
A Additional Experiments

In this section, we present additional experiments which shed more light on the performance of
XGREEDY, XPGREEDY, and ONESIDEDL+

1 relative to one another and to the optimal solution, for a
broader range of objectives. The family of distributions from which we sample instances is the same
as the one described in Section 4.1.

A.1 Comparison to Optimal

First, we recreate Figure 1 and Figure 2, now including the objective value of the optimal solution S⇤

as a benchmark for the three algorithms considered above. Since determining U(S⇤) by brute force
is computationally costly, this comparison is undertaken for smaller instances (n = 20). Following
Section 4.1, we consider � = 3.

Here Figure 3 shows the performance of XGREEDY, XPGREEDY, and ONESIDEDL+
1 relative to

the objective U(S⇤) of the optimal solution, when values and probabilities are positively correlated,
uncorrelated, and negatively correlated, for a range of target sizes M . Figure 4 shows the performance
of XGREEDY, XPGREEDY, and ONESIDEDL+

1 relative to U(S⇤) as the penalty regularizer increases,
for negatively correlated xi and pi and again for a range of target sizes M .

It is noteworthy that in both Figure 3 and Figure 4, the best algorithms in each setting nearly attain the
optimal objective value. It is unclear the extent to which we should expect that this continues to hold
for larger instances, where solving the optimal solution by brute force is computationally infeasible.

A.2 Other Objectives

In Section 4.2 and Appendix A.1, we examine the performance of different algorithms for the L+
1

loss, since this is the loss function for which we derive worst-case multiplicative guarantees and for
which the algorithm ONESIDEDL+

1 was designed.

We now investigate how these algorithms perform with respect to other loss functions, despite the
absence of worst-case theoretical guarantees for the greedy heuristics. Figure 5 compares the greedy
heuristics between the L+

1 and L+
2 loss objectives across different correlation regimes. Figure 6 does

the same for the two-sided L1 and L2 loss objectives.

In Figure 5 the performance of both greedy heuristics is very similar under the two one-sided losses.
For the two-sided losses L1 and L2, Figure 6 suggests that XPGREEDY dramatically outperforms
XGREEDY across the choice of the two-sided losses. We observe that the objective values are no
longer uniformly positive, and are no longer monotonically increasing in the target size. This is
because the problem under the two-sided losses is fundamentally more difficult: under one-sided
losses, only selecting over the target is penalized; it is straightforward to observe that selecting M
items always yields a penalty of 0 and hence a positive objective value. Under two-sided losses,
selecting under the target and selecting over the target is both penalized; there is also non-zero variance

1 2 3 4 5
target

1.0

1.5

2.0

2.5

3.0

3.5

4.0

O
b
je

ct
iv

e

pos

LowValueL1+

xGreedy

xpGreedy

OPT

1 2 3 4 5
target

0.5

1.0

1.5

2.0

2.5

3.0

O
b
je

ct
iv

e

no

LowValueL1+

xGreedy

xpGreedy

OPT

1 2 3 4 5
target

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

O
b
je

ct
iv

e

neg

LowValueL1+

xGreedy

xpGreedy

OPT

Figure 3: Sampling from the beta distribution with positive, no, and negative correlation. Here
n = 20 and � = 3, and OPT denotes U(S⇤).

13

1 2 3 4 5
target

0.5

1.0

1.5

2.0

O
b
je

ct
iv

e

lambda=1.5

LowValueL1+

xGreedy

xpGreedy

OPT

1 2 3 4 5
target

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

O
b
je

ct
iv

e

lambda=5

LowValueL1+

xGreedy

xpGreedy

OPT

1 2 3 4 5
target

0.00

0.25

0.50

0.75

1.00

1.25

1.50

O
b
je

ct
iv

e

lambda=30

LowValueL1+

xGreedy

xpGreedy

OPT

Figure 4: Performance for increasing penalty regularizer �. Here n = 20 and sampling is via the
negatively correlating beta distribution.

