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Abstract

Recognizing out-of-distribution (OOD) samples is critical for machine learning
systems deployed in the open world. The vast majority of OOD detection methods
are driven by a single modality (e.g., either vision or language), leaving the rich
information in multi-modal representations untapped. Inspired by the recent success
of vision-language pre-training, this paper enriches the landscape of OOD detection
from a single-modal to a multi-modal regime. Particularly, we propose Maximum
Concept Matching (MCM), a simple yet effective zero-shot OOD detection method
based on aligning visual features with textual concepts. We contribute in-depth
analysis and theoretical insights to understand the effectiveness of MCM. Extensive
experiments demonstrate that MCM achieves superior performance on a wide
variety of real-world tasks. MCM with vision-language features outperforms a
common baseline with pure visual features on a hard OOD task with semantically
similar classes by 13.1% (AUROC). Code is available at https://github.com/
deeplearning-wisc/MCM.

1 Introduction

Out-of-distribution (OOD) detection is critical for deploying machine learning models in the wild,
where samples from novel classes can naturally emerge and should be flagged for caution. Despite
increasing attention, the vast majority of OOD detection methods are driven by single-modal learn-
ing [26, 29, 34, 68, 89, 93, 95, 98]. For example, labels are typically encoded as one-hot vectors
in image classification, leaving the semantic information encapsulated in texts largely unexploited.
OOD detection relying on pure visual information can inherit the limitations, e.g., when an OOD
input may be visually similar to in-distribution (ID) data yet semantically different from any ID class.

In this paper, we delve into a new landscape for OOD detection, departing from the classic single-
modal toward a multi-modal regime. While the motivation is appealing, a core challenge remains: how
to effectively utilize joint vision-language features for OOD detection? In the visual domain, existing
methods typically require good feature representations [66, 72], and a distance metric under which
OOD data points are relatively far away from the in-distribution (ID) data [42, 71]. These approaches,
however, do not directly translate into the multi-modal regime. On the representation learning side,
recent vision-language pre-training schemes such as CLIP [59] and ALIGN [33] have emerged as
promising alternatives for visual representation learning. The main idea is to align an image with
its corresponding textual description in the feature space. While the resulting representations are
powerful, OOD detection based on such aligned multi-modal features is still in its infancy.

We bridge the gap by exploring a distance-based OOD detection approach, leveraging the joint
vision-language representations. Our method capitalizes on the compatibility between visual features
and textual features. By defining the textual features as the “concept prototypes” for each ID class,
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Figure 1: Overview of the proposed zero-shot OOD detection framework. The ID classification task
is defined by a set of class labels Yin. The goal of OOD detection is to detect samples that do not
belong to Yin. We view the textual embeddings of ID classes (wrapped by text templates) as concept
prototypes. The OOD uncertainty of an input image can be characterized by the distance from visual
features to the closest ID prototype. By properly scaling the distance, the MCM score achieves strong
ID-OOD separability. See Section 3 for details.

we characterize OOD uncertainty by the distance from the visual feature to the closest ID prototype.
That is, images closer to one of the textual embeddings of ID classes are more likely to be ID and
vice versa. By a proper scaling of the distance, our proposed Maximum Concept Matching (MCM)
score achieves strong ID-OOD separability (see Figure 1). MCM stands in contrast with the previous
distance-based approaches, such as Mahalanobis [42], which defines class prototypes based on pure
visual embeddings. Indeed, we show later in Section 5 that MCM (with multi-modal vision-language
features) is far more competitive than Mahalanobis (with single-modal visual features). Moreover,
while prior works of CLIP-based OOD detection [16, 19] rely on a set of candidate OOD labels,
MCM is OOD-agnostic and alleviates the need for any prior information about test inputs.

Our work also advances the field by showcasing the promise of zero-shot OOD detection, which
offers strong performance and generality without training on the ID samples. In particular, classic
OOD detection methods often require training from scratch [9, 27] or fine-tuning [19, 32] on a given
ID dataset. In this setting, a classifier and its companion OOD detector are good at only one task.
Every new task (ID dataset) requires additional training and brings additional computation and storage
costs. In contrast, we show for the first time that: (1) MCM achieves superior performance across a
wide variety of real-world tasks—with just one single pre-trained model. This is encouraging given
that there is no training or any OOD information involved. (2) On the challenging ImageNet-1k
benchmark, MCM’s zero-shot OOD detection performance favorably matches and even outperforms
strong task-specific baselines fine-tuned on BiT [32] and ViT models [19]. (3) MCM remains robust
against hard OOD inputs, including both semantically hard OODs [85] and spurious OODs [50].

We summarize our main contributions as follows:

1. We propose MCM, a simple yet effective OOD detection method based on aligned vision-
language features. MCM offers several compelling advantages over other OOD detection
methods: generalizable (one model supports many tasks), OOD-agnostic (no information
required from OOD data), training-free (no downstream fine-tuning required), and scalable
to large real-world tasks.

2. We conduct extensive experiments and show that MCM achieves superior performance on
a wide range of real-world tasks. On ImageNet-1k, MCM achieves an average AUROC
of 91.49%, outperforming methods that require training. Moreover, we show that MCM
remains competitive under challenging hard OOD evaluation tasks.

3. We provide in-depth empirical and theoretical analysis, providing insights to understand the
effectiveness of MCM. We hope that this work will serve as a springboard for future works
on OOD detection with multi-modal features.
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2 Preliminaries

Contrastive vision-language pre-training. Compared to visual representation learning models
such as ViT [13], vision-language representation learning demonstrates superior performance on
image classification tasks. For instance, CLIP [59] adopts a self-supervised contrastive objective
(i.e., InfoNCE loss [75]) to align an image with its corresponding textual description in the feature
space. Specifically, CLIP adopts a simple dual-stream architecture with one text encoder T : t ! Rd

(e.g., Transformer [77]) and one image encoder I : x ! Rd (e.g., ViT [13]). After pre-training on a
dataset of 400 million text-image pairs, the joint vision-language embeddings of CLIP well associate
objects in different modalities. Despite the promise, existing CLIP-like models perform zero-shot
classification in a closed-world setting. That is, it will match an input into a fixed set of categories,
even if it is irrelevant (e.g., a tree being predicted as a bird in Figure 1). This motivates our work to
leverage the multi-modal representation for OOD detection, which is largely unexplored.

