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Abstract

We consider the problem of minimizing the number of matrix-vector queries
needed for accurate trace estimation in the dynamic setting where our underly-
ing matrix is changing slowly, such as during an optimization process. Specif-
ically, for any m matrices A1, ...,Am with consecutive differences bounded in
Schatten-1 norm by α, we provide a novel binary tree summation procedure that
simultaneously estimates all m traces up to ε error with δ failure probability with
an optimal query complexity of Õ(mα

√
log(1/δ)/ε + m log(1/δ)), improving

the dependence on both α and δ from Dharangutte and Musco (NeurIPS, 2021).
Our procedure works without additional norm bounds on Ai and can be gener-
alized to a bound for the p-th Schatten norm for p ∈ [1, 2], giving a complexity
of Õ(mα(

√
log(1/δ)/ε)p +m log(1/δ)). By using novel reductions to commu-

nication complexity and information-theoretic analyses of Gaussian matrices, we
provide matching lower bounds for static and dynamic trace estimation in all rel-
evant parameters, including the failure probability. Our lower bounds (1) give the
first tight bounds for Hutchinson’s estimator in the matrix-vector product model
with Frobenius norm error even in the static setting, and (2) are the first uncon-
ditional lower bounds for dynamic trace estimation, resolving open questions of
prior work.

1 Introduction

Implicit matrix trace estimation is ubiquitous in numerical linear algebra and arises naturally in a
wide range of applications, see, e.g., [25]. In this problem, we are given an oracle which gives us
matrix-vector products Ax1,Ax2, · · · ,Axm for an unknown n × n square matrix A and queries
x1, . . . , xm of our choice, that may be chosen adaptively. In typical applications, one cannot afford
to compute the diagonal entries of A explicitly, due to A being implicitly represented and compu-
tational constraints. The goal is to efficiently estimate TrA using only matrix-vector products.

In machine learning and data science, applications of trace estimation include training Gaussian
Processes [8, 11], triangle counting [1], computing the Estrada Index [10, 9], and studying opti-
mization landscapes of deep neural networks from Hessian matrices [12, 26]. In these applications,
it is common that A is represented implicitly due to its large memory footprint. For example, while
it is possible to compute Hessian-vector products via Pearlmutter’s trick [20], it is prohibitive to
compute or store the Hessian matrix H , see, e.g., [12].

Moreover, A may be a matrix function f of another matrix B in some applications. Since computing
f(B) is expensive, it is desirable to apply implicit trace estimation. For example, during the training
of Gaussian Processes, the marginal log-likelihood contains a heavy-computation term, i.e., the log
of the determinant of the covariance matrix, log(det(K)), where K ∈ Rn×n and n is the number
of data points. The canonical way of computing log(det(K)) is via a Cholesky factorization on
K, which takes O(n3) time. Instead, implicit trace estimation methods provide fast algorithms for
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approximating log(det(K)) =
∑n

i=1 log(λi) = tr(log(K)) on large-scale data. Therefore, it is
important to understand the fundamental limits of implicit trace estimation as the query complexity,
i.e., the minimum number of matrix-vector multiplications required to achieve a desired accuracy
and success rate.

Static trace estimation and Hutchinson’s method. On the algorithmic side, Hutchinson’s
method [14] is a simple and widely used method for trace estimation. Let Q = [q1, . . . , qℓ] ∈ Rn×ℓ

be ℓ vectors with i.i.d. standard Gaussian or Rademacher random variables. Given matrix-vector
multiplication access to A, Hutchinson’s method estimates tr(A) by t = 1

q

∑q
i=1 q

T
i Aqi =

1
q tr(Q

TAQ). It is known [2] that the estimator satisfies that for any ε, δ ∈ (0, 1),

|t− TrA| ≤ ε∥A∥F , with probability at least 1− δ, (1)
provided the number ℓ of queries satisfies ℓ ≥ C log(1/δ)/ε2 for some fixed constant C.

For Hutchinson’s method, there is also previous work which showed for queries of the form x⊤Ax,
Ω(1/ε2) queries are required [21]; however, this does not imply even a lower bound for non-adaptive
algorithms that use matrix-vector queries. Though stronger algorithmic results and matching lower
bounds are known for the important case of PSD matrices in the non-adaptive setting [18, 16], the
optimality of Hutchinson’s estimator as an trace estimator for general square matrices in the matrix-
vector product model still remains an open problem. Notably, Hutchinson’s method chooses the
query vectors non-adaptively and it is furthermore unclear whether adaptivity could help.

More generally, there has been a flurry of recent work that gives trace estimators with o(1/ε2) query
complexity but with a different error guarantee. Specifically, let us consider a Schatten-p norm error
guarantee, where the goal is to provide an estimate t such that

|t− TrA| ≤ ε∥A∥p, with probability at least 1− δ, (2)
where ∥A∥p denotes the Schatten-p norm.

For p = 1, a previous work [18] proposes a variance-reduced version of Hutchinson’s method that
uses only O(1/ε) matrix-vector product queries to achieve a nuclear norm error of ε∥A∥∗, in con-
trast to the O(1/ε2) queries used when the error is in the Frobenius norm. When the matrix is
positive semidefinite (PSD), the nuclear norm error is equivalent to a (1 + ε) multiplicative approx-
imation to the trace. Their work, along with a subsequent work [16], shows that Ω(1/ε) queries are
therefore sufficient and necessary to achieve a (1+ ε) multiplicative trace approximation in this set-
ting. While this line of work mainly focuses on PSD matrices and nuclear norm error, we consider
trace estimation on general square matrices with Schatten-p norm error for any p ∈ [1, 2].

Furthermore, we note that the variance-reduced Hutchinson’s method splits the queries between
approximating the top O(1/ε) eigenvalues, i.e., by computing a rank-O(1/ε) approximation to
A, and performing Hutchinsons’s method on the remainder. Due to the low rank approxima-
tion subroutine, the query complexity’s dependence on the failure probability is more concretely
O(
√
log(1/δ)/ε + log(1/δ)) for additive ε∥A∥∗ error. The additive log(1/δ) rate is shown to be

necessary when non-adaptive queries are used, but it is an open problem whether adaptive queries
can remove the additive log(1/δ) term for trace estimation with Schatten-p norm error [16].

This motivates the natural question:

Question 1: Is Hutchinson’s method optimal in terms of ε and δ for static trace
estimation of general square matrices, even when adaptivity is allowed? How do
we generalize Hutchinson’s method for error in general Schatten-p norms?

Dynamic trace estimation. In various applications the input matrix is not fixed. For example,
during model training, we need to estimate the trace of a dynamically changing Hessian matrix
with respect to some loss function. One may assume that the change at each step is not very large.
Motivated by such a scenario, a recent work by Dharangutte and Musco [6] studies dynamic trace
estimation.

Formally, let p ∈ [1, 2] and A1,A2, · · · ,Am be n×n matrices in a stream such that (1) ∥Ai∥p ≤ 1
for all i > 1, where ∥ · ∥p denotes the Schatten-p norm, and (2) ∥Ai+1 − Ai∥p ≤ α < 1 for all
i ≤ m− 1. The goal is to output a sequence of estimates t1, · · · , tm such that for each i ∈ [m],

|ti − TrAi| ≤ ε, with probability at least 1− δ, (3)
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Upper Bounds
Prior Work Query Complexity Matrix Type Failure Rate Algorithm Type

[2, 22] O(log(1/δ)/ε2) general square δ non-adaptive, p = 2

[18] O(
√
log(1/δ)/ε+ log(1/δ)) PSD δ adaptive, p = 1

[18] O(log(1/δ)/ε) PSD δ non-adaptive, p = 1

[16] O(
√
log(1/δ)/ε+ log(1/δ)) PSD δ non-adaptive, p = 1

This work 1 O((
√

log(1/δ)/ε)p + log(1/δ)) PSD δ non-adaptive, general p
Lower Bounds (Adaptive)

[18] Ω(1/(b+ ε log(1/ε))) general square, bit constant adaptive, p = 1

This work 2 Ω
(

1
εp(b+log(1/ε)) +

log(1/δ)
(b+log log(1/δ))

)
general square, bit δ adaptive, general p

This work 3 Ω
(
(
√

log(1/δ)/ε)p
)

general square, ram δ adaptive, general p
Lower Bounds (Non-Adaptive)

[18] Ω(1/ε) PSD, ram constant non-adaptive, p = 1

[16] Ω(
√
log(1/δ)/ε+ log(1/δ)

log log(1/δ) ) PSD, ram δ non-adaptive, p = 1

This work 4 Ω
(
logp/2(1/δ)/(εp(b+ log(1/ε)))

)
general square, bit δ non-adaptive, general p

This work 5 Ω
(
(
√

log(1/δ)/ε)p + log(1/δ)
log log(1/δ)

