recycling technique proposed in de Vries and Nissim [13],
hence the environmental cost of the training is much smaller.

F Code and License

We open-source our code and pre-trained models to encourage more related research:
https://github.com/giannisdaras/multilingual robustness. The code us released under the GNU GEN-
ERAL PUBLIC LICENCE. The interested reader should also refer to the licenses of pre-existing
software we use. Please look at the requirements.txt file of our code to find all our dependencies.

The code for the training of the bilingual models is written in PyTorch [39] and it is based on
the implementation of GPT-2 found in the transformers [40] library. The code for the linear
experiments is written in JAX [41].

We expect that the release of bilingual and monolingual models trained on identical conditions will
motivate further research in this area by cognitive scientists doing computational research. The main
motivation for this paper was a theory from Cognitive Science regarding increased Cognitive Reserve
in bilingual people. We expect that there could be many more interesting directions in Cognitive
Science that can be studied from a computational perspective and we hope that the release of bilingual
models will contribute towards this goal.
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