Zero-shot OOD detection. Given a pre-trained model, a classification task of interest is defined
by a set of class labels/names Yin, which we refer to as the known (ID) classes. Here ID classes are
defined w.r.t. the classification task of interest, instead of the classes used in pre-training. Accordingly,
OOD is defined w.r.t. the ID classes, not the data distribution during pre-training. The goal of OOD
detection is to (1) detect samples that do not belong to any of the known classes; (2) otherwise,
assign test samples to one of the known classes. Therefore, the OOD detector can be viewed as a
“safeguard” for the classification model. Formally, we denote the OOD detector as a binary function:
G(x;Yin, T , I) : X ! {in, out}, where x 2 X denotes a test image. Our method is based on only
the names of the given classes in Yin, and a pre-trained model. Different from standard supervised
learning, there is no training on the ID samples involved, hence zero-shot.

3 OOD Detection via Concept Matching

We illustrate our approach in Figure 1, which derives the OOD detector G(·) based on concept
matching. For a given task with label set Yin = {y1, y2, ..., yK}, we can construct a collection
of concept vectors T (ti), i 2 {1, 2, ...,K}, where ti is the text prompt “this is a photo of a
hyii” for a label yi. The concept vectors are represented by the embeddings of the text prompts.

For any test input image x0, we can calculate the label-wise matching score based on the cosine
similarity between the image feature I(x0) and the concept vector T (ti): si(x0) = I(x0)·T (ti)

kI(x0)k·kT (ti)k .
Formally, we define the maximum concept matching (MCM) score as:

SMCM(x0;Yin, T , I) = max
i

esi(x
0)/⌧

PK
j=1 e

sj(x0)/⌧
, (1)

where ⌧ is the temperature. For ID data, it will be matched to one of the concept vectors (textual
prototypes) with a high score; and vice versa. Formally, our OOD detection function can be formulated
as:

G(x0;Yin, T , I) =
⇢
1 SMCM(x0;Yin, T , I) � �
0 SMCM(x0;Yin, T , I) < �

,

where by convention 1 represents the positive class (ID) and 0 indicates OOD. � is chosen so that a
high fraction of ID data (e.g., 95%) is above the threshold. For samples that are classified as ID, one
can obtain the class prediction based on the closest concept: ŷ = argmaxi2[K] si.

Remark: (1) Our work differs from (and is complementary to) CLIP by focusing on OOD detection
rather than (closed-world) zero-shot classification. We show new theoretical insights that softmax
scaling plays a unique role in zero-shot OOD detection—improving the separability between ID and
OOD data. This role has not been studied rigorously for zero-shot OOD detection. Readers familiar
with CLIP may notice that MCM can be used for zero-shot classification in the closed world. This
also makes MCM practically convenient for dual goals: detect OOD samples and assign ID data to
one of the known classes. (2) Our method in principle is not limited to CLIP; it can be generally
applicable for contrastive vision-language pre-training models that promote multi-modal feature
alignment.
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New insights on softmax scaling for zero-shot OOD detection. We provide theoretical justifi-
cations that softmax scaling improves the separability between ID and OOD data for CLIP-based
OOD detection, which is contrary to models trained with cross-entropy (CE) loss. In particular,
CLIP-like models are trained with a multi-modal contrastive loss, which maximizes the cosine
similarity between an image and its textual description in the feature space. The resulting cosine
similarity scores display strong uniformity1 across labels, as evidenced in Figure 2 (right). Compared
to OOD inputs, the gap between the maximum cosine similarity and the average is larger for ID
inputs. However, the gap can be small when the number of ID classes increases where ID samples
occur with lower highest cosine similarity. As a result, the highest cosine similarity for ID samples
and OOD samples can be highly close (c.f. Figure 2 (left)).

Figure 2: Left: Maximum cosine similarity for ID and
OOD inputs. There exists overlapping regions (shown
in yellow); Right: Cosine similarities between OOD in-
puts and ID concept vectors. For OOD inputs, the cosine
similarities display uniformity.

Motivated by these observations, MCM em-
ploys softmax as a post hoc mechanism to
magnify the difference. This is fundamentally
different from the softmax score derived from a
model trained with cross-entropy loss, which
inherently maximizes the posterior p(y|x) for
the ground-truth label, and minimizes the
probability for other labels. Unlike CLIP-
like models, logit scores displaying uniformity
would be heavily penalized by the CE loss. As
a result, the logit score corresponding to the
ground-truth label can already be significantly
higher than other labels. Applying softmax
on the logit scores can exacerbate overconfi-
dent predictions, and reduce the separability
between ID and OOD data [46]. Indeed, for a
model trained with cross-entropy loss, a logit-based score such as Energy [48] is shown to be much
more effective than the softmax score.

Interestingly, for CLIP-like models, the trend is the opposite—applying softmax helps sharpen the
uniform-like inner product scores, and increases the separability between ID and OOD data. To help
readers better understand the insights, we first formalize our observations that OOD inputs trigger
similar cosine similarities across ID concepts (Figure 2, right) as the following assumption:
Assumption 3.1. Let z := {y 2 Yin}. Qx denotes the out-of-distribution Px|z=0 (marginal
distribution of x conditioned on z = 0). Assume 9 � > 0 such that

Qx

0

@ 1

K � 1

X

i 6=ŷ

[sŷ2(x)� si(x)] < �

1

A = 1,

where ŷ := argmaxi2[K]si(x) and ŷ2 := argmaxi 6=ŷ,i2[K]si(x) denote the indices of the largest and
second largest cosine similarities for an OOD input x.

Now we provide formal guarantees that using softmax can provably reduce the false positive rate
(FPR) compared to that without softmax.
Theorem 3.1. Given a task with ID label set Yin = {y1, y2, ..., yK} and a pre-trained CLIP-like

model (T , I). If Qx satisfies Assumption 3.1, then there exists a constant T =
�(K�1)(�wo+��sŷ2)

K��1
such that for any temperature ⌧ > T , we have

FPR(⌧,�)  FPRwo(�wo),

where FPR(⌧,�) is the false positive rate based on softmax scaling with temperature ⌧ and detection
threshold �; FPRwo(�wo) is the false positive rate without softmax scaling based on threshold �wo.

1This can be explained both theoretically [84] and empirically [81]. It has been shown that self-supervised
contrastive learning with a smaller temperature (e.g., initialized as 0.07 for CLIP) promotes uniform distribution
for L2-normalized features. Moreover, as CLIP features lie on a high-dimensional space (512 for CLIP-B/16
and 768 for CLIP-L/14), uniformly distributed points in a high-dimensional sphere tend to be equidistant to
each other [79]. Therefore, for OOD inputs, we observe approximately uniform cosine similarity with concept
vectors.
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This suggests that applying softmax scaling with a moderate temperature results in superior OOD
detection performance compared to that without softmax scaling. The proof is in Appendix A. Later
in Section 5, we empirically verify on a real-world ImageNet dataset that our bound can indeed be
satisfied in CLIP where the thresholds are chosen at 95% true positive rate.