1 2 3 4 5
Target

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

O
b
je

ct
iv

e

oneside-l1 (pos)

xGreedy

xpGreedy

1 2 3 4 5
Target

0.5

1.0

1.5

2.0

2.5

3.0

3.5

O
b
je

ct
iv

e

oneside-l1 (no)

xGreedy

xpGreedy

1 2 3 4 5
Target

0.5

1.0

1.5

2.0

O
b
je

ct
iv

e

oneside-l1 (neg)

xGreedy

xpGreedy

1 2 3 4 5
Target

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

O
b
je

ct
iv

e

oneside-l2 (pos)

xGreedy

xpGreedy

1 2 3 4 5
Target

0.5

1.0

1.5

2.0

2.5

3.0

3.5

O
b
je

ct
iv

e

oneside-l2 (no)

xGreedy

xpGreedy

1 2 3 4 5
Target

0.5

1.0

1.5

2.0

O
b
je

ct
iv

e

oneside-l2 (neg)

xGreedy

xpGreedy

Figure 5: Evaluation of greedy heuristics for L+
1 versus L+

2 one-sided loss. Here n = 50 and � = 3.

towards achieving the exact target M , and hence the objective is negative when the regularizer � is
large.

Comparing the two-sided losses L1 and L2 in Figure 6, the problem under the L2 loss is more difficult
due to its higher penalty (the quadratic function always attains a higher value than the linear function
on integers). The objective starts decreasing as a function of the target M : if we are aiming at a larger
target M , more items are selected, leading to an inevitable increase in the variance and hence a lower
objective.

We provide an informal explanation for the superior performance of XPGREEDY over XGREEDY
for the two-sided losses, using the two-sided L2 loss as an example. Under this loss, a candidate i
contributes xipi to the reward term of the objective, while contributing pi(1 � pi) to the variance
of the realized size. When faced with two candidates of equal value xi, we should therefore at the

14

1 2 3 4 5
Target

1.0

1.5

2.0

2.5

3.0

3.5

4.0

O
b
je

ct
iv

e

twoside-l1 (pos)

xGreedy

xpGreedy

1 2 3 4 5
Target

0.0

0.5

1.0

1.5

2.0

O
b
je

ct
iv

e

twoside-l1 (no)

xGreedy

xpGreedy

1 2 3 4 5
Target

�1.0

�0.8

�0.6

�0.4

O
b
je

ct
iv

e

twoside-l1 (neg)

xGreedy

xpGreedy

1 2 3 4 5
Target

1.0

1.5

2.0

2.5

3.0

3.5

4.0

O
b
je

ct
iv

e

twoside-l2 (pos)

xGreedy

xpGreedy

1 2 3 4 5
Target

�1.0

�0.5

0.0

0.5

1.0

1.5
O

b
je

ct
iv

e

twoside-l2 (no)

xGreedy

xpGreedy

1 2 3 4 5
Target

�6

�5

�4

�3

�2

�1

O
b
je

ct
iv

e

twoside-l2 (neg)

xGreedy

xpGreedy

Figure 6: Evaluation of greedy heuristics for L1 versus L2 two-sided loss. Here n = 50 and � = 3.

margin prefer the candidate with the higher probability, since this candidate contributes less to the
variance per contribution to the reward. Note that for sufficiently large �, two-sided losses encourage
algorithms to choose solutions whose expected size is very close M , meaning that the variance and
the penalty term are nearly equal. Here XPGREEDY prefers this higher-probability candidate, while
XGREEDY is indifferent, explaining the superior performance of XPGREEDY.

B Proofs

In this section, we present the proofs of all theoretical results.

B.1 Preliminaries

For any set or event S, we use S to denote its complement. We use the notation f(x) . g(x) to
denote that there exists some universal positive constant c > 0, such that f(x) c · g(x), and use the
notation f(x) & g(x) when g(x) . f(x).