)
general square, ram δ non-adaptive, general p

Table 1: Upper and lower bounds on the query complexity for static trace estimation. In the bit
complexity model, each entry of the query vector is specified by b bits, and the dependence on b is
necessary.
1: A static upper bound generalizing Hutch++ [18] to Schatten-p norm error (Theorem C.1).
2: An adaptive lower bound via communication complexity of the Gap Equality and Approximate
Orthogonality problem (Theorem 4.1), which combines Theorem D.2 and Theorem D.3, resolving
an open problem that log(1/δ) queries are required in the adaptive setting.
3: An adaptive lower bound via information-theoretic analysis of Gaussian Wigner matrices (Theo-
rem 4.2), showing optimal dependence on log(1/δ).
4: A non-adaptive lower bound via communication complexity of Augmented Indexing (Theo-
rem F.1), optimal in all parameters up to the bit complexity term.
5: A non-adaptive lower bound combining our Theorem 4.2 and the prior result from [16].

via matrix-vector multiplication query access to the first i matrices (Aj)
i
j=1. Naïvely, one could

estimate each TrAi independently using Hutchinson’s method. This, however, does not exploit that
the changes are bounded at each step. Alternatively, one can rewrite TrAi as TrA1+

∑i
i=2 Tr(∆i),

where ∆i = Ai − Ai−1, by linearity of the trace, and apply Hutchinson’s method on each term.
Unfortunately, this scheme suffers from an accumulation of errors over the steps.

The prior work [6] is focused on p = {1, 2} and improves upon the naïve ideas above. For p = 1,
the authors give a method that uses O

(
m
√

α/δ/ε+
√
1/δ/ε

)
queries. For p = 2, they provide an

algorithm with query complexity O(mα log(1/δ)/ε2+log(1/δ)/ε2) and a conditional lower bound
showing that this is tight. This leaves open the question:

Question 2: Can we design improved algorithms for dynamic trace estimation
under a general Schatten norm assumption? Can we prove an unconditionally
optimal lower bound?

1.1 Our Results

Our work resolves the proposed questions (nearly) optimally, and we next discuss our main results.

Static trace estimation: For Question 1, we prove query complexity lower bounds for implicit
trace estimation in both bit complexity and real RAM models of computation, resolving the open
problem of establishing unconditional lower bounds for the optimality of Hutchinson’s method even
in the adaptive setting.

To do so, we provide new reductions from classic communication complexity problems, includ-
ing GAP-EQUALITY and APPROXIMATE-ORTHOGONALITY, to matrix trace estimation. Our main
lower bounds demonstrate that log(1/δ) queries are always needed even with adaptivity and for gen-
eral p, there is an additional 1/εp dependence. A key idea is a communication protocol simulation
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using the product of two matrices rather than the sum, as was used in prior work on PSD lower
bounds [18].
Theorem 1.1 (Informal; see Theorem 4.1). In the bit complexity model, where each entry of each
query vector is specified using b bits,

Ω

(
1

εp(b+ log(1/ε))
+

log(1/δ)

b+ log log(1/δ)

)
number of adaptive queries is necessary to achieve ε∥A∥p error with probability at least 1− δ.

When adaptivity is not allowed, we give a stronger lower bound (Theorem F.1) of
Ω(logp/2(1/δ)/εp). This matches the guarantee of Hutchinson’s non-adaptive estimator up to a
constant factor, for which random sign vectors suffice and so one can take b = O(1).

We also provide a query complexity lower bound in the real RAM model for general Schatten p-
norms with p ∈ [1, 2] by using Gaussian ensembles and controlling the remaining entropy of the
distribution conditioned on prior queries. In the special case of p = 2 (i.e., Frobenius norm error
guarantee), our bound again matches the classic Hutchinson’s method up to a constant factor for
p = 2, and an additive log(1/δ) factor for p < 2. Note that in the non-adaptive setting, our lower
bound in the RAM model can also be improved for p < 2 to include a log(1/δ)/ log log(1/δ) factor.
Therefore, this lower bound emphasizes that our dependence on log(1/δ) in the ε-dependent term is
tight, even in the adaptive setting.
Theorem 1.2 (Informal; see Theorem 4.2). In the real RAM model, where the queries are real-

valued, for sufficiently small ε and any p ∈ [1, 2], Ω
((√

log(1/δ)/ε
)p)

number of adaptive queries

is necessary to achieve ε∥A∥p error with probability at least 1− δ.

On the algorithmic front, we give a matching upper bound for static trace estimation for general
Schatten-p norm error for p ∈ [1, 2]. The argument requires a careful balancing of the ε and δ
parameters in the low rank approximation of the Hutch++ procedure from [18]. See Theorem C.1
for a full statement.

Dynamic trace estimation: To answer Question 2, we first give an improved algorithm for dy-
namic trace estimation that uses a binary tree-based decomposition to estimate all matrix traces with
only a small logarithmic overhead. The algorithm improves upon the previous work [6] and gets an
optimal dependence on 0 < α, δ < 1, up to logarithmic factors. Specifically, for p = 1, the prior
work gives a method that uses O

(
m
√
α/δ/ε

)
queries for small ε, while our algorithm gives an

improved O(mα
√
log(1/δ)/ε) bound with a linear dependence on α and square root dependence

on log(1/δ). For p = 2, our algorithm matches the query complexity of O(mα log(1/δ)/ε2) given
by previous work. Furthermore, our algorithm works under a general Schatten p-norm assumption
for any p ∈ [1, 2]:
Theorem 1.3 (Informal; see Theorem 3.1 and Theorem C.2). For any p ∈ [1, 2], there is a dynamic
trace estimation algorithm that achieves error ε and failure rate δ at each step. The algorithm uses
a total of

Õ
(
(mα+ 1)

(√
log(1/(αδ))/ε

)p
+m log(1/(αδ))

)
(4)

matrix-vector product queries. Furthermore, for p = 1, it can be improved to

Õ
(
(mα+ 1)

(√
log(1/(αδ))/ε

)
+mmin(1, α/ε) log(1/(αδ))

)
(5)

Furthermore, since our algorithm avoids the variance reduction technique from [6], we may relax the
assumptions of dynamic trace estimation and require only the first matrix to have norm ∥A1∥ ≤ 1,
instead of asking the entire sequence Ai to be bounded in such a way. While the norm bound on
all Ai is crucial for the algorithm in [6] (rerunning the analysis naïvely would give a worse query
complexity of O(m3α3/ε)), our tree-based algorithm achieves a nearly optimal query complexity
even when the norm of Ai grows, and we suffer only a logm overhead in that case. Moreover, in
our experiments, we find that our algorithm significantly outperforms previous algorithms on real
and synthetic datasets. See Section 6 for our experimental results.
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To complement our algorithms, we give unconditional lower bounds showing that our algorithm is
nearly optimal. Our lower bounds rely on a reduction from dynamic trace estimation to static matrix
trace estimation from [6] and make use of our new lower bounds in the static setting. In particular,
the reduction shows that if for a fixed set of parameters ε, δ, p, a static trace estimation scheme
requires Ω(r) queries, then Ω(mαr) queries are necessary for any dynamic algorithm. Combining
this observation with our static trace estimation lower bounds, we get:

Theorem 1.4 (Informal; see Theorem 5.2 and Theorem 5.3). For any p = [1, 2), our algorithm
attains the optimal query complexity, up to bit complexity and logarithmic terms.

More specifically, we prove lower bounds that match the first term in our upper bound (4) for all
p ∈ [1, 2]. For p = 1, we give a lower bound (Theorem 5.4) matching the the second term in (5) as
well, showing that the m(log(1/δ)) additive dependence is necessary.

For p = 2, the prior work [6] gives a upper bound of O(mα log(1/δ)/ε2 + log(1/δ)/ε2). Our
lower bounds are unconditional and show that the first term is tight. Moreover, the second term is
necessary due to the static lower bound when m = 1. This result is not contradicted by the claim of
Theorem 5.4. In particular, when α ≥ ε2, Theorem 5.4 is weaker than the Ω(mα log(1/δ)/ε2) lower
bound; and when α < ε2, the construction by itself requires ε/α update steps to change the trace by
ε, which leads to a lower bound of Ω(mα log(1/δ)/ε), again weaker than Ω(mα log(1/δ)/ε2).

2 Preliminaries

A matrix A ∈ Rn×n is symmetric positive semi-definite (PSD) if it is real, symmetric and has non-
negative eigenvalues. Hence, x⊤Ax ≥ 0 for all x ∈ Rn. Let tr(A) =

∑n
i=1 Aii denote the trace of

A. Let ∥A∥F = (
∑n

i=1

∑n
j=1 A

2
ij)

1/2 denote the Frobenius norm and ∥A∥op = sup∥v∥2=1 ∥Av∥2
denote the operator norm of A. We let ∥A∥p = (

∑
i σ

p
i )

1/p be the Schatten-p norm, where σi are
the singular values of A. Two special cases are the Frobenius norm, which equals the Schatten-2
norm (∥A∥F = ∥A∥2) and the nuclear norm, equals the Schatten-1 norm (∥A∥⋆ = ∥A∥1).