What MCM offers: Beyond theoretical insights, we would like to highlight several compelling
advantages of our zero-shot OOD detection approach, owing to the strong pre-trained CLIP model:

• Generalizable to many tasks: Traditional OOD detection methods are based on a task-specific
model. As a result, the OOD detector is not suitable for a realistic online scenario where the task
changes from one to another. In contrast, we will show in Section 4 that MCM can perform a wide
variety of OOD detection tasks, with just one single model. For a new task, only the names of the
task’s visual concepts Yin are required.

• OOD-agnostic: Our method does not rely on any OOD information, and thus suits many real-
world scenarios where one cannot anticipate what the unknowns would be ahead of time. This also
mitigates the shortcoming of a recent approach [19], which assumes that a set of unseen labels are
given as some weak information about OOD data.

• Training-free: MCM enables OOD detection in a zero-shot fashion. This stands in contrast to the
vast majority of OOD detection literature, which often requires training from scratch or fine-tuning
to achieve competitive performance.

• Scalable: The contrastive vision-language pre-training paradigm makes MCM scalable to a large
number of class labels and realistic high-resolution images.

We now proceed to the experimental results, demonstrating these advantages on real-world tasks.

4 A Comprehensive Analysis of MCM

4.1 Datasets and Implementation Details

Datasets. Most previous works on OOD detection only focus on small-scale datasets with blurry
images such as CIFAR [40] and TinyImageNet [41]. With pre-trained models such as CLIP, OOD
detection can be extended to more realistic and complex datasets. In this work, we scale up evaluations
in terms of (1) image resolution, (2) dataset variety, and (3) number of classes. We consider the
following ID datasets: CUB-200 [80], STANFORD-CARS [39], FOOD-101 [6], OXFORD-PET [57]
and variants of IMAGENET [11]. For OOD test datasets, we use the same ones in [32], including
subsets of iNaturalist [76], SUN [86], PLACES [96], and TEXTURE [10]. For each OOD dataset,
the categories are not overlapping with the ID dataset. We also use subsets of ImageNet-1k for
fine-grained analysis. For example, we construct ImageNet-10 that mimics the class distribution
of CIFAR-10 but with high-resolution images. For hard OOD evaluation, we curate ImageNet-20,
which consists of 20 classes semantically similar to ImageNet-10 (e.g., dog (ID) vs. wolf (OOD)).

Model. In our experiments, we adopt CLIP [59] as the target pre-trained model, which is one of the
most popular and publicly available vision-language models. Note that our method is not limited to
CLIP; it can generally be applicable for contrastive vision-language pre-training models that promote
multi-modal feature alignment. Specifically, we mainly use CLIP-B/16, which consists of a ViT-B/16
Transformer as the image encoder and a masked self-attention Transformer [77] as the text encoder.
To indicate the input patch size in ViT models, we append “/x” to model names. We prepend -B, -L to
indicate Base and Large versions of the corresponding architecture. For instance, ViT-B/16 implies
the Base variant with an input patch resolution of 16⇥ 16. We also use CLIP-L/14 which is based
on ViT-L/14 as a representative of large models. Unless specified otherwise, the temperature ⌧ is 1
for all experiments. Details of the datasets, experimental setup, and hyperparameters are provided in
Appendix B.

Metrics. For evaluation, we use the following metrics: (1) the false positive rate (FPR95) of OOD
samples when the true positive rate of in-distribution samples is at 95%, (2) the area under the receiver
operating characteristic curve (AUROC), and (3) ID classification accuracy (ID ACC).
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Table 1: Zero-shot OOD detection with MCM score based on CLIP-B/16 with various ID datasets.

ID Dataset
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC"
CUB-200 [80] 9.83 98.24 4.93 99.10 6.65 98.57 6.97 98.75 7.09 98.66
Stanford-Cars [39] 0.05 99.77 0.02 99.95 0.24 99.89 0.02 99.96 0.08 99.89
Food-101 [6] 0.64 99.78 0.90 99.75 1.86 99.58 4.04 98.62 1.86 99.43
Oxford-Pet [57] 2.85 99.38 1.06 99.73 2.11 99.56 0.80 99.81 1.70 99.62
ImageNet-10 0.12 99.80 0.29 99.79 0.88 99.62 0.04 99.90 0.33 99.78
ImageNet-20 1.02 99.66 2.55 99.50 4.40 99.11 2.43 99.03 2.60 99.32
ImageNet-100 18.13 96.77 36.45 94.54 34.52 94.36 41.22 92.25 32.58 94.48

Table 2: OOD detection performance for ImageNet-1k [11] as ID.

Method
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC"
Requires training (or w. fine-tuning)

MOS [32] (BiT) 9.28 98.15 40.63 92.01 49.54 89.06 60.43 81.23 39.97 90.11
Fort et al. [19] (ViT-B) 15.07 96.64 54.12 86.37 57.99 85.24 53.32 84.77 45.12 88.25
Fort et al. [19] (ViT-L) 15.74 96.51 52.34 87.32 55.14 86.48 51.38 85.54 43.65 88.96
Energy [48] (CLIP-B) 21.59 95.99 34.28 93.15 36.64 91.82 51.18 88.09 35.92 92.26
Energy [48] (CLIP-L) 10.62 97.52 30.46 93.83 32.25 93.01 44.35 89.64 29.42 93.50
MSP [25] (CLIP-B) 40.89 88.63 65.81 81.24 67.90 80.14 64.96 78.16 59.89 82.04
MSP [25] (CLIP-L) 34.54 92.62 61.18 83.68 59.86 84.10 59.27 82.31 53.71 85.68

Zero-shot (no training required)
MCM (CLIP-B) 30.91 94.61 37.59 92.57 44.69 89.77 57.77 86.11 42.74 90.77
MCM (CLIP-L) 28.38 94.95 29.00 94.14 35.42 92.00 59.88 84.88 38.17 91.49

4.2 Main Results

MCM supports a diverse collection of tasks while being zero-shot. We first show that zero-shot
OOD detection with MCM is effective across a wide variety of tasks—with just one single pre-trained
model. To showcase the versatility of MCM, we consider the seven ID datasets here. To the best
of our knowledge, this is among the first attempts to showcase the efficacy under an expansive and
diverse collection of ID datasets. The zero-shot OOD detection performance is summarized in Table 1.
A salient observation is that MCM can achieve superior detection performance on many tasks. For
example, using STANFORD-CARS as ID, MCM yields an average FPR95 of 0.08%. Considering that
there are no training samples or OOD information involved, these results are very encouraging.

It can be also seen from Table 1 that MCM is promising, especially when the number of samples per
ID class is limited in the training set. For example, there are only around 40 samples per class for
Stanford-Cars, 100 for Oxford-Pet, and 30 for CUB-200. The sample scarcity makes OOD detection
methods that rely on fine-tuning difficult. For example, after fine-tuning on Food-101, while the ID
accuracy is increased from 86.3% to 92.5% ", OOD detection based on MSP is on par with MCM
(99.5% vs. 99.4% in AUROC).