For any vector x 2 Rn and set S ✓ [n], we use the shorthand xS := {xi}i2S . Let µS :=
E[
P

i2S Zi] =
P

i2S pi. We also denote by µ⇤ := µS⇤ the expected size of the optimal subset.

The following lemma shows the submodularity of the objective U in the selection S.

Lemma 1. If ⇢(·, M) is convex then U(S) is submodular in S.

The proof of this lemma is provided in Appendix B.2. The submodularity is used in the proof of
Theorem 4 (in Appendix B.8).

For the L+
1 loss, the following lemma allows us to reason about the cardinality of S⇤ in the case when

the penalty � is larger than any of the item values.

15

Lemma 2 (Mean Bound). Consider the L+
1 objective. There exists a universal constant c0 > 0 such

that the following is true. For any ✏ 2 (0, 3
4), if xmax (1� ✏) · �, then either

|S⇤
|

c0 log(1✏)

pmin

(4a)

or

µ⇤

101

100
M. (4b)

The proof of this lemma is provided in Appendix B.2.1. It is used in the proofs of Theorem 3 and
Theorem 4. Intuitively, this lemma says that when all values are less than and bounded away from �,
one of the following two caeses is true: either the number of items in the optimal solution is small
(Eq. (4a)), or when the number of items in the optimal solution is large, then the realized size of the
optimal solution concentrates to the expected size with a small variance. Since the item values are
relatively small, in order to minimize the L+

1 loss, the expected size is at most on the order of M
(Eq. (4b)).

B.2 Proof of Lemma 1

We write out the objective U(S) over all possible realizations of Z 2 {0, 1}
n as:

U(S) := R(S)� � · E [⇢ (|SZ |, M)]

=
X

i2S

pixi � �
X

z2{0,1}n

P(Z = z) · ⇢

X

i2S

zi, M

!
. (5)

The first term in (5) is additive, and hence submodular. Since ⇢ is convex, it can be verified that the
loss ⇢

�P
i2S zi, M

�
is supermodular in S for each fixed realization z. Taking linear combinations

of these terms yields the submodularity of U(S).

B.2.1 Proof of Lemma 2

Recall that S⇤ denotes the optimal solution under the L+
1 objective. Denote by i⇤ := arg mini2S⇤ pi

the item in the optimal selection with the minimal probability, and denote S := S⇤
\ {i⇤}. In what

follows, we prove claim (4) by deriving a lower bound and an upper bound on P(
P

i2S Zi M).

Lower bounding P(
P

i2S Zi M) by the optimality of S⇤. Recall that the L+
1 loss penalizes

the case when the total number of accepted items exceeds M . Intuitively, adding item i⇤ to the set S
is only beneficial if P(

P
i2S Zi �M) is small. Formally, we have

U(S⇤)� U(S) = xi⇤pi⇤ � �E
"
(
X

i2S

Zi + Zi⇤ �M)+ � (
X

i2S

Zi �M)+

#

= xi⇤pi⇤ � �pi⇤ · P
⇣X

i2S

Zi �M
⌘

By the optimality of S⇤, we have U(S⇤) � U(S), and hence

P
⇣X

i2S

Zi �M
⌘

xi⇤

�

(i)
 1� ✏,

where step (i) is true by the assumption that xmax (1� ✏)�. Hence, we have

P
⇣X

i2S

Zi M
⌘
� P

⇣X

i2S

Zi < M
⌘
� ✏. (6)

16

Upper bounding P(
P

i2S Zi M) by concentration. Let the universal constant c0 satisfy
c0 �

200
log(4

3)
. If |S⇤

| < 200, then we have

|S⇤
| < 200

c0 log(1✏)

pmin
,

satisfying (4a). Hence, it remains to consider the case when |S⇤
| � 200. In what follows, we assume

that condition (4b) does not hold. That is, we assume µ⇤ > 101
100M . Then we prove that condition (4a)

holds. We derive a multiplicative Chernoff bound to upper bound P(
P

i2S Zi M). We first
establish a relation between µS and M . Using the definition that i⇤ is the item with the smallest
probability in the optimal selection S⇤, we have