3 Algorithm for Dynamic Trace Estimation

We give an algorithm for dynamic trace estimation under a general Schatten-p norm assumption,
for p ∈ [1, 2]. For p = 1, our algorithm provides an improved guarantee upon the DeltaShift++
procedure from [6]. In a later section we complement the result by showing that it is indeed near-
optimal. Specifically, we give an algorithm that achieves the following guarantees:

Theorem 3.1 (Improved dynamic trace estimation). Let A1,A2, · · · ,Am be n × n matrices such
that (1) ∥Ai∥⋆ ≤ 1 for all i, and (2) ∥Ai+1 −Ai∥⋆ ≤ α for all i ≤ m − 1. Given matrix-vector
multiplication access to the matrices, a failure rate δ > 0 and error bound ε, there is an algorithm
that outputs a sequence of estimates t1, · · · , tm such that for each i ∈ [m],

|ti − TrAi| ≤ ε, with probability at least 1− δ. (6)

The algorithm uses a total of

O
(
(mα+ 1) log2(1/α)

√
log(1/(αδ))/ε+mmin(1, α/ε) log(1/(αδ))

)
(7)

matrix-vector multiplication queries to A1,A2, · · · ,Am.

Compared with DeltaShift++ in [6], this guarantee provides an exponential improvement in δ and a
polynomial improvement in α for p ̸= 2, while maintaining the optimal dependence on m and ε.

3.1 Algorithm

We now describe our algorithm. The first idea is to partition the m updates into groups of size
s = ⌈1/(2α)⌉. Each group will be treated independently, and we will use

O

(
log2(1/α)

√
log(1/(αδ))/ε+

1

α
log(1/(αδ))

)
. (8)

5



queries on each group. This leads to our claimed query complexity, as there are O(mα) groups.
Note that if α < ε, since |Tr(Aj −Aj−1)| ≤ ∥Aj −Aj−1∥∗ ≤ α, the trace can change by at most
an additive α, so we can simply ignore every subsequence of length ε/α. Therefore, we only need
to apply our estimators to mα/ε matrices.

Without loss of generality, consider a group of matrices A1, · · · ,A1/2α. As the first step, we
estimate Tr(Aj − Aj−1) for each j ≥ 2 by using the Hutch++ static trace estimator [18] as a
black box. Then, for each even integer j = 2k (for an integer 2 ≤ k ≤ s/2), we also estimate
Tr(A2k −A2(k−1)) in the same way. More generally, for each integer j = 2ℓk, for 0 ≤ ℓ < log2 s,
we use Hutch++ to approximate Tr

(
A2ℓk −A2ℓ(k−1)

)
. We view this scheme as a binary tree: the

bottom level consists of leaves corresponding to the trace difference of neighboring matrices, and
nodes at level ℓ correspond to the trace difference of matrices that are 2ℓ apart in their indices.

To output an estimate of TrAi, we will write i in its binary representation and approximate it by
Tr(A1) plus a sequence of O(log(1/α)) differences, at most one for each level in the binary tree.
By setting the success rates and errors bounds at each level carefully, we can achieve the desired
error guarantee of Equation (6).

To formalize the construction, we first cite the following guarantee of the Hutch++ algorithm:
Lemma 3.2 (Hutch++, nuclear norm, Theorem 5 of [18]). The Hutch++ estimator uses

N = O
(√

log(1/δ′)/ε′ + log(1/δ′)
)

matrix-vector multiplication queries such that given any square matrix A and parameters ε′, δ′,
with probability at least 1− δ′, the algorithm’s output t satisfies

|t− TrA| ≤
√
ε′
∥∥A−A1/ε′

∥∥
F
≤ ε′∥A∥∗. (9)

Let Hutch++(A, ε′, δ′) denote the output of Hutch++ on matrix A with parameters ε′, δ′. It will be
invoked with different parameters at different levels of the binary tree construction. A description of
the algorithm is given by the pseudocode Algorithm 1, with a helper function Algorithm 2.

For simplicity of analysis, note that since we can add dummy matrices (say, extra copies of A1), we
assume that each group has size exactly s = ⌈1/(2α)⌉ and s is a power of two. This blows up the
total number of matrices by at most a constant factor.

Algorithm 1: Improved Dynamic Trace Estimation
Input : A sequence of square matrices (Ai)

m
i=0 ∈ Rn×n, failure rate δ, error bound ε

Ouput: Trace estimate ti for each matrix

1 Partition the matrices into groups of size s = ⌈1/(2α)⌉.
2 For every g ≥ 0 and i ∈ {0, 1, · · · , s− 1}, let A(g)

i = Ags+i+1 denote the i-th matrix in the
g-th group.

3 for each group A
(g)
0 , · · · ,A(g)

s−1 independently do
4 Let t0 = Hutch++(A(g)

0 , ε/2, δ/2))
5 for each level ℓ from 0 to log2 s− 1 do
6 gap = 2ℓ

7 for k from 1 to (s− 1)/gap do
8 Compute tk,ℓ = Hutch++

(
Ak·gap −A(k−1)·gap, ε

′(ℓ), δ′
)
, with

ε′(ℓ) = ε/(2ℓ+1α log2 s) and δ′ = αδ.

9 Output tgs+i+1 = t0 + SUMTREE(1, i, log2 s− 1, t) for each i ∈ [0, s− 1].

3.2 Analysis

The analysis of the algorithm is rather lengthy and is delayed to Appendix C.1. In addition, we
give a general analysis of the algorithm under Schatten-p norm assumption and the specific im-
proved bounds for p = 1 in Appendix C.2 and show how to relax the bounded norm assumption in
Appendix C.3.
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Algorithm 2: SUMTREE: Helper Function for Tracing the Binary Tree
Input: Indices i, j, level ℓ, binary tree node values t

1 gap = 2ℓ

2 if j ≤ i then
3 return 0.
4 if gap = 1 then
5 return tℓ,i.
6 if j − i ≥ gap then
7 return tℓ,⌊(j−1)/gap⌋ + SUMTREE(i+ gap, j, ℓ− 1, t).

8 else
9 return SUMTREE(i, j, ℓ− 1,gap).

4 Lower Bounds for Adaptive Trace Estimation

In this section, we provide (nearly) optimal lower bounds for trace estimation with adaptive matrix-
vector multiplication queries, under general square matrices and Schatten-p norm error.

4.1 Adaptive Lower Bound, Bit Complexity

First, we show two separate lower bounds under bit complexity model, both proven via reductions
from communication complexity problems. One shows an Ω(1/εp) lower bound (Theorem D.2) and
the other Ω(log(1/δ)) (Theorem D.3), up to bit complexity terms. Combined together, they yield:
Theorem 4.1 (Adaptive query lower bound, bit complexity). Any algorithm that accesses a square
matrix A via matrix-vector multiplication queries requires at least

Ω

(
1

εp(k + log(1/ε))
+

log(1/δ)

k + log log(1/δ)

)
queries to output an estimate t such that with probability at least 1 − δ, |t − TrA| ≤ ε∥A∥p, for
any p ∈ [1, 2], where the query vectors may be adaptively chosen with entries specified by k bits.

The proofs of the theorems can be found in Appendix D.1.

4.2 Adaptive Lower Bound, RAM

Next, we prove a tight lower bound under the real RAM model (Theorem 4.2). The bounds hold
for any Schatten-p norm error. Our proof is via information-theoretic analysis of random Gaussian
matrices and is delayed to Appendix D.2.
Theorem 4.2 (Lower Bound for Any Schatten Norm). For all p ∈ [1, 2], δ > 0 and 0 < ε <
(log(1/δ))1/2−1/p, any algorithm that takes in any input matrix A and succeeds with probability at
least 1− δ in outputting an estimate t such that |t− tr(A)| ≤ ε∥A∥p requires

m = Ω

((√
log(1/δ)

ε

)p)
matrix-vector multiplication queries.

5 Lower Bounds for Dynamic Trace Estimation

Using the query complexity lower bounds for adaptive trace estimation, we can now prove tight
lower bounds for dynamic trace estimation. The recent work of Dharangutte and Musco [6] only
provides a conditional lower bound, assuming that Hutchinson’s scheme is optimal. We remove
this assumption and make the lower bound unconditional. We additionally prove a lower bound by
constructing an explicit hard instance in the dynamic setting. Our lower bounds hold under a general
Shatten norm assumption and nearly matches the guarantee of our algorithm.
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5.1 Lower Bounds via Static-to-Dynamic Reduction

We first show a lower bound for dynamic trace estimation under a Frobenius norm assumption. This
immediately implies that the DeltShift algorithm due to [6] is optimal for p = 2.