MCM scales effectively to large datasets. To examine the scalability of MCM, we compare it
with recent competitive OOD detection methods [19, 32] on the ImageNet-1k dataset (ID) in Table 2.
We observe the following trends:

• Larger models lead to superior performance. Compared with CLIP-B, MCM based on CLIP-L
reduces FPR95 by 4.57%. Zero-shot ID classification accuracy is also improved by 6.27% with the
larger model, reaching 73.28% (see Appendix D). This suggests that larger models are endowed
with a better representation quality, which benefits both ID classification and OOD detection with
MCM. Our finding echos with the recent observations [78] that higher ID classification accuracy is
correlated with stronger OOD detection performance.

• MOS [32] recently demonstrated competitive performance on ImageNet-1k, which requires model
fine-tuning based on BiT [38]. In contrast, we show that MCM (CLIP-L) outperforms MOS by
1.38% in AUROC while being zero-shot (training-free).

• MCM shares a softmax scaling function with the classic (visual) confidence-based score MSP [25].
To implement MSP, we adopt the commonly used linear probe approach by fine-tuning a linear
layer on frozen visual features of CLIP. After fine-tuning, ID accuracy significantly improves,
reaching 84.12% (CLIP-L). Interestingly, the OOD detection performance of MSP is worse than
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Table 3: Performance comparison on hard OOD detection tasks. MCM is competitive on all three hard OOD
tasks without training involved. MSP (based on fine-tuned CLIP) does not further improve performance.

Method ID ImageNet-10 ImageNet-20 Waterbirds
OOD ImageNet-20 ImageNet-10 Spurious OOD

FPR95 / AUROC FPR95 / AUROC FPR95 / AUROC
MSP [25] (fine-tuning) 9.38 / 98.31 12.51 / 97.70 39.57 / 90.99
Mahalanobis [42] (visual only) 78.32 / 85.60 43.03 / 89.94 2.21 / 99.55
MCM (zero-shot) 5.00 / 98.71 12.91 / 98.09 5.87 / 98.36

MCM by 15.54% in FPR95. Under the same model fine-tuned with linear probing, we observe
that the Energy score outperforms MSP, corroborating findings in [48]. We investigate more in
Section 5.

• Recently, Fort et al. [19] explore small-scale OOD detection by fine-tuning the full ViT model.
When extended to large-scale tasks, we find that MCM still yields superior performance under
the same image encoder configuration (ViT-B or ViT-L). This further highlights the advantage of
utilizing vision-language joint embeddings for large-scale visual OOD detection.

MCM benefits hard OOD detection. Going beyond, we investigate whether MCM is still effective
for hard OOD inputs. We consider the following two categories of hard OOD:

• Semantically hard OOD: OOD samples that are semantically similar to ID samples are particularly
challenging for OOD detection algorithms [85]. To evaluate hard OOD detection tasks in realistic
settings, here we consider ImageNet-10 (ID) vs. ImageNet-20 (OOD) and vice versa. The pair
consists of high-resolution images with semantically similar categories such as dog versus wolf.
As shown in Table 3, MCM outperforms Mahalanobis [42] by 73.32% in FPR95 for ImageNet-10
(ID) vs. ImageNet-20 (OOD) and 30.12% vice versa.

• Spurious OOD: Modern neural networks can exploit spurious correlations for predictions [3].
For example, in the Waterbirds dataset [64], there exist spurious correlations between the habitat
(e.g., water) and bird types. A recent work [50] proposes a new type of hard OOD named spurious
OOD and shows that most OOD detection methods perform much worse for spurious OOD
inputs compared to non-spurious inputs. The spurious OOD inputs are created to share the same
background (i.e., water) as ID data but have different object labels (e.g., a boat rather than a bird).
See Appendix C for illustrations. The results are shown in Table 3. It has been shown that CLIP
representations are robust to distributional shifts [59]. Therefore, while prior works [50] show that
spurious OOD inputs are challenging for methods based on ResNet [23], MCM and Mahalanobis
scores based on pre-trained CLIP perform much better. On the other hand, fine-tuning exposes the
model to the training set containing spurious correlations. As a result, MSP performs much worse
than MCM (39.57% vs. 5.87% in FPR95).

Figure 3: Comparison with a candi-
date label-based score ZO-CLIP on
ImageNet-20, based on our implemen-
tation of [16]. Implementation details
are deferred to Appendix E.1.

MCM outperforms CLIP-based baselines. Two recent
works also use CLIP embeddings for OOD detection [16, 19].
However, fundamental limitations exist for both works. Fort
et al. [19] assume that a candidate OOD label set YC is
known, and used

P
y2YC

p̂(y|x) for OOD detection. Here
the predictive probability p̂(y|x) is obtained by normalizing
the inner products over |Yin|+ |YC | classes. While applying
softmax converts any vector to probabilities, as we show
in Section 3, the converted probabilities do not necessarily
correspond to P(OOD|x). Moreover, obtaining such an
OOD label set is typically not feasible, which fundamentally
limits its applicability. A recent work [16] realizes this idea
by training an extra text decoder on top of CLIP’s image
encoder to generate candidate labels. However, [16] cannot
guarantee the generated labels are non-overlapping with the
ID labels.
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Figure 4: The influence of softmax scaling and temperature. We use ImgeNet-100 (ID) vs. iNaturalist
(OOD). Softmax scaling with a moderate temperature significantly improves FPR95.

We enhance the baseline with a stronger decoder and a filter module (see Appendix E.1). As shown
in Figure 3, MCM outperforms the enhanced baseline on all OOD datasets. Moreover, MCM is much
simpler to use—alleviating the need for an OOD label set or training an additional caption generator.
In contrast, the caption generator’s performance largely affects OOD detection. Poor caption quality
degenerates the OOD detection performance of candidate label-based methods. Moreover, obtaining a
reliable caption generator for any input image can significantly increase the computational overhead.

5 Discussion: A Closer Look at MCM

Empirical verification on the role of softmax. In Section 3, we prove that softmax scaling on
cosine similarity scores with a moderate ⌧ improves the ID-OOD separability. Here we empirically
verify our theoretical results. As shown in Figure 4, compared to directly using the maximum cosine
similarity without softmax (leftmost figure), softmax scaling with a temperature ⌧ = 1 significantly
improves the performance by 22.6% in FPR95, and further increasing ⌧ (e.g., ⌧ = 10) leads to similar
performance. The results are based on ImageNet-100 (ID) versus iNaturalist (OOD).