µ⇤ =
X

i2S

pi + pi⇤
|S⇤

|

|S⇤|� 1
µS

(i)

200

199
µS , (7)

where step (i) uses the assumption that |S⇤
| � 200. Combining (7) with the assumption that

condition (4b) does not hold and hence µ⇤ > 101
100M , we have

101

100
M < µ⇤

200

199
µS

M <
200

199
·
100

101
µS (1� c)µS ,

where c > 0 is a universal constant. Since µS > M , by the multiplicative Chernoff bound,

P
⇣X

i2S

Zi M
⌘
 P

⇣X

i2S

Zi (1� c) µS

⌘
 Exp

✓
�

c2µS

2

◆
 Exp

✓
�

c2 · |S| · pmin

2

◆
. (8)

Combining the lower and the upper bounds. Combining the lower bound (6) and the upper
bound (8) on P(

P
i2S Zi M), we have

✏ P
⇣X

i2S

Zi M
⌘
 Exp

✓
�

c2 · |S| · pmin

2

◆

and so

|S|
2

c2
·
log(1✏)

pmin
.

By the assumption that ✏ 3
4 , we have |S⇤

| = |S| + 1
c0 log(1

✏)
pmin

for some universal constant
c0 > 0, satisfying condition (4a).

B.3 Proof of Proposition 1

We fix any target size M > 0. For notational simplicity, we use the shorthand ⇢(·) := ⇢(·, M) for the
loss function. For the set {1, 2, . . . , n}, we say that the subset {1, 2, . . . , k} for each k 2 {0, . . . , n}

is a prefix. Recall that Algorithm 1 sorts the items in decreasing order of probability as p1 � . . . � pn,
with ties broken arbitrarily. In what follows, we first show that there exists a prefix of items that is an
optimal selection. Then we show that using the stopping criterion in Line 4 of Algorithm 1 achieves
the minimum variance among all prefixes, and hence is an optimal selection.

Showing that a prefix of items in decreasing order of pi achieves an optimal selection. Assume
that there exists an optimal selection, denoted by S⇤

✓ [n], that is not a prefix in decreasing order of
pi. By the assumption that S⇤ is not a prefix of items in decreasing order of pi, there must exist items
i 2 S⇤ and i0 62 S⇤, such that pi0 � pi. We now show that S⇤0 := S⇤

[{i0} \ {i}, namely removing
i from S⇤ and then adding i0, also yields an optimal selection.

If p0i = pi, it is straightforward to see that the variance remains the same, and hence S⇤0 =
S⇤
[{i0} \ {i} is optimal. Now we consider the case pi0 > pi. For any subset S ✓ [n], we consider

17

the additional variance induced by adding any item k 62 S to the subset S:

V (S [{k})� V (S) = EZS[{k}

2

4⇢

0

@
X

i2S[{k}

Zi

1

A� ⇢

X

i2S

Zi

!3

5

(i)
= EZS

2

4EZk ⇢

0

@
X

i2S[{k}

Zi

1

A� ⇢

X

i2S

Zi

!3

5

(ii)
= pk · EZS

"
⇢

X

i2S

Zi + 1

!
� ⇢

X

i2S

Zi

!#

| {z }
T (S)

, (9)

where (i) is true by the assumption that the random variables {Zi}
n
i=1 are independent, and (ii) is

true by taking an expectation over Zk. Setting S = S⇤
\ {i} and k 2 {i, i0} in (9), we have

V (S⇤)� V (S⇤
\ {i}) = pi · T (S⇤

\ {i}), (10a)
V (S⇤0)� V (S⇤

\ {i}) = pi0 · T (S⇤
\ {i}), (10b)

Combining (10a) with the assumption that S⇤ is an optimal selection, we have T (S⇤
\ {i}) � 0.