First, we cite a static-to-dynamic reduction from [6] and its implication. The reduction shows how
to solve a static instance using a dynamic trace estimation scheme, and therefore any hardness on
the static problem translates to the dynamic setting as well. It holds generally for an error bound in
any Schatten norm. For completeness, we give a proof in Appendix E.1.

Lemma 5.1 (Conditional lower bound for dynamic trace estimation [6]). Suppose that any algo-
rithm that achieves Equation (2) for static trace estimation must use Ω(r) matrix-vector product
queries. Then any dynamic trace estimation algorithm requires Ω(rαm) matrix-vector product
queries under a general Schatten-p norm assumption, when α = 1/(m− 1).

It follows immediately from this lemma and our adaptive query lower bound (Theorem 4.1):

Theorem 5.2 (Unconditional lower bound for dynamic trace estimation, bit). For all p ∈ [1, 2] and
ε, δ ∈ (0, 1), any algorithm for dynamic trace estimation under a Schatten-p norm assumption must
use at least

Ω

(
αm

(
1

εp(k + log(1/ε))
+

log(1/δ)

k + log log(1/δ)

))
matrix-vector multiplication queries, where each entry of the query vectors is specified by k bits.

Combining the same reduction (Theorem D.6) with our previous real RAM lower bound (Theo-
rem 4.2) in the static setting gives:

Theorem 5.3 (Unconditional lower bound for dynamic trace estimation, RAM). For all p ∈ [1, 2],
δ > 0 and 0 < ε < (log(1/δ))1/2−1/p, any algorithm for dynamic trace estimation under a

Schatten-p norm assumption must use at least Ω
(
αm

(√
log(1/δ)/ε

)p)
matrix-vector multiplica-

tion queries.

5.2 Lower Bound via Explicit Hard Instance

Using the hard instance based on GAP-EQUALITY in the static setting (from the proof of Theo-
rem D.3), we give an explicit hardness construction against any dynamic trace estimation scheme.
This yields the following lower bound, and its proof is in Appendix E.2.

Theorem 5.4. For all p ∈ [1, 2] and ε, δ ∈ (0, 1/4), any algorithm for dynamic trace estimation
under Schatten-p norm assumption must use at least

Ω

(
mmin

(
1,

α

ε

) log(1/δ)

k + log log(1/δ)

)
matrix-vector multiplication queries, where each entry of the query vectors is specified by k bits.

6 Experiments

We experimentally validate our algorithmic results. We compare Algorithm 1, with the following
procedures on both synthetic and real datasets. More experimental details are in Appendix G.

• Hutchinson’s: Apply the classic Hutchinson’s scheme for each Tr(Ai) independently.

• DiffSum: Approximate t1 ≈ Tr(A1) and each neighboring difference di ≈ Tr(Ai) −
Tr(Ai−1) using Hutchinson’s independently. Then output ti = t1 +

∑i
j=2 dj .

• DeltaShift: The main algorithm of [6]. The experiments from [6] demonstrate that
DeltaShift outperforms DiffSum and other Hutchinson-based schemes on various datasets.

Synthetic data. We simulate a dynamic trace estimation instance by first generating a (symmetric)
random matrix An×n and then adding random perturbations over T = 100 time steps. The details
and results are found in Appendix G.1.
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Figure 1: ArXiv datasets. Query budget is 8, 000. In this experiment, the trace values are large, so
we measure the performance of the algorithms by their relative error |ti − TrA3
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Figure 2: MNIST. Query budget is 50, 000.

Counting triangles. Our first experiment on a real-world dataset is on counting triangles in dy-
namic undirected (simple) graphs. Note that the number of triangles in a graph equals 1

6 TrA
3,

where A is the adjacency matrix of the graph. Thus, triangle counting reduces to trace estimation.

We use two arXiv collaboration networks with 5, 242 and 9, 877 nodes [17].1 The nodes represent
authors, and edges indicate co-authorships. To simulate a real-world scenario, we add a random
clique of size at most 6 to the graph in each step, indicating a group of researchers jointly publishing
a paper. We note that our algorithm significantly outperforms other methods (Figure 1).

Neural network weight matrix. We evaluate the performance of the algorithms on a sequence of
weight matrices of a neural network, generated during the training process. In particular, we choose
a three-layer neural network with a hidden layer of 100× 100. We train the network on the MNIST
dataset via mini-batch SGD and consider the first 1, 000 steps, when the weights are changing most
rapidly. Our algorithm achieves much smaller error than DiffSum and DeltaShift (Figure 2).

1The first is the collaboration network of arXiv General Relativity (ca-GrQc) and the second High Energy
Physics Theory (ca-HepTh). Both are available at https://sparse.tamu.edu/SNAP.
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A More Related Work

We summarize prior work on static trace estimation in Table 1. The seminal work of [2] gives the
first analysis of Huchinson’s estimator, which was improved by [22]. For PSD matrices, the query
complexity can be sharpened, and this was shown recently in [18, 16]. These two papers also give
matching lower bounds. The study of dynamic trace estimation was initiated by [6], and our work
improves upon their results.

Other applications of implicit trace estimation include inference of Determinantal Point Processes
[8], approximating the generalized rank of a matrix [27], computing network centrality measures
[3], matrix spectrum estimation [13, 19], and eigenvalue counting [7]. See [25] for a recent survey.

B Background on Communication Complexity

Our lower bound proofs use communication complexity. In a communication problem, Alice and
Bob receive inputs x ∈ {−1, 1}m and y ∈ {−1, 1}m, repsectively, and wish to compute a function
f : {−1, 1}m×{−1, 1}m → {−1, 1}. The players communicate according to a protocol P and end
with an agreed-upon value z. The sequence of binary messages exchanged by the players is called
the transcript of P , denoted P (x, y). We say that the protocol computes f with error δ if Pr(z ̸=
f(x, y)) ≤ δ. Let CC(P ) be the length (in bits) of the transcript P (x, y). The communication
complexity of f is defined to be the minimum communication cost of any protocol with error δ:

CCδ(f) = min{CC(P ) : P computes f with error δ}. (10)

C Proof Details of Section 3

C.1 Proof of Theorem 3.1

To give a proof sketch, we consider a fixed group and a constant δ = Θ(1). To bound the query
complexity, we observe that within the group, each level of the binary tree incurs roughly the same
number of matrix-vector product queries. Moreover, at the bottom level, there are s calls (including
the one computing t0) to Hutch++, with ε′ = Õ(ε/α) and δ′ = O(α). By Theorem 3.2, each call
uses Õ(α/ε) queries. Hence, each level uses Õ(sα/ε) = Õ(1/ε) queries. Since there are log(1/α)

levels per group and O(mα) groups, this gives a bound of Õ(mα/ε) on the total number of queries,
as claimed in Equation (7). A similar argument shows that the scheme achieves the desired error
bound ε and failure probability δ. We formally prove Theorem 3.1:

Proof of Theorem 3.1. Fix a group g and an index i. We first argue that the output tgs+i+1 is an
accurate estimate of the trace Tr(A

(g)
i ), namely, one which satisfies Equation (6). By construction,

the SUMTREE algorithm decomposes the tgs+i+1 − t0 into at most log2 s terms, one at each level

ℓ. Each term is an estimate tk,ℓ of Tr
(
A

(g)

2ℓk
−A

(g)

2ℓ(k−1)

)
, for some ℓ, k. By assumption, each

increment A(g)
i −A

(g)
i−1 has Schatten-1 norm at most α. Hence, by the triangle inequality,

∥∥∥A(g)

2ℓk
−A

(g)

2ℓ(k−1)

∥∥∥
⋆
=

∥∥∥∥∥∥
2ℓ(k−1)∑
j=2ℓk+1

A
(g)
j −A

(g)
j−1

∥∥∥∥∥∥
⋆

≤ 2ℓα

By the guarantee of the Hutch++ estimator (Theorem 3.2) and the inequality above, we have that for
all ℓ, k ∣∣∣tk,ℓ − Tr

(
A

(g)

2ℓk
−A

(g)

2ℓ(k−1)

)∣∣∣ ≤ ε′(ℓ)
∥∥∥A(g)

2ℓk
−A

(g)

2ℓ(k−1)

∥∥∥
⋆

≤ ε′(ℓ) · 2ℓα
= ε/(2 log2 s), (11)

with probability at least 1 − δ′. Again, by the guarantee of Hutch++, t0 approximates TrA
(g)
0 up

to an (ε/2)∥A(g)
0 ∥⋆ additive error. Therefore, conditioned on Equation (11), the total error of the
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estimate tgs+i+1 for all g, i is bounded by∣∣∣tgs+i+1 − Tr
(
A

(g)
i

)∣∣∣ ≤ (ε/2)
∥∥∥A(g)

0

∥∥∥
⋆
+ (log2 s) · ε/(2 log2 s)

≤ (ε/2)
∥∥∥A(g)

0

∥∥∥
⋆
+ ε/2

≤ ε (12)

where the first line follows since there are log2 s levels and the last line since ∥A(g)
0 ∥⋆ ≤ 1 by

assumption. To bound the failure rate, we note that for a fixed g and i, Equation (12) holds if Equa-
tion (11) holds for all tk,ℓ that are accessed in computing tgs+i+1 (via the SUMTREE procedure).
By construction, there are at most log2 s of these terms, where the bound follows from the number
of levels of the binary tree. A simple union bound yields the desired guarantee Equation (6).