Now, we verify if our theoretical bound (c.f. Theorem 3.1) is satisfied empirically as well in Figure 4.
From the leftmost figure, we can estimate �wo ⇡ 0.26, � ⇡ 0.03, and sŷ2 ⇡ 0.23. By checking the
third figure (⌧ = 1 is the temperature value we use for most experiments), we approximate � ⇡ 0.011.

As K = 100, we plug in the values and obtain the lower bound T =
�(K�1)(�wo+��sŷ2)

K��1 ⇡ 0.65.
Since ⌧ = 1 > 0.65, by Theorem 3.1, applying softmax scaling with ⌧ = 1 is provably superior to
without softmax scaling for OOD detection.

Figure 5: Comparison with Mahalanobis
(Maha) score on ImageNet-1k.

Are vision-language features better than visual fea-
ture alone? MCM can be interpreted as a distance-based
approach—images that are closer to one of the K class
prototypes are more likely to be ID and vice versa. Here
the class prototypes are defined based on a textual encoder.
Alternatively, one can define the class prototypes based on
visual features. For example, Mahalanobis [42] defines a
class prototype as the average of visual embeddings for
images belonging to the same class. This raises the ques-
tion whether MCM (with multi-modal vision-language
features) is better than Mahalanobis (with single-modal
visual feature). For a fair comparison, we use the same
ViT image encoder from CLIP-B. Both MCM and Maha-
lanobis extract visual features from the penultimate layer.
On ImageNet-1k, Mahalanobis displays a limited perfor-
mance, with 73.14% AUROC averaged across four OOD test datasets (90.77% for MCM), as shown
in Figure 5. From a practical perspective, Mahalanobis requires computing the inverse covariance
matrix, which can be both computationally expensive and inaccurate when the number of samples is
scarce and the number of ID classes grows. In contrast, MCM is easier to use and more robust.

MCM without softmax scaling. In Section 3, we provide theoretical justifications for the necessity
of softmax scaling for CLIP-like models. To further verify our observations empirically, we show
OOD detection performance based on the maximum cosine similarity score Swo

MCM(x0;Yin, T , I) =
maxi2[K] si(x

0). The results are shown in Table 4. For easy tasks such as Food-101 [39], Stanford-
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Table 4: Zero-shot OOD detection of Swo
MCM based on CLIP-B/16.

ID Dataset
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC"
Stanford-Cars [39] 0.00 100 0.02 99.99 0.26 99.94 0.00 100 0.07 99.98
Food-101 [6] 0.56 99.86 0.09 99.95 0.49 99.88 8.33 97.44 2.37 99.28
Oxford-Pet [57] 0.02 99.98 0.05 99.97 0.20 99.94 0.27 99.91 0.14 99.95
ImageNet-10 2.40 99.42 1.79 99.55 2.83 99.32 1.86 99.56 2.22 99.46
ImageNet-20 14.96 97.87 13.10 97.97 14.21 97.67 13.46 97.32 13.93 97.71
ImageNet-1k 61.66 89.31 64.39 87.43 63.67 85.95 86.61 71.68 69.08 83.59

Cars [39], and Oxford-Pet [57] as ID, the performance of maximum cosine similarity score is similar
to MCM (see Table 1 and Table 2). However, for more challenging tasks such as ImageNet-20 and
ImageNet-1k, MCM significantly outperforms that without softmax scaling. For example, the average
FPR95 is improved by 11.33% on ImageNet-20 and 26.34% on ImageNet-1k, which highlights the
necessity of a proper scaling function for CLIP-based OOD detection.

MCM for ResNet-based CLIP models. Our main results are based on the CLIP model with
ViT image encoder. We additionally investigate the effectiveness of MCM on ResNet-based CLIP.
Specifically, we use RN50x4 (178.3M), which shares a similar number of parameters as CLIP-B/16
(149.6M). The results are shown in Table 5. We can see that MCM still shows promising results with
ResNet-based CLIP models, and the performance is comparable between RN50x4 and CLIP-B/16
(89.97 vs. 90.77 in AUROC).

Table 5: Comparison with ResNet-based CLIP models on ImageNet-1k (ID).

Model
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC"
RN50x4 44.51 91.51 35.11 92.84 43.74 89.60 57.73 85.93 45.27 89.97
CLIP-B/16 30.91 94.61 37.59 92.57 44.69 89.77 57.77 86.11 42.74 90.77

A photo of a <label>.
A blurry photo of a <label>.
A photo of many <label>.
A photo of the large <label>.
A photo of the small <label>.

Table 6: The five prompt templates.

Effect of prompt ensembling. We examine MCM’s per-
formance with prompt ensembling. For example, Radford et
al. [59] create 80 possible prompts according to the image
modalities and nuances in ImageNet. We experiment with the
two prompt sets, one of size 80 as in [59], and our own set
of 5 prompts. Ensembles are obtained by averaging the tex-
tual features. As expected, using ensembles increases the ID
classification accuracy on ImageNet-1k (2% with CLIP-B and
3% with CLIP-L). For OOD detection, the average FPR95 is reduced from 38.17% with the default
prompt to 35.23%# with an ensemble of five prompts shown in Table 6. In addition, the detection
performance with 5 prompts is slightly better than with 80 prompts. Note that prompt ensembling
does not increase the inference-time cost, as the textual embeddings (across many prompts) can be
pre-calculated and averaged into a single embedding.

6 Related Works

OOD detection in computer vision. For open-world multi-class classification, the goal of OOD
detection is to derive a binary ID-OOD classifier along with a multi-class classification model for
visual inputs. A plethora of methods has been proposed for deep neural networks [91], including
generative model-based methods [7, 20, 36, 53, 54, 56, 61, 67, 88], and discriminative-model based
methods. For the latter category, an OOD score can be derived based on the softmax output [4, 12,
24, 25, 29, 32, 46, 90], energy-based score [15, 48, 49, 69, 70, 82], gradient information [31], or the
feature embeddings [14, 42, 65, 66, 71, 72, 85] of a model. Morteza et al. [52], Fang et al. [17], and
Bitterwolf et al. [5] provided theoretical analysis for OOD detection. Recent works [63, 83] also
explored OOD detection for long-tailed distributions. Works insofar have mostly focused on OOD
detection for a task-specific model using only visual information. In contrast, we explore a novel
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paradigm of zero-shot OOD detection that incorporates rich textual information and can perform a
wide variety of tasks.