Combining (10) with the assumption that pi0 > pi, we have
V (S⇤0) � V (S⇤) . (11)

Since by assumption S⇤ is an optimal selection, equality holds in (11) and S⇤0 is also an optimal
selection.

If S⇤0 is not a prefix, we keep repeating the same modification, until the resulting selection is a prefix.
Since pi0 � pi, we have i0 i, and hence in each modification, the sum of the indices in the selection
decreases, namely

P
k2S⇤0 k <

P
k2S⇤ k. Hence, the sequence of modifications terminates, yielding

an optimal selection that is a prefix.

Showing that the stopping criterion obtains a best prefix among all prefixes. We now show
that the stopping criterion in Line 4 of Algorithm 1 obtains a prefix with the minimum variance
among all prefixes. Since we have showed that there exists a prefix that is an optimal selection, this
prefix obtained by the stopping criterion is optimal.

We consider the term T in (9) when adding to a selection S ✓ [n] some new item k 62 S. We have

T (S [{k}) = EZSEZk

2

4⇢

0

@
X

i2S[{k}

Zi + 1

1

A� ⇢

0

@
X

i2S[{k}

Zi

1

A

3

5

(i)
= pkEZS

"
⇢

X

i2S

Zi + 2

!
� ⇢

X

i2S

Zi + 1

!#
+ (1� pk) · EZS

"
⇢

X

i2S

Zi + 1

!
� ⇢

X

i2S

Zi

!#

(ii)
� EZS

"
⇢

X

i2S

Zi + 1

!
� ⇢

X

i2S

Zi

!#
= T (S), (12)

where step (i) takes an expectation over Zk, and step (ii) uses the property that ⇢(t + 2)� ⇢(t + 1) �
⇢(t + 1)� ⇢(t) for any t 2 R, due to the convexity of ⇢. Due to the stopping criterion, Algorithm 1
yields a prefix {1, 2, . . . , i⇤} such that T ([i]) 0 for all i i⇤, and T ([i⇤ + 1]) > 0. By (12), it can
be verified that T ([i]) > 0 for all i > i⇤. Hence, the variance decreases or stays the same for adding
each item up to item i⇤, and then strictly increases for adding each of item (i⇤ + 1) through item
n. Hence, the prefix [i⇤] attains the minimal variance among all prefixes, and hence is an optimal
selection.

B.4 Proof of Proposition 2

Consider any instance (x, p,�, M) and any constant c > 0. It is straightforward to verify that the
optimal solution and the solution given by any of the three greedy algorithms is identical for the
instance (x, p,�, M) and the instance (cx, p, c�, M). Hence, it suffices to construct an instance for a
fixed value of � > 0. We now construct instances for the greedy algorithms separately.

18

Instance for PGREEDY. Let M = 1. We consider an instance consisting of two items:
(x1, p1) = (0, 1)

(x2, p2) = (1, p),

for some p 2 (0, 1) whose value is specified later. It is straightforward to derive that PGREEDY
selects item 1, attaining an objective of 0. On the other hand, the objective of only picking item 2 is:

p� �(1� p).

We take p to be sufficiently close to 1 such that p/(1� p) > �. Then the objective of only picking
item 2 is strictly positive, and hence the objective of the optimal solution is strictly positive.

Instance for XGREEDY and XPGREEDY. Let M = 1. We consider an instance consisting of two
items:

(x1, p1) = (1, 1)

(x2, p2) =

✓
2 + ✏,

1

2

◆
,

for some ✏ > 0 whose value is specified later. The objective for the four possible selections is
computed as:

U(;) = ��

U({1}) = 1

U({2}) = 1 +
✏� �

2

U({1, 2}) = 2 +
✏� �

2
.