It remains to prove the bound on the query complexity (Equation (7)). Each group is treated iden-
tically, so we consider any fixed group. Within each group (of size s) and at each level ℓ, we make
O(s/2ℓ) calls to Hutch++(A, ε′(ℓ), δ′). By Theorem 3.2, this leads to

O
((

s/2ℓ
)
·
(√

log(1/δ′)/ε′(ℓ) + log(1/δ′)
))

queries at level ℓ. Plugging in the values of ε′(ℓ), δ′, this equals

O

(
log(1/α)

√
log(1/(αδ))/ε+

1

2ℓα
log(1/(αδ))

)
.

Summing over ℓ ∈ {0, 1, · · · , log2 s− 1}, where s = O(1/α), we have that within each group, the
number of queries is bounded by

O

(
log2(1/α)

√
log(1/(αδ))/ε+

1

α
log(1/(αδ))

)
.

There is a total of max{1, O(mα)} groups. Also, we consider the case when α < ε, where the
algorithm only needs to provide a fresh estimate every ε/α time steps. Hence, the sequence length
is reduced effectively to mα/ε. Therefore, the query complexity of Algorithm 1 is at most

O
(
(mα+ 1) log2(1/α)

√
log(1/(αδ))/ε+mmin{1, α/ε} log(1/(αδ))

)
.

This finishes the proof.

C.2 General Schatten-p Norm Analysis

To generalize trace estimation to ε∥A∥p error for any p ∈ [1, 2], we need to revisit the vari-
ance reduction technique to achieve O(1/ε) query complexity for the nuclear norm. The tech-
nique rewrites A = Bk + ∆k, where Bk is a rank-k matrix with a determined trace, and
∥∆k∥F ≤ O(1)∥A − Ak∥F , where Ak is the best rank-k approximation to A for some k. Then,
we can approximate tr(A) by first explicitly calculating tr(Bk) and then approximating the trace of
∆k. The two step procedure requires a careful balancing for how queries are spent between the two
components to minimize the total estimation error in the Schatten p norm and results in a O(1/εp)
query complexity.

Theorem C.1 (general Schatten-p error analysis of Hutch++). The Hutch++ estimator of rank k
generalizes to a matrix A with any Schatten norm p bound for p ∈ [1, 2], and satisfies |tr(A) −
Hutch++(A)| ≤ ε∥A∥p with a total matrix-vector query complexity of

O

((√
log(1/δ)

ε

)p

+ log(1/δ)

)

Proof of Theorem C.1. Let Ak be the best rank-k approximation to A. Then the Hutch++ estimator
allows us to estimate the trace of A by writing A = Ak + ∆, where ∥∆∥F ≤ 2∥A − Ak∥F .
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Then, we can directly calculate Tr(Ak) and use Hutchinson’s method [14] with ℓ matrix-vector
multiplication queries, which gives a standard additive error guarantee of

C

√
log(1/δ)

ℓ
∥∆∥F ,

for some fixed constant C. Now, we use the fact that if σi are the singular values of A, then by the
definition of Schatten norms,

∥∆∥F ≤ 2∥A−Ak∥F ≤

√√√√ n∑
i=k

σ2
i ≤

√√√√σ2−p
k

n∑
i=k

σp
i .

Note that we have the following inequality: kσp
k ≤ ∥A∥pp. Therefore, rearranging gives σ2−p

k ≤
k1−2/p∥A∥2−p

p . Finally, we conclude that the total error is bounded by

∥tr(A)− Hutch++(A)∥ ≤ C

√
log(1/δ)

ℓ
∥∆∥F

≤ C

√
log(1/δ)

ℓ

√√√√σ2−p
k

n∑
i=k

σp
i

≤ C

√
log(1/δ)

ℓ

√
k1−2/p∥A∥2−p

p ∥A∥pp

≤ C

√
log(1/δ)

ℓk2/p−1
∥A∥p.

Since we want to set k = ℓ to minimize the query complexity, it follows that to reduce to error to ε,
we need a number of queries equal to:

k = ℓ =

(√
log(1/δ)

ε

)p

.

Finally, by the same analysis of [18], using O(k+log(1/δ)) matrix-vector products suffices to obtain
a constant-factor rank-k approximation of A, and further, we want l ≥ log(1/δ). This concludes
the proof.

With this generalized analysis of Hutch++, one can easily extend Theorem 3.1 and obtain:
Theorem C.2 (general Schatten-p norm analysis of Algorithm 1). Let A1,A2, · · · ,Am be n × n
be matrices such that (1) ∥Ai∥p ≤ 1 for all i, and (2) ∥Ai+1 −Ai∥p ≤ α for all i ≤ m − 1 and
some p ∈ [1, 2]. Given matrix-vector multiplication access to the matrices, a failure rate δ > 0, and
an error bound ε > 0, there is an algorithm that outputs a sequence of estimates t1, · · · , tm such
that for each i ∈ [m],

|ti − TrAi| ≤ ε, with probability at least 1− δ. (13)

The algorithm uses a total of

O

(
(mα+ 1) log1+p(1/α)

(√
log(1/(αδ))

ε

)p

+m log(1/(αδ))

)
. (14)

matrix-vector multiplication queries to A1,A2, · · · ,Am.

The proof is via counting the number of queries differently using the general Hutch++ analysis
Theorem C.1.

Proof of Theorem C.2. Our error analysis is almost identical to the nuclear norm case. We sketch it
here for completeness. Consider any fixed group g. By assumption every increment A(g)

i − A
(g)
i−1
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has Schatten-p norm at most α. Hence, by the triangle inequality,∥∥∥A(g)

2ℓk
−A

(g)

2ℓ(k−1)

∥∥∥
p
=

∥∥∥∥∥∥
2ℓ(k−1)∑
j=2ℓk+1

A
(g)
j −A

(g)
j−1

∥∥∥∥∥∥
p

≤ 2ℓα

By the general Schatten-p norm analysis of the Hutch++ estimator (Theorem C.1) and the inequality
above, we get that for all ℓ, k:∣∣∣tk,ℓ − Tr

(
A

(g)

2ℓk
−A

(g)

2ℓ(k−1)

)∣∣∣ ≤ ε′(ℓ)
∥∥∥A(g)

2ℓk
−A

(g)

2ℓ(k−1)

∥∥∥
p

≤ ε′(ℓ) · 2ℓα
= ε/(2 log2 s), (15)

with probability at least 1 − δ′. Again, by the guarantees of Hutch++, t0 approximates TrA(g)
0 up

to an (ε/2)∥A(g)
0 ∥p additive error. Therefore, conditioned on Equation (15), the total error of the

estimate tgs+i+1 for all g, i is bounded by∣∣∣tgs+i+1 − Tr
(
A

(g)
i

)∣∣∣ ≤ (ε/2)
∥∥∥A(g)

0

∥∥∥
p
+ (log2 s) · ε/(2 log2 s)

≤ (ε/2)
∥∥∥A(g)

0

∥∥∥
p
+ ε/2

≤ ε. (16)

A union bound thus proves the accuracy guarantee (Equation 13).

We now count the query complexity differently using Theorem C.1. As before, within each group
(of size s) and in each level ℓ, we make O(s/2ℓ) calls to Hutch++(A, ε′(ℓ), δ′). This leads to a total
number of

O

((
s/2ℓ

)
·

((√
log(1/δ′)

ε′(ℓ)

)p

+ log(1/δ′)

))
(17)

matrix-vector multiplication queries by Theorem C.1. Substituting ε′(ℓ) = ε/2ℓ+1α log2 s and
δ′ = αδ, we have

O

(
logp(1/α)

(√
log(1/(αδ))

ε

)p

++
1

2ℓα
log(1/(αδ))

)
.

Note that we have used the fact that α2l+1 ≤ αs ≤ 1 to simplify the expression. Summing over
ℓ ∈ {0, 1, · · · , log2 s − 1}, where s = O(1/α), we obtain that within each group, the number of
queries is bounded by

O

(
log1+p(1/α)

(√
log(1/(αδ))

ε

)p

+
1

α
log(1/(αδ))

)
.