OOD detection in natural language processing. Distribution shifts can occur due to the change of
topics and domains, unexpected user utterances, etc. Challenging benchmarks [37] and characteri-
zation of distributional shifts [1] have been proposed in recent years. Compared to early language
models such as ConvNets and LSTM [28], pre-trained language models are more robust to distribution
shifts and more effective at identifying OOD instances [26, 58, 89]. Various algorithmic solutions are
proposed to handle OOD detection, including outlier exposure [30], model ensembling [44], data
augmentation [8, 93, 95], contrastive learning [34, 98], and an auxiliary module that incorporates
domain labels [68]. Tan et al. [73] also explore zero-shot OOD detection for text classification tasks.
However, prior works focus on pure natural language processing (NLP) settings, while we explore
utilizing textual embeddings for zero-shot visual OOD detection.

Vision-language models. Utilizing large-scale pre-trained vision-language models for multimodal
downstream tasks has become an emerging paradigm with remarkable performance [22, 74]. In
general, two types of architectures exist: single-stream models like VisualBERT [43] and ViLT [35]
feed the concatenated text and visual features into a single transformer-based encoder; dual-stream
models such as CLIP [59], ALIGN [33], and FILIP [92] use separate encoders for text and image and
optimize with contrastive objectives to align semantically similar features in different modalities. In
particular, CLIP enjoys popularity due to its simplicity and strong performance. CLIP-like models
inspire numerous follow-up works [45, 94, 97], which aim to improve data efficiency and better
adaptation to downstream tasks. This paper adopts CLIP as the target pre-trained model, but our
approach can be generally applicable to contrastive models that promote vision-language alignment.

Multi-modal OOD detection. Exploring textual information for visual OOD detection is a new
area with limited existing works. Fort et al. [19] propose to feed the potential OOD labels to the
textual encoder of CLIP [59]. Recently, Esmaeilpour et al. [16] propose to train a label generator
based on the visual encoder of CLIP and use the generated labels for OOD detection. While both
works rely on a set of candidate OOD labels, MCM is OOD-agnostic and alleviates the need for prior
information on OOD. Moreover, prior works [16, 59] only focus on small-scale inputs. We largely
expand the scope to a wide range of large-scale realistic datasets, and show new theoretical insights.

7 Conclusion

In this work, we delve into a new landscape for OOD detection, departing from the classic single-
modal toward a multi-modal regime. By viewing the textual features as the “concept prototypes”, we
explore a new OOD detection approach MCM, based on the joint vision-language representations.
Unlike the majority of OOD detection methods, MCM offers several compelling advantages: training-
free, generalizable to many tasks, scalable to hundreds of classes, and does not require any prior
information on OOD inputs. Moreover, we provide theoretical guarantees on how softmax scaling
provably improves zero-shot OOD detection. We investigate the effectiveness of MCM on a wide
range of large-scale realistic tasks, including several types of hard OOD datasets. Lastly, we
demonstrate the advantage of vision-language features over pure visual features for OOD detection.
We hope our work will inspire future research toward multi-modal OOD detection.

Acknowledgement

The authors wish to thank Junjie Hu, Ying Fan, Ruisu Zhang, Andrew Geng, and Soumya Suvra
Ghosal for the helpful discussions. The work is supported by a Google-Initiated Research Grant, and
gift funding from Adobe Research.

References
[1] Udit Arora, William Huang, and He He. Types of out-of-distribution texts and how to detect

them. In Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021.
[2] Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund,

Josh Tenenbaum, and Boris Katz. Objectnet: A large-scale bias-controlled dataset for pushing

10



the limits of object recognition models. In Conference on Neural Information Processing
Systems (NeurIPS), 2019.

[3] Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In The European
Conference on Computer Vision (ECCV), 2018.

[4] Abhijit Bendale and Terrance E Boult. Towards open set deep networks. In The IEEE / CVF
Computer Vision and Pattern Recognition Conference (CVPR), 2016.

[5] Julian Bitterwolf, Alexander Meinke, Maximilian Augustin, and Matthias Hein. Breaking
down out-of-distribution detection: Many methods based on ood training data estimate a
combination of the same core quantities. In International Conference on Machine Learning,
pages 2041–2074. PMLR, 2022.

[6] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative
components with random forests. In The European Conference on Computer Vision (ECCV),
2014.

[7] Mu Cai and Yixuan Li. Out-of-distribution detection via frequency-regularized generative
models. In Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision,
2023.

[8] Derek Chen and Zhou Yu. Gold: improving out-of-scope detection in dialogues using data
augmentation. arXiv preprint arXiv:2109.03079, 2021.

[9] Jiefeng Chen, Yixuan Li, Xi Wu, Yingyu Liang, and Somesh Jha. Atom: Robustifying out-of-
distribution detection using outlier mining. In The European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), 2021.

[10] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi.
Describing textures in the wild. In The IEEE / CVF Computer Vision and Pattern Recognition
Conference (CVPR), 2014.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In The IEEE / CVF Computer Vision and Pattern Recognition
Conference (CVPR), 2009.

[12] Terrance DeVries and Graham W Taylor. Learning confidence for out-of-distribution detection
in neural networks. arXiv preprint arXiv:1802.04865, 2018.

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations (ICLR), 2021.

[14] Xuefeng Du, Gabriel Gozum, Yifei Ming, and Yixuan Li. Siren: Shaping representations for
detecting out-of-distribution objects. In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

[15] Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li. Vos: Learning what you don’t know
by virtual outlier synthesis. In Proceedings of the International Conference on Learning
Representations (ICLR), 2022.

[16] Sepideh Esmaeilpour, Bing Liu, Eric Robertson, and Lei Shu. Zero-shot open set detection by
extending clip. In The AAAI Conference on Artificial Intelligence (AAAI), 2022.

[17] Zhen Fang, Yixuan Li, Jie Lu, Jiahua Dong, Bo Han, and Feng Liu. Is out-of-distribution
detection learnable? In Advances in Neural Information Processing System (NeurIPS), 2022.

[18] Christiane Fellbaum. Wordnet. In Theory and Applications of Ontology: Computer Applications,
pages 231–243. Springer, 2010.

[19] Stanislav Fort, Jie Ren, and Balaji Lakshminarayanan. Exploring the limits of out-of-distribution
detection. In Conference on Neural Information Processing Systems (NeurIPS), 2021.

[20] ZongYuan Ge, Sergey Demyanov, Zetao Chen, and Rahil Garnavi. Generative openmax for
multi-class open set classification. arXiv preprint arXiv:1707.07418, 2017.

[21] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann,
and Wieland Brendel. Imagenet-trained CNNs are biased towards texture; increasing shape bias
improves accuracy and robustness. In International Conference on Learning Representations
(ICLR), 2019.

11



[22] Jiuxiang Gu, Jason Kuen, Shafiq Joty, Jianfei Cai, Vlad Morariu, Handong Zhao, and Tong Sun.
Self-supervised relationship probing. In Conference on Neural Information Processing Systems
(NeurIPS), 2020.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In The IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR),
2016.

