
(a) Histogram of L-Con at 40th epoch. (b) Histogram of L-Con at 100th epoch.

Figure 4: L-Con distributions at training phase on CIFAR-100 with 40% y-noise.

A The performance of different uncertainty-based models under dual noises

Table 5: The comparison of validation accuracy on CIFAR-100 with the joint (x,y)-noise. “0.2y+0.3x”
represents the dataset with 20% y-noise and 30% x-noise simultaneously.

Methods/Val. 0.2y+0.3x. 0.4y+0.3x

Single-CE Best 57.84 47.76
Last 57.39 41.39

BNNs Best 62.25 51.20
Last 61.96 50.68

SNGP Best 59.92 49.27
Last 59.22 49.09

DE-CE Best 66.50 54.90
Last 65.24 53.91

We also explore more uncertainty-based models in addition to deep ensemble to fit the noisy data with
dual noises, e.g., Bayesian neural networks (BNNs) with mean-field variational inference (MFVI)
and Spectral-normalized Neural Gaussian Process (SNGP) [44]. We do not consider the uncertainty-
based models (e.g., Monte Carlo (MC) dropout [15], DUQ [29] and Prior Network [33]) that can not
explicitly model uncertainty at the training phase in our experiments because the lack of uncertainty
can not alleviate over-fitting during the training time. Table 5 presents the classification accuracy
of uncertainty-based models and deterministic DNNs on CIFAR-100 with dual noises. We can see
that uncertainty-based models can better alleviate over-fitting than deterministic DNNs. Especially,
deep ensemble used in this paper can achieve the best performance compared to BNNs and SNGP,
so we opt to place our workflow on the well-evaluated deep ensemble to establish a strong learning
approach under dual noises.

Table 6: The AUROC scores of detecting noisy samples with different levels of x-noise and y-noise.
Noise rate 0.3x 0.4x 0.3y 0.4y

AUROC 89.10% 88.13% 95.21% 94.02%

15



Annotation: tiger Annotation: lion Annotation: dog

(a) The corrupted image using the
Gaussian blur.

(b) The restored image using the
mean filter in OpenCV.

(c) The restored image using the
latest denoising technique based
on NNs [4].

Figure 5: Blurred and restored images using different image denoising methods.

B Experiment details

B.1 Preprocessing

All images are normalized and augmented by random horizontal flipping. For CIFAR-100, we use the
standard 32⇥ 32 random cropping after zero-padding with 4 pixels on each side. For TinyImageNet,
we use randomly crop a patch of size 56⇥ 56 from each image. For WebVision, we first resize each
image to make the size as 320. Then we use the standard data augmentation, randomly crop a patch
of size 299⇥ 299 from each image, and apply horizontal random flipping.

B.2 Optimizer and hyper-parameters

SGD with momentum (0.9) and weight decay 3 ⇥ 10�4 is used in all experiments. For
the setting of the thresholds ✏1 and ✏2, we recommend performing a grid search for ✏1 2

{0.015, 0.020, 0.025, 0.030, 0.035} and ✏2 2 {1%, 2%, 3%, 4%, 5%, 6%} to achieve the better per-
formance. In the experiments, we set ✏1 = 0.020 and ✏2 = 5% for CIFAR-100 and TinyImageNet.

B.3 Network

Five networks with ResNet-18 are trained from scratch using PyTorch 1.9.0. for all experiments.
Default PyTorch initialization is used on all layers. It is noteworthy that we need to use the small
convolution with 3⇥ 3 kernel in the downsampling layer for CIFAR-100 and TinyImageNet.

B.4 Warm-up

The model warm-up can help better separate noisy data and clean data. We start training the model
with high learning rates and standard cross-entropy loss in experiments. Specifically, our method uses
the learning rate of 0.2 for the first 35 epochs for CIFAR-100 and TinyImageNet. For WebVision, we
use the learning rate of 0.2 for the first 40 epochs.

B.5 Training schedule

For CIFAR-100 and TinyImageNet, training for 250 epochs in total, and we reduce the initial learning
rate (0.2) by a factor of 2.5 after 35, 80, 120, 150 and 180 epochs. For WebVision, we train the model
for 130 epochs and reduce the initial learning rate (0.1) by a factor of 10 after 80 and 105 epochs.

C Performance under synthetic y-noise

We report the results of all methods only under label noise in order to directly compare the proposed
method with previous works focusing on this setting. Table 7 presents the results on CIFAR-100 and
TinyImageNet with different levels of y-noise, which shows that the proposed method significantly

16



Table 7: The comparison of validation accuracy on CIFAR-100 and TinyImageNet with y-noise.

Alg./Noise rate 0.0 0.1 0.2 0.4 0.6

CIFAR-100 / TinyImageNet
DE-CE Best 79.13/63.62 75.30/60.03 71.19/55.82 60.65/47.89 51.26/39.14

Last 77.01/61.28 75.16/58.06 70.84/53.02 59.16/41.00 42.74/32.36
DYR [1] Best 78.64/65.14 73.76/60.04 68.47/56.33 58.43/47.85 46.02/37.19

Last 78.02/63.97 73.13/58.13 67.31/54.28 57.06/45.72 44.91/35.86
M-DYR [1] Best 75.38/62.32 75.43/60.40 75.18/59.59 69.43/54.59 59.48/42.06

Last 74.91/61.04 75.12/59.11 74.69/58.25 68.73/52.77 56.07/41.26
CORES2 [8] Best 76.76/59.74 71.79/57.15 67.42/54.53 55.18/46.95 42.97/37.17

Last 76.22/59.14 71.03/57.00 66.62/53.26 54.31/45.39 41.89/36.02
Proposed-L Best 80.44/64.07 79.45/60.25 75.76/58.96 69.44/59.02 58.76/43.00

Last 79.03/63.21 77.15/59.31 74.89/58.87 66.04/55.98 57.02/41.54
Proposed-LM Best 80.98/64.58 79.32/60.73 75.20/58.65 70.77/56.21 59.52/44.65

Last 79.71/64.15 78.81/59.95 75.15/58.01 68.83/55.84 56.26/44.10

outperforms competitive methods for noisy labels (i.e., DYR, M-DYR, and CORES2). The results
verify that our method is also suitable for scenarios that only involve y-noise. In particular, the
proposed methods (i.e., no matter Proposed-L or Proposed-LM) also exhibit superior performance on
clean data(i.e., 0% noise). The result illustrates the proposed sample filtering and learning strategy is
robust and can not bias the learning of the model on overall clean datasets, which is not enjoyed by
other methods.

17



Figure 6: Some random images of CIFAR-100 with dual noises. The two numbers below each
image represent the actual label id and the correct label id respectively. If two ids are not identical, it
indicates an image with label noise.

18



Figure 7: There are some low M-Cons corresponding images. Images with red boxes represent hard
or dirty samples (e.g., some images contain multiple objects or some images contain background
noise).

19