Since there are max{1, O(mα)} groups, the total query complexity is at most

O

(
(mα+ 1) log1+p(1/α)

(√
log(1/(αδ))

ε

)p

+m log(1/(αδ))

)
.

This completes the proof.

C.3 Relaxing Assumptions

Recall that for dynamic trace estimation, we generally require all matrices Ai to have unit-bounded
Schatten-p norm. While it is often the case that the initial matrix A1 has controlled norm, in practice
it is unrealistic to assume a general bound on the matrix norm upon dynamic updates. Of course, note
that due to the bounded difference assumption, we can always use a linear bound ∥Ai∥p ≤ 1 + αi.
However, using this bound naïvely with the analysis of other algorithms, such as Hutchinson’s or
its variance-reduced version of [6], introduces additional poly(m,α) terms in the query complexity.
Instead, we show that our tree-based procedure without any initial partitioning still attains an optimal
dependence on m and α for the nuclear norm.
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Theorem C.3 (general Schatten-p norm analysis of non-partitioned Algorithm 1). Let
A1,A2, · · · ,Am be n × n matrices such that (1) ∥A1∥∗ ≤ 1 and (2) ∥Ai+1 − Ai∥∗ ≤ α for
all i ≤ m − 1. Given matrix-vector multiplication access to the matrices, a failure rate δ > 0 and
error bound ε, there is an algorithm that outputs a sequence of estimates t1, · · · , tm such that for
each i ∈ [m],

|ti − TrAi| ≤ ε, with probability at least 1− δ. (18)

The algorithm uses a total of

O

(
mα log(m)2

(√
log(mδ)

ε

)
+m log(mδ)

)
. (19)

matrix-vector multiplication queries to A1,A2, · · · ,Am.

The proof follows by grouping all queries into a group of size m, implying that there is a log(m)
overhead by using the tree technique. Therefore, the main alteration to Algorithm 1 is to 1) avoid
partitioning into 1/α subgroups and 2) calling Hutch++ at each level with updated parameters:
ε′(ℓ) = ε/(2ℓ+1α log2 m) and δ′ = δ/m.

Proof of Theorem C.3. Compared with Theorem 3.1, the error and success rate analysis remains
unchanged. We only need to count the query complexity differently using Theorem C.1. Note that
in this case, there is only one group of size s = m. As before, at each level ℓ, we make O(s/2ℓ)
calls to Hutch++(A, ε′(ℓ), δ′). This leads to a total number of

O

((
s/2ℓ

)
·

((√
log(1/δ′)

ε′(ℓ)

)p

+ log(1/δ′)

))
(20)

matrix-vector multiplication queries by Theorem C.1. Substituting ε′(ℓ) = ε/2ℓ+1α log2 m and
δ′ = δ/m, we have

O

(
m log(m)α

(√
log(mδ)

ε

)
+

m

2ℓ
log(mδ)

)
.

Summing over ℓ ∈ {0, 1, · · · , log2 m}, we obtain that for this large group, the number of queries is
bounded by

O

(
m log2(m)

(√
log(mδ)

ε

)
+m log(mδ)

)
.

This completes the proof.

D Proof Details of Section 4

D.1 Proof of Theorem 4.1

We prove the two lower bounds separately. Together they imply Theorem 4.1.

D.1.1 Lower Bound I

Let A ∈ Rn×n be a general square matrix. Recall that the goal is to estimate its trace TrA
up to an additive ε∥A∥p. We work under the bit complexity model, where the query vectors
q1, q2, · · · qr ∈ Rn have entries specified by k bits. To lower bound r, the number of queries, we
reduce the communication problem of the APPROXIMATE-ORTHOGONALITY to trace estimation.

The APPROXIMATE-ORTHOGONALITY problem is a two-party communication problem defined on
inputs in {−1, 1}m × {−1, 1}m by the Boolean function

ORTb,m(x, y) =

{
1, if |⟨x, y⟩| ≤ b

√
m

−1, otherwise.
(21)
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The problem is known to have Ω(m) communication complexity, under the uniform distribution.
Let

tail(x) =
1√
2π

∫ ∞

x

e−x2/2dx. (22)

be the tail probability of the standard normal.
Lemma D.1 (Communication complexity of ORT, Theorem 4.2 of [5]). Let b > 1/5 be a constant
and θ = tail(2.01max{66, b}). Then we have CCθ(ORTb,m) = Ω(m). The lower bound holds
even when the inputs are drawn uniformly from {−1, 1}m × {−1, 1}m.

We now prove our adaptive trace estimation lower bound for general matrices, by connecting it with
the APPROXIMATE-ORTHOGONALITY problem. It implies that the classic Hutchinson’s estimator
is optimal for constant success probability.
Theorem D.2 (Adaptive query lower bound, I). Any algorithm that accesses a square matrix A

via matrix-vector multiplication queries requires at least Ω
(

1
εp(k+log(1/ε))

)
queries to output an

estimate t such that with probability at least 1 − δ/2, |t − TrA| ≤ ε∥A∥p, for p ∈ [1, 2] and
δ = tail(2.01 · 66) = Θ(1), where the query vectors may be adaptively chosen and their entries are
specified by k bits.

Proof of Theorem D.2. Let A be a possibly adaptive algorithm for trace estimation using matrix-
vector multiplication queries. Suppose it takes at most r(n) queries to solve the problem, on any n-
by-n square matrix, with success rate at least 1−δ = Ω(1). Consider an instance of APPROXIMATE-
ORTHOGONALITY with b = 2, where (x, y) is drawn uniformly from {−1, 1}m × {−1, 1}m.

The proof proceeds by reducing the problem of computing ORTb,m(x, y) to trace estimation via A.
Let n = δp/2

2p/2εp
= Θ(1/εp) and m = n2. The reduction and its resulting communication protocol

are given as follows. First, given x ∈ {−1, 1}m, Alice creates a square matrix A, where the rows
of A correspond to the entries of x in order. Similarly, given y ∈ {−1, 1}m, Bob creates a square
matrix B, where the columns of B correspond to the entries of y in order. Then the protocol repeats
the following steps for r(n) rounds.

(i) In the i-th round from i = 1, Alice creates the first query qi, according to A, given all
previous query values

{
q⊤j AB

}
j<i

. She computes q⊤i A and sends it to Bob.

(ii) Bob computes q⊤i AB and sends it back to Alice.

At the end of the protocol, with probability at least 1− δ/2, Alice and Bob obtain an estimate t such
that

|t− Tr(AB)| ≤ ε∥AB∥p, (23)
by the guarantee of algorithm A. Finally, they output z = 1 if t ≤ 3

√
m and z = −1 otherwise.

We argue that the above protocol computes ORTb,m with error at most δ = tail(2.01 ·66). First, note
that by construction of steps (i) and (ii), we have Tr(AB) = ⟨x, y⟩. Therefore, by Equation (23),

Pr
A
(|t− ⟨x, y⟩| ≤ ε∥AB∥p) = Pr

A
(|t− Tr(AB)| ≤ ε∥AB∥p) ≥ 1− δ/2. (24)

It now suffices to show that the error term ε∥AB∥p is small. Note that since x, y are drawn uni-
formly at random, it follows that E(AB)2i,j = n for all i, j ∈ [n]. By linearity of expectation,
E∥AB∥2F = n3. By Markov’s inequality, Pr(∥AB∥2F > tn3) ≤ 1/t for any t > 0, and therefore,

Pr(ε∥AB∥F > ε
√
tn3/2) ≤ 1/t.

Since ∥X∥p ≤ n1/p−1/q∥X∥q for any n× n matrix X , it follows that

Pr(ε∥AB∥p > ε
√
tn1/p−1/2 · n3/2) = Pr(ε∥AB∥p > ε

√
tn1/p+1) ≤ 1/t.

Plugging in the value of ε = 1
n1/p

√
δ
2 and setting t = 2/δ, we get

Pr
x,y

(ε∥AB∥p > n) ≤ 1/t = δ/2 (25)
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Combining Equation (24) and Equation (25) and using a union bound,

Pr(|t− ⟨x, y⟩| ≤
√
m) ≥ 1− δ. (26)

Therefore, whenever ⟨x, y⟩ ≤ 2
√
m, we have t ≤ 3

√
m, and so the protocol outputs z = 1 correctly.

This proves that the protocol solves ORTb,m with error at most δ (for b = 2).

To complete the proof, we account for the total communication cost of the protocol. For that, we
simply note that each message from Alice or Bob is a vector of n dimensions. It suffices to specify
each entry with k + log(n/ε) bits. Hence, the protocol solves ORTb,m with communication cost
r(n) ·O(n(k + log(1/ε))). By the communication lower bound Theorem D.1, it is required that

r(n) ·O(n(k + log(1/ε))) ≥ m = n2.

Rearranging and using n = Θ(1/εp), we have r(n) ≥ Ω
(

1
εp(k+log(1/ε))

)
, as desired.