[24] Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. Why relu networks yield
high-confidence predictions far away from the training data and how to mitigate the problem.
In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pages 41–50, 2019.

[25] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. In International Conference on Learning Representations (ICLR),
2017.

[26] Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam Dziedzic, Rishabh Krishnan, and Dawn
Song. Pretrained transformers improve out-of-distribution robustness. In Association for
Computational Linguistics (ACL), 2020.

[27] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
exposure. In International Conference on Learning Representations (ICLR), 2018.

[28] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[29] Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt Kira. Generalized odin: Detecting out-of-
distribution image without learning from out-of-distribution data. In The IEEE / CVF Computer
Vision and Pattern Recognition Conference (CVPR), 2020.

[30] Yibo Hu and Latifur Khan. Uncertainty-aware reliable text classification. In SIGKDD Confer-
ence on Knowledge Discovery and Data Mining (KDD), 2021.

[31] Rui Huang, Andrew Geng, and Yixuan Li. On the importance of gradients for detecting
distributional shifts in the wild. In Conference on Neural Information Processing Systems
(NeurIPS), 2021.

[32] Rui Huang and Yixuan Li. Mos: Towards scaling out-of-distribution detection for large semantic
space. In The IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR), 2021.

[33] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. In International Conference on Machine Learning (ICML), 2021.

[34] Di Jin, Shuyang Gao, Seokhwan Kim, Yang Liu, and Dilek Hakkani-Tur. Towards textual
out-of-domain detection without in-domain labels. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 2022.

[35] Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without
convolution or region supervision. In International Conference on Machine Learning (ICML),
2021.

[36] Polina Kirichenko, Pavel Izmailov, and Andrew G Wilson. Why normalizing flows fail to detect
out-of-distribution data. Conference on Neural Information Processing Systems (NeurIPS),
2020.

[37] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay
Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al.
Wilds: A benchmark of in-the-wild distribution shifts. In International Conference on Machine
Learning (ICML), 2021.

[38] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain
Gelly, and Neil Houlsby. Big transfer (bit): General visual representation learning. In The
European Conference on Computer Vision (ECCV), 2020.

[39] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for
fine-grained categorization. In 4th International IEEE Workshop on 3D Representation and
Recognition (3dRR-13), Sydney, Australia, 2013.

[40] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

12



[41] Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.
[42] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting

out-of-distribution samples and adversarial attacks. In Conference on Neural Information
Processing Systems (NeurIPS), 2018.

[43] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang. Visualbert: A
simple and performant baseline for vision and language. arXiv preprint arXiv:1908.03557,
2019.

[44] Xiaoya Li, Jiwei Li, Xiaofei Sun, Chun Fan, Tianwei Zhang, Fei Wu, Yuxian Meng, and Jun
Zhang. kfolden: k-fold ensemble for out-of-distribution detection. In Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2021.

[45] Yangguang Li, Feng Liang, Lichen Zhao, Yufeng Cui, Wanli Ouyang, Jing Shao, Fengwei Yu,
and Junjie Yan. Supervision exists everywhere: A data efficient contrastive language-image
pre-training paradigm. In International Conference on Learning Representations (ICLR), 2022.

[46] Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-
distribution image detection in neural networks. In International Conference on Learning
Representations (ICLR), 2018.

[47] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In The
European Conference on Computer Vision (ECCV), 2014.

[48] Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution
detection. In Conference on Neural Information Processing Systems (NeurIPS), 2020.

[49] Yifei Ming, Ying Fan, and Yixuan Li. Poem: Out-of-distribution detection with posterior
sampling. In International Conference on Machine Learning (ICML), 2022.

[50] Yifei Ming, Hang Yin, and Yixuan Li. On the impact of spurious correlation for out-of-
distribution detection. The AAAI Conference on Artificial Intelligence (AAAI), 2022.

[51] Ron Mokady, Amir Hertz, and Amit H Bermano. Clipcap: Clip prefix for image captioning.
arXiv preprint arXiv:2111.09734, 2021.

[52] Peyman Morteza and Yixuan Li. Provable guarantees for understanding out-of-distribution
detection. The AAAI Conference on Artificial Intelligence (AAAI), 2022.

[53] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan.
Do deep generative models know what they don’t know? In International Conference on
Learning Representations (ICLR), 2019.

[54] Lawrence Neal, Matthew Olson, Xiaoli Fern, Weng-Keen Wong, and Fuxin Li. Open set
learning with counterfactual images. In The European Conference on Computer Vision (ECCV),
2018.

[55] Edwin G. Ng, Bo Pang, Piyush Sharma, and Radu Soricut. Understanding guided image
captioning performance across domains. arXiv preprint arXiv:2012.02339, 2020.

[56] Poojan Oza and Vishal M Patel. C2ae: Class conditioned auto-encoder for open-set recognition.
In The IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR), 2019.

[57] Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In
The IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR), 2012.

[58] Alexander Podolskiy, Dmitry Lipin, Andrey Bout, Ekaterina Artemova, and Irina Piontkovskaya.
Revisiting mahalanobis distance for transformer-based out-of-domain detection. In The AAAI
Conference on Artificial Intelligence (AAAI), 2021.

[59] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning
(ICML), 2021.

[60] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[61] Jie Ren, Peter J Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark Depristo, Joshua Dillon,
and Balaji Lakshminarayanan. Likelihood ratios for out-of-distribution detection. In Conference
on Neural Information Processing Systems (NeurIPS), 2019.

13



[62] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining
the predictions of any classifier. In SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD), 2016.

[63] Abhijit Guha Roy, Jie Ren, Shekoofeh Azizi, Aaron Loh, Vivek Natarajan, Basil Mustafa, Nick
Pawlowski, Jan Freyberg, Yuan Liu, Zach Beaver, et al. Does your dermatology classifier know
what it doesn’t know? detecting the long-tail of unseen conditions. Medical Image Analysis,
75:102274, 2022.

[64] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally
robust neural networks for group shifts: On the importance of regularization for worst-case
generalization. In International Conference on Learning Representations (ICLR), 2019.

[65] Chandramouli Shama Sastry and Sageev Oore. Detecting out-of-distribution examples with
Gram matrices. In International Conference on Machine Learning (ICML), 2020.

[66] Vikash Sehwag, Mung Chiang, and Prateek Mittal. Ssd: A unified framework for self-supervised
outlier detection. In International Conference on Learning Representations (ICLR), 2021.

[67] Joan Serrà, David Álvarez, Vicenç Gómez, Olga Slizovskaia, José F. Núñez, and Jordi Luque.
Input complexity and out-of-distribution detection with likelihood-based generative models. In
International Conference on Learning Representations (ICLR), 2020.