It is straightforward to derive that both XGREEDY and XPGREEDY pick item 2 first followed by item
1, attaining an objective of 2 + ✏��

2 . We set any value of � such that � > 4, and set ✏ = �
2 � 2 > 0.

The objective becomes 1 � �
4 < 0. On the other hand, the optimal selection is S⇤ = {1}, with a

strictly positive objective of 1.

B.5 Proof of Theorem 1

We first describe a pseudo-polynomial time algorithm proposed by Çela et al. [3] for solving a specific
form of rank-1 binary quadratic programming. Then we describe our algorithm, which operates by
rounding the parameters and using the pseudo-polynomial time algorithm as a sub-routine.

Pseudo-polynomial time algorithm of [3]. Çela et al. [3] study unconstrained binary quadratic
programming problems of the form

min
x2{0,1}n

hx, Axi+ hb, xi.

where A 2 Rn⇥n is symmetric and a 2 Rn. When A has rank one, this can be reformulated as
min

x2{0,1}n
ha, xi+ �(� + hu, xi)2 (13)

for some a, u 2 Rn and �, � 2 R. We note that the representation (a, u, �, �) for the problem (13) is
not unique. Çela et al. [3] propose an algorithm to solve (13) exactly with a run time dependent on
the magnitude of the representation.

Proposition 3 (Proposition 1 of [3] with d = 1). Consider any instance of (13) with u 2 Zn
, � 2 Z,

a 2 Zn
, and � 2 Q. Let K := 2 max(kuk1, kak1). Then the minimum objective attained by (13)

can be computed in O(K4n5) time.

We refer to the algorithm satisfying Proposition 3 as R1UBQPSOLVER, which is described in the
proof of Proposition 1 in Çela et al. [3]. R1UBQPSOLVER takes as inputs (a, u, �, �), and outputs
the minimum objective attained by (13). We also note that while R1UBQPSOLVER as stated requires
� 2 Q, this serves only as a sufficient condition for arguing that arithmetic operations involving
� can be performed efficiently. Since our runtime analysis is in terms of the number of arithmetic
operations performed, we remain agnostic to the exact representation of the numbers in our problem
instance.

19

Modified R1UBQP Solver. For convenience of the presentation, we use a slightly more general
version of this binary quadratic programming algorithm, which essentially serves as a rescaling of
R1UBQPSOLVER. We will call this R1UBQPSOLVER2 (Algorithm 3).

Algorithm 3 R1UBQPSOLVER2

Require: u 2 Zn, � 2 Z, a 2 Qn such that a = a0

E for some a0
2 Zn and E 2 N, and � 2 R

Ensure: minb2{0,1}n ha, bi+ �(� + hu, bi)2

1: a0
 Ea

2: �0
 E�

3: return 1
E R1UBQPSOLVER(a0, �0, �, u)

Proposition 4. Consider an instance of (13) with u 2 Zn
, � 2 Z, a 2 Qn

such that a = a0

E for

some a0
2 Zn

and E 2 N, and � 2 R. Let K 0 := 2max(kuk1, ka0
k1). Then R1UBQPSOLVER2

computes the minimum objective attained by (13) in O(K 04E4n5) time.

Proof. The correctness of R1UBQPSOLVER2 follows immediately from Proposition 3. For the
runtime guarantee, note that the invocation of R1UBQPSOLVER is with a0

i = Eai, so the guarantee
from R1UBQPSOLVER holds with K � EK 0.