D.1.2 Lower Bound II

We now give a second lower bound that yields the correct dependence on the failure probability δ.
The bound holds for any Schatten-p norm error guarantee, so we state it generally. In particular, we
show:
Theorem D.3 (Adaptive query lower bound, II). Any algorithm that accesses a square matrix A

via matrix-vector multiplication queries requires at least Ω
(

log(1/δ)
k+log log(1/δ)

)
queries to output an

estimate t such that with probability at least 1 − δ, |t − TrA| ≤ 0.1∥A∥p, for any p and any
δ ∈ (0, 1), where the query vectors may be adaptively chosen and their entries are specified by k
bits.

Our proof leverages another communication problem, GAP-EQUALITY. In this problem, Alice holds
x ∈ {0, 1}n and Bob holds y ∈ {0, 1}n, under the promise that either x = y or ∥x − y∥22 = n/2.
They wish to compute

EQn(x, y) =

{
1, if x = y

−1, otherwise.
(27)

The problem requires linear communication complexity for any deterministic protocol [4].
Lemma D.4 (Communication complexity of GAP-EQUALITY [4]). Any deterministic protocol for
computing EQn requires Ω(n) bits of communication.

We are now ready to prove Theorem D.3.

Proof of Theorem D.3. We give a reduction from solving GAP-EQUALITY as a two-party com-
munication problem to trace estimation via adaptive matrix-vector multiplication queries. Let
n = log(1/δ) and x, y ∈ {0, 1}n be an instance of GAP-EQUALITY. Let A = (x − y)(x − y)⊤,
which has rank 1. Under the promise, either (i) A = 0, the all 0 matrix, or (ii) has Schatten-p norm
n/2 for any p. In case (ii), we have TrA = n/2. Thus, one can compute EQn(x, y), by estimating
TrA up to an additive error of 0.1∥A∥p, for any p.

We now argue any trace estimation algorithm A with failure rate δ and error ε yields a deterministic
protocol for solving EQn. First, by a union bound over all possible x, y under the promise, we have
that for all A = (x− y)(x− y)⊤, the output t of A given A always satisfies

|t− TrA| ≤ ε∥A∥p. (28)

Suppose A uses r = o(log(1/δ)) adaptive queries q1, q2, · · · , qr. In case (i) when A = 0, all query
answers it receives are the zero vector. The algorithm must always output 0, to satisfy the trace
estimation guarantee (Equation (28)). Thus, in order to always be correct in case (ii), it must be that
one of its query answers is not 0. But as soon as its first query answer is not 0, it knows that it is in
case (ii). It follows that algorithm A just keeps receiving the all-0 vector until it either decides to
stop querying or receives a non-zero output vector and immediately decides to stop querying. Thus,
for these inputs, we can assume the query algorithm is in fact non-adaptive, since we can consider
what its query sequence would be in advance if it were to repeatedly receive the 0 vector as an
answer. Hence, we can think of Q = (q1, q2, · · · , qr) as an r × n matrix with entries specified with
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k bits, and we have the property that Q(x − y) = 0 if and only if x = y. This gives a protocol for
GAP-EQUALITY: Alice simply sends Qx to Bob, who checks if Qx = Qy. The communication is
r(k+ log n) = r(k+ log log(1/δ)), which must be Ω(log(1/δ)) by Theorem D.4, and so we get an
r = Ω(log(1/δ)/(k + log log(1/δ))) adaptive lower bound.

D.2 Proof of Theorem 4.2

We start with a standard definition.

Definition D.1 (Gaussian and Wigner Random Matrices). We let G ∼ N (n) denote an n × n
random Gaussian matrix with i.i.d. N (0, 1) entries. We let W ∼ W(n) = (G+GT )/2 denote an
n× n Wigner matrix, where G ∼ N (n).

Fact D.5 (Upper and Lower Gaussian Tail Bounds). Letting Z ∼ N (0, 1) be a univariate Gaussian
random variable, for any t > 0, Pr[|Z| ≥ t] = Θ(t−1 exp(− t2

2 )).

Suppose that we draw a matrix G ∈ Rn×n from the Gaussian or related Wigner distribution and try
to learn the entries of the matrix via matrix-vector queries. Because the Gaussian is rotationally and
subspace invariant, after a few queries, the conditional distribution of the remaining matrix is also
Gaussian (or Wigner)-distributed, no matter how the queries are chosen. This property allows us
to exactly characterize the remaining uncertainty of the trace estimation procedure, especially with
respect to the failure probability δ, even after seeing a few query results.

Lemma D.6. (Conditional Distribution [Lemma 3.4 of [24]]) Let G ∼ N (n) be as in Defini-
tion D.1 and suppose our matrix is W = (G +G⊤)/2. Suppose we have any sequence of vector
queries, v1, ...,vT , along with responses wi = Wvi. Then, conditioned on our observations, there
exists a rotation matrix V , independent of wi, such that

V WV ⊤ =

[
Y1 Y ⊤

2

Y2 W̃

]
where Y1, Y2 are deterministic and W̃ = (G̃+ G̃⊤)/2, where G̃ ∼ N (n− T ).

Proof of Theorem 4.2. By standard minimax arguments, it suffices to construct a hard distribution
for any deterministic algorithm. Consider W ∼ W(n) for some n that we will determine later.
From concentration of the singular values of large Gaussian matrices [23], with probability at least
1−δ/10, we have σmax(G) ≤ Cn1/2 for some absolute constant C when n ≥ log(1/δ). Therefore,
we conclude that ∥G∥p ≤ Cn1/2+1/p for some absolute constant C. Therefore, by the triangle
inequality, ∥W ∥p can be bounded by the same value.

Let m be the number of matrix-vector queries, and assume that m ≤ n/2. By Theorem D.6, we
see that conditioned on the queries, our matrix W can be decomposed into a determined part and
a Gaussian submatrix W̃ ∼ W(n −m). Therefore, our conditional distribution of the trace of W
is, up to a deterministic shift, the same as the distribution of W̃ , which is simply a Gaussian with
variance at least n−m ≥ n/2. We can check this since tr(W̃ ) = 1

2 tr(G̃) + 1
2 tr(G̃

⊤) = tr(G̃) =∑
i G̃ii, where Gii ∼ N(0, 1) are independent for 1 ≤ i ≤ n−m.

Since our algorithm determines a Gaussian of variance at least n−m ≥ n/2 up to an additive error
of ε∥A∥p with probability at least 1− δ, we conclude that if ε∥A∥p ≤

√
log(1/δ)n, then we have

a contradiction from the anti-concentration of Gaussians (see Theorem D.5). Therefore, whenever
ε∥A∥p ≤

√
log(1/δ)n holds, we can deduce a lower bound on the number of matrix-vector queries:

m ≥ n/2.

Therefore, solving ε∥A∥p ≤
√
log(1/δ)n for the largest possible value of n gives:

n = Ω

((√
log(1/δ)

ε

)p)
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Note that this holds for any δ, ε > 0 such that n ≥ log(1/δ). Therefore, we need to enforce that
ε < (log(1/δ))1/2−1/p.

E Proof Details for Section 5

E.1 Proof of Theorem D.6

Proof of Theorem D.6. Let α = 1/(m − 1). Given a square matrix A with ∥A∥p = 1, construct a
sequence of matrices

A1 = 0, A2 = α ·A, . . . A1/α = (1− α)A, Am = A. (29)

Suppose that we have a dynamic trace estimation algorithm A running on the sequence (Ai). By
construction, each Ai is a scaling of A. Suppose that in the end A outputs an estimate tm such that
|tm − TrA| ≤ ε∥A∥p with probability at least 1 − δ, using matrix-vector multiplies with A. This
solves the static trace estimation problem with a Schatten-p norm error guarantee. By assumption,
it must have used Ω(r) matrix-vector multiplication queries with respect to A. Therefore, if A uses
o(rαm) queries, it would immediately violate our assumption, which is a contradiction.

E.2 Proof of Theorem 5.4

Proof. Let x, y ∈ {0, 1}n be an instance of GAP-EQUALITY, where n = log(1/δ). Recall that
GAP-EQUALITY is a promise problem. Under its promise, either x = y or ∥x− y∥22 = n/2, and the
goal is to distinguish the two cases. For any given x, y, let Bx,y = 2

n (x − y)(x − y)⊤. Then since
Bx,y is rank-1, ∥Bx,y∥p = 0 if x = y or ∥Bx,y∥p = 1 otherwise.

To obtain the claimed lower bound, we consider two parameter regimes. First, if α > ε, we
construct the following hard instance, which is a sequence of m matrices satisfying the Schatten
p norm assumption for dynamic trace estimation. Let A0 ∈ RN×N be an all 0s matrix, with
N = min{m, 1/α} log(1/δ). Throughout the updates, Ai will remain a block diagonal matrix,
which consists of m block matrices along the diagonal and each of dimension log(1/δ)× log(1/δ).
In particular, for all steps i = {1, 2, · · · ,min{m, 1/α} − 1}, we set

Ai =



B1 0 · · · · · · · · · · · · 0
0 B2 0 · · · · · · · · · 0
... 0

. . . · · · · · · · · ·
...