[68] Yilin Shen, Yen-Chang Hsu, Avik Ray, and Hongxia Jin. Enhancing the generalization for
intent classification and out-of-domain detection in slu. arXiv preprint arXiv:2106.14464, 2021.

[69] Yiyou Sun, Chuan Guo, and Yixuan Li. React: Out-of-distribution detection with rectified
activations. In Conference on Neural Information Processing Systems (NeurIPS), 2021.

[70] Yiyou Sun and Yixuan Li. Dice: Leveraging sparsification for out-of-distribution detection. In
Proceedings of European Conference on Computer Vision (ECCV), 2022.

[71] Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-of-distribution detection with deep
nearest neighbors. In International Conference on Machine Learning (ICML), 2022.

[72] Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin. Csi: Novelty detection via
contrastive learning on distributionally shifted instances. In Conference on Neural Information
Processing Systems (NeurIPS), 2020.

[73] Ming Tan, Yang Yu, Haoyu Wang, Dakuo Wang, Saloni Potdar, Shiyu Chang, and Mo Yu.
Out-of-domain detection for low-resource text classification tasks. In Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2019.

[74] Shagun Uppal, Sarthak Bhagat, Devamanyu Hazarika, Navonil Majumder, Soujanya Poria,
Roger Zimmermann, and Amir Zadeh. Multimodal research in vision and language: A review
of current and emerging trends. Information Fusion, 77:149–171, 2022.

[75] Aaron Van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv e-prints, pages arXiv–1807, 2018.

[76] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig
Adam, Pietro Perona, and Serge Belongie. The inaturalist species classification and detection
dataset. In The IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR),
2018.

[77] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Conference on Neural Information
Processing Systems (NeurIPS), 2017.

[78] Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Open-set recognition: A good
closed-set classifier is all you need. In International Conference on Learning Representations
(ICLR), 2022.

[79] Roman Vershynin. High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge university press, 2018.

[80] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011
dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

[81] Feng Wang and Huaping Liu. Understanding the behaviour of contrastive loss. In The IEEE /
CVF Computer Vision and Pattern Recognition Conference (CVPR), 2021.

14



[82] Haoran Wang, Weitang Liu, Alex Bocchieri, and Yixuan Li. Can multi-label classification
networks know what they don’t know? Proceedings of the Advances in Neural Information
Processing Systems (NeurIPS), 2021.

[83] Haotao Wang, Aston Zhang, Yi Zhu, Shuai Zheng, Mu Li, Alex J Smola, and Zhangyang Wang.
Partial and asymmetric contrastive learning for out-of-distribution detection in long-tailed
recognition. In International Conference on Machine Learning (ICML), 2022.

[84] Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through
alignment and uniformity on the hypersphere. In International Conference on Machine Learning
(ICML), 2020.

[85] Jim Winkens, Rudy Bunel, Abhijit Guha Roy, Robert Stanforth, Vivek Natarajan, Joseph R Led-
sam, Patricia MacWilliams, Pushmeet Kohli, Alan Karthikesalingam, Simon Kohl, et al. Con-
trastive training for improved out-of-distribution detection. arXiv preprint arXiv:2007.05566,
2020.

[86] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In The IEEE / CVF Computer Vision and
Pattern Recognition Conference (CVPR), 2010.

[87] Kai Yuanqing Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. Noise or signal:
The role of image backgrounds in object recognition. In International Conference on Learning
Representations (ICLR), 2021.

[88] Zhisheng Xiao, Qing Yan, and Yali Amit. Likelihood regret: An out-of-distribution detection
score for variational auto-encoder. In Conference on Neural Information Processing Systems
(NeurIPS), volume 33, 2020.

[89] Keyang Xu, Tongzheng Ren, Shikun Zhang, Yihao Feng, and Caiming Xiong. Unsupervised out-
of-domain detection via pre-trained transformers. In Association for Computational Linguistics
(ACL), 2021.

[90] Jingkang Yang, Haoqi Wang, Litong Feng, Xiaopeng Yan, Huabin Zheng, Wayne Zhang, and
Ziwei Liu. Semantically coherent out-of-distribution detection. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2021.

[91] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution
detection: A survey. arXiv preprint arXiv:2110.11334, 2021.

[92] Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe Niu, Hang Xu, Xiaodan Liang,
Zhenguo Li, Xin Jiang, and Chunjing Xu. Filip: Fine-grained interactive language-image
pre-training. International Conference on Learning Representations (ICLR), 2021.

[93] Li-Ming Zhan, Haowen Liang, Bo Liu, Lu Fan, Xiao-Ming Wu, and Albert Lam. Out-of-scope
intent detection with self-supervision and discriminative training. Association for Computational
Linguistics (ACL), 2021.

[94] Renrui Zhang, Rongyao Fang, Peng Gao, Wei Zhang, Kunchang Li, Jifeng Dai, Yu Qiao, and
Hongsheng Li. Tip-adapter: Training-free clip-adapter for better vision-language modeling.
arXiv preprint arXiv:2111.03930, 2021.

[95] Yinhe Zheng, Guanyi Chen, and Minlie Huang. Out-of-domain detection for natural language
understanding in dialog systems. TASLP, 2020.

[96] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A
10 million image database for scene recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 2017.

[97] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning
for vision-language models. In The IEEE / CVF Computer Vision and Pattern Recognition
Conference (CVPR), 2022.

[98] Wenxuan Zhou, Fangyu Liu, and Muhao Chen. Contrastive out-of-distribution detection for
pretrained transformers. Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2021.

[99] Zhuotun Zhu, Lingxi Xie, and Alan Yuille. Object recognition with and without objects. In
International Joint Conferences on Artificial Intelligence (IJCAI), 2017.

15



Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [N/A]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3
and Section A

(b) Did you include complete proofs of all theoretical results? [Yes] See Section A
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See Section B

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4 and Section B

(c) Did you report error bars (e.g., with respect to the random seed after running ex-
periments multiple times)? [N/A] There is no training involved in MCM. For fair
comparison and reproducibility, we use the publicly available checkpoints of CLIP
from OpenAI.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section B

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section B
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

See Section B
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

16


	Introduction
	Preliminaries
	OOD Detection via Concept Matching
	A Comprehensive Analysis of MCM
	Datasets and Implementation Details
	Main Results

	Discussion: A Closer Look at MCM
	Related Works
	Conclusion
	Theoretical Justification: Softmax Scaling for Zero-Shot OOD Detection
	Experimental Details
	Software and Hardware
	Hyperparameters
	Datasets
	Baselines and sources of model checkpoints

	Spurious OOD Datasets
	ID Classification Accuracy
	Implementation of CLIP-Based Baselines
	Overview of Baselines
	Obtaining OOD Candidate Labels
	Label Filtering

	Alternative Scoring Functions