Proposed FPTAS. We now derive the following FPTAS for our problem, which uses
R1UBQPSOLVER2 as a subroutine:

Algorithm 4 APPROXL2

Require: Problem instance I = (x, p,�, M); additive error ✏ > 0
Ensure: S ✓ [n] for which U(S) � U(S⇤)� ✏

1: D d2n�(2M + 3(n + 1))/✏e
2: E d2n/✏e
3: ā 1

E bE (�p � x + � · p� � · (p � p))c
4: �0

 �/D2

5: �0
 DM

6: u0
 bDpc

7: OPT �R1UBQPSOLVER2(ā, �0, �0, u0)
8: S [n]
9: while 9i 2 S such that �R1UBQPSOLVER2(ā|S\{i}, �

0
|S\{i}, �

0
|S\{i}, u

0
|S\{i}) = OPT do

10: S S \ {i}

11: return S

Given an instance of our problem, APPROXL2 generates a rounded instance and then runs
R1UBQPSOLVER2 on this rounded instance. The objective is guaranteed to be close to opti-
mal, and so APPROXL2 first finds the optimal rounded value, and then identifies a set which attains
this rounded value.

We prove that APPROXL2 (Algorithm 4) is a FPTAS for our problem when ⇢ = L2.

Rewriting the objective in the form of (13). We begin by establishing that if ⇢ = L2 then U(S)
can be written in the form of Eq. (13). Recall from (2) that our objective can be written as

U(S) =
X

i2S

pixi � � · E

X

i2S

Zi �M

!2

.

Recall from (3) the notation b 2 {0, 1}
n with bi := {i 2 S}. The vector b is a representation of the

set S, and we slightly abuse notation to let U(b) := U(S)). We have

U(b) =
X

i2[n]

bipixi � � · E

0

@
X

i2[n]

biZi �M

1

A
2

. (14)

20

For any two vectors u, v 2 Rn, let u � v denote the entrywise product. Expanding the squared term
in (14) yields

U(b) =
X

i2[n]

bipixi � � ·

0

B@E

0

@
X

i2[n]

biZi

1

A
2

� 2M
X

i2[n]

bipi + M2

1

CA

(i)
= (p � x)T b� � · E

2

4
X

i2[n]

biZi +
X

(i,j)2[n]2,i 6=j

bibjZiZj

3

5+ 2�M · pT b� �M2

= (p � x)T b� � · pT b� � ·

X

(i,j)2[n]2,i 6=j

bibjpipj + 2�M · pT b� �M2

= (p � x)T b� � · pT b� � ·

0

B@

0

@
X

i2[n]

bipi

1

A
2

�

X

i

b2i p
2
i

1

CA+ 2�M · pT b� �M2,

where step (i) uses the fact that bi and Zi are binary, and hence b2i = bi and Z2
i = Zi. Using the fact

that bi is binary again, we have

U(b) = (p � x)T b� � · pT b� � · (pT b)2 + � · (p � p)T b + 2�M · pT b� �M2

= (p � x� � · p + � · (p � p))T b� �
�
�M + pT b

�2
. (15)

Negating (15) yields

min
S✓[n]

�U(b) = min
b2{0,1}n

(�p � x + � · p� � · (p � p))T b + �
�
�M + pT b

�2
, (16)

which matches the form of (13) with

a := �p � x + � · p� � · (p � p), (17a)
� := �, (17b)
� := �M, (17c)
u := p. (17d)

Rounding the parameters. We argue that rounding the parameters of an instance does not sig-
nificantly affect the objective value. Consider rounded probabilities p̄, with |pi � p̄i| 1/D and
rounded ai with |ai � āi| 1/E, for some integers D and E to be specified later. How much does
the value of (13) change for the input (17) if these ui = pi are changed to ū := p̄i and ai to āi,
regardless of b? For notational simplicity, we write the objective as

 (b, a, �, �, u) = ha, bi+ �(� + hu, bi)2,

with the choice of variables specified in (17). Letting p0i := pi � p̄i (for compactness), the difference
before and after rounding is bounded by

� = | (b, a, �, �, u)� (b, ā, �, �, ū)|

��(a� ā)T b

��+ �
��(pT b)2 � (p̄T b)2 � 2M(p� p̄)T b

��

n

E
+ �

���(pT b)2 � (p̄T b)2
���

| {z }
T

+�
⇣
2M

n

D

⌘
(18)