...
... 0 Bi 0 · · ·

...
...

...
... 0 0 · · ·

...
...

...
...

...
...

. . .
...

0 0 · · · · · · · · · · · · 0


(30)

where Bi = αBxi,yi
with xi, yi ∈ {0, 1}n an independent instance of GAP-EQUALITY. In other

words, at each step i, we update Ai−1 by replacing the i-th diagonal block (currently being all 0s)
with Bi. Each update changes the trace by 0 or α, by the construction of Bx,y . If m ≤ 1/α,
this completes the construction, and note that the matrices {Ai} all have norm bounded by 1. If
m > 1/α, we continue the construction by deleting one distinct diagonal block at each step until the
matrix is the zero matrix. Then we repeat the same rounds of insertion (according to Equation (30))
and deletion until reaching time step m. Observe again that the construction satisfies the Schatten
norm assumption for dynamic trace estimation.

We now argue the query complexity as follows:

• In the case of m ≤ 1/α, each update is either (i) trivially 0 or (ii) increases the trace
by α > ε. Hence, any dynamic algorithm for outputting |ti − TrAi| ≤ ε < α, with
probability at least 1 − δ, would distinguish between case (i) and (ii) with probability at
least 1− δ. However, this requires Ω

(
log(1/δ)

k+log log(1/δ)

)
matrix-vector multiplication queries

by Theorem D.3.
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• In the case of m ≤ 1/α, note that (almost) half of the update steps are insertions. By the
same argument, any dynamic algorithm that gives a good estimate in an insertion step i
can solve the hard instance of estimating TrBi. Hence, we get the same query complexity
lower bound.

To summarize, if α > ε, we get a lower bound of Ω
(
m · log(1/δ)

k+log log(1/δ)

)
queries.

Now we move on to the case of α ≤ ε. We use the same construction as described by Equation 30,
where each Ai consists of multiple updates over s = ⌈ε/α⌉ steps by setting Bi =

∑s
j=1(1/s) ·

Bxi,yi
with Bxi,yi

an independent instance of GAP-EQUALITY. We repeat the argument earlier and
apply the hardness of Theorem D.3 on the sequence of Ai. This blows up the sequence length by a
factor of s, and hence leads to a lower bound of Ω

(
m · α

ε
log(1/δ)

k+log log(1/δ)

)
.

F Lower Bound for Non-Adaptive Trace Estimation

In the case of non-adaptive queries, we give a stronger lower bound than Theorem 4.1 in the bit
complexity model. The bound matches Hutchinson’s guarantee for general square matrices up to a
bit complexity term.

Theorem F.1 (Non-adaptive query lower bound). Any algorithm that accesses a square matrix A

via non-adaptive matrix-vector multiplication queries requires at least Ω
(

logp/2(1/δ)
εp(k+log(1/ε))

)
queries

to output an estimate t such that with probability at least 1− δ, |t−TrA| ≤ ε∥A∥p, for any p and
ε, δ ∈ (0, 1), where each entry of the query vectors is specified by k bits.

The proof is via a reduction from the Augmented Indexing communication problem with low error
[15]. For a sufficiently large universe U and an element ⊥/∈ U , the problem INDn,U is defined as
follows.

• Alice gets x = (x1, x2, . . . , xn) ∈ Un.

• Bob gets y = (y1, y2, . . . , yn) ∈ (U ∪ {⊥})n such that for some unique i

(i) yi ∈ U ,
(ii) yk = xk for all k < i,

(iii) yi+1 = yi+2 = · · · = yN =⊥.

Finally, Bob wishes to output whether xi = yi. The one-way communication complexity of INDn,U
is known:

Lemma F.2 (Communication complexity of Augmented Indexing [15]). Any one-way communi-
cation protocol for computing INDn,U with error δ ≤ 1

4|U| requires at least n log |U|/2 bits of
communication.

We now describe how to solve INDn,U in one round of communication via a non-adaptive trace
estimation protocol.

Proof of Theorem F.1. Let κ = 1/4δp/2, n = (
√

log(3/δ)/ε)p, m = c/(4δp/2εp) for c > 0 a small
enough constant, and U = [κ]. In the following, we view U equivalently as the collection of one-hot
encodings, i.e., 1-sparse vectors in {0, 1}κ. Let x, y be an instance of INDn,U and i be the special
index under the promise. Given Alice’s input x ∈ {0, 1}1/ε2×κ and ε, δ ∈ (0, 1/4), we construct an
n× n real square matrix A, as follows.

• Let B ∈ {0, 1}m×m have all rows but the i-th row being the all-zeros vector;

• The i-th row of B is the vector v = x (with precisely c/εp non-zero entries).

• Let A = 1
nGBG⊤, where G ∈ Rn×m is a random matrix with i.i.d. standard Gaussian

entries.

22



To solve INDn,U , it suffices for Bob to recover vi with probability at least 1 − δ. By construction,
we immediately have that TrB = vi and ∥B∥F =

√
c/εp/2. Moreover, by the guarantee of

Hutchinson’s estimator (see, e.g., Lemma 2 of [18]),

|TrA− TrB| ≤ εp/2(log(1/δ))1/2−p/2∥B∥F =
√
c(log(1/δ))1/2−p/2 ≤

√
c

with probability at least 1 − δ/3. By the Johnson-Lindenstrauss lemma, ∥A∥F ≤
√
c with

probability 1 − δ/3. By construction, B has rank one and so A has rank one. It follows that
∥A∥p = ∥A∥F ≤

√
c for any p.

Now suppose that there is a non-adaptive trace estimation protocol that has ε approximation error and
δ/3 failure rate, using r queries Q = (q1, q2, · · · , qr). To finish the reduction, Alice sends matrix
AQ to Bob. Bob can obtain an estimate t such that with probability at least 1− δ/3, |t− TrA| ≤
ε∥A∥p. Now taking a union bound and applying the triangle inequality, we have that with probability
1− δ,

|t− vi| = |t− TrB| ≤ |t− TrA|+ |TrA− TrB|
≤

√
c+

√
cε

< 1/2,

for ε < 1/4 and a sufficiently small c (say, c < 0.01). Hence, Bob can recover vi and compute
INDn,U .

On the other hand, by Theorem F.2, there is a communication lower bound of Ω((log(1/δ)/ε2)
bits for the problem. Each entry of vQ is specified by O(log(1/ε) + k) bits, so the total com-
munication of sending AQ is O(log(1/ε) + k) · r. This leads to a query lower bound of
r ≥ Ω((log(1/δ))/(ε2(log(1/ε) + k))), as claimed.

G Experimental Details

G.1 Experimental Results on Synthetic Data

We follow a similar experimental set-up as in [6] and consider small and large perturbations. We
also report the average absolute error over all time steps and all trials. In the small perturbation
regime, our algorithm achieves errors (average error: 0.0104) that are negligible in comparison
with DeltaShift (average error: 1.9804) and other procedures. In the high perturbation regime,
our algorithm (average error: 1.6607) outperforms Hutchinson’s and Diffsum and is comparable
with Deltashift (average error: 1.5868). We notice, across a variety of regimes, that Hutchinson’s
estimator and Diffsum tend to accumulate estimation error over the dynamic updates, whereas our
algorithm and DeltaShift remain stable.

G.2 Experimental Setup

Allocation of query budget. We allocate the same query budget in each time step of DeltaShift
and in Hutchinson’s estimator. For DiffSum, we allocate 1/5 of the budget for estimating TrA1

and an equal number of queries among the remaining steps. To optimize performance, the number
of groups in our algorithm is tuned.

Experiments on synthetic data. On both small and large perturbation experiments, we choose the
dimension to be n = 1000. The first matrix A1 in the sequence is a symmetric matrix with random
(unit-norm) eigenvectors and eigenvalues drawn uniformly from [−1, 1]. In the small perturbation
regime, a random rank-1 matrix ∆j = 5e−5rgg⊤ is added in each time step, where r is a random
sign and g is a standard Gaussian in n dimensions. In the large perturbation regime, each update is
a random rank-20 positive semidefinite matrix.

Neural network weight matrices. The network consists of two hidden layers of the same size,
with standard ReLU activations. The mini-batch size is set to 60 and learning rate is set to 0.01.

We optimized the performance of our trace estimation algorithm by choosing its number of groups
to be 20.
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(a) Low perturbation
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Figure 3: Synthetic data, Tree refers to our algorithm (Algorithm 1). Query budget is 8, 000. We
measure the error at step i simply by absolute error |ti − TrAi|
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