21

We bound the term T by

T =
X

i 6=j

bibj(pipj � p̄ip̄j) +
X

i

b2i (p
2
i � p̄2i)+

X

i 6=j

|pipj � p̄ip̄j | +
X

i

��p2i � p̄2i
��

X

i 6=j

(p̄ip
0

j + p̄jp
0

i + p0ip
0

j) +
X

i

(2p̄ip
0

i + p02i)

X

i 6=j

(p0j + p0i + p0ip
0

j) +
X

i

(2p0i + p02i)

 2n2 1

D
+ n2 1

D2
+ n

2

D
+ n

1

D2

=
n

D

✓
2(n + 1) +

n + 1

D

◆
(19)

Plugging (19) back to (18), we have

�
n

E
+

�n

D

✓
2(n + 1) +

n + 1

D
+ 2M

◆
. (20)

Recalling that � = � for our problem. It can be verified by (20) that choosing D � 2n�(2M + 3(n +
1))/✏ and E � 2n/✏ ensures that | (b, a, �, �, u)� (b, a, �, �, ū)| ✏, for any arbitrary binary
vector b.

We now define rounded versions of the problem parameters, which are rounded to increments of D.
For all i, let

Pi := bDpic

ūi :=
Pi

D
=

1

D
bDpic

u0

i := Pi = bDpic,

and �0 := �DM and �0 := �
D2 = �

D2 . Then letting S(b) be the set indicated by b,

 (b, a, �, �, u) = ha, bi+ �(� + hu, bi)2 = �U(S(b))

by (16), while

 (b, ā, �0, �0, u0) = hā, bi+ �0(�0 + hu0, bi)2 (21)

= hā, bi+
�

D2
(�D + hu0, bi)2

= hā, bi+ �

✓
� +

⌧
u0

D
, b

�◆2

= (b, ā, �, �, ū).

We have just argued that |U(S(b))� (b, ā, �, �, ū)| ✏ when D � 2n�(2M + 3(n + 1))/✏ and
E � 2n/✏. Observe also that the parameters ā, �0, �0, u0 are such that (21) satisfies the requirements
for Proposition 4. Therefore OPT �R1UBQPSOLVER2(ā, �0, �0, u0) is some objective value
within ±✏ of our optimal value U(S⇤).

Algorithm 4 therefore begins by finding some value OPT which is the optimal value of the rounded
instance of the problem realized by some b 2 {0, 1}

n and within ✏ of �U(S(b)f). Since whatever
value the b⇤ corresponding to S⇤ attains on the rounded instance is within ✏ of �U(S⇤), it follows
that this b is an additive ✏-approximation to U(S⇤).

The remainder of APPROXL2 is dedicated to reconstructing the set S(b) itself. It does this by
iteratively removing candidate components of the solution i 2 [n], determining whether or not each
is necessesarily part of some such S(b) (subject to the i already discarded).

22

Runtime. R1UBQPSOLVER2 has runtime O(K4E4n5), and our reduction takes K to be the
maximum of D and max(�, xmax)/E. In our reduction, E = O((1 + �)n(M + n)/✏). Since
APPROXL2 makes one call to R1UBQPSOLVER and all other steps are negligible, it therefore runs
in time O(n

9(M+n)4(1+�)4

✏4).

In the case that xi � 0 for all i 2 n, we assume that M n, since for M � n it is optimal to take
S = [n]; in this case the runtime guarantee is therefore O(n

13(1+�)4

✏4).

B.6 Proof of Theorem 2

We follow the reduction outlined in Section 2 of Çela et al. [3]. In what follows, we reduce any
instance of SUBSETSUM to an instance of our problem with the L2 objective. An instance of
SUBSETSUM is given by a set of positive integers (t1, . . . , tn) and a target sum T that is also a
positive integer. We assume without loss of generality that ti T for each i 2 [n].

Given any instance of SUBSETSUM, we now construct an instance of our problem I = (x, p,M,�)
with the L2 objective. Recall the notation b 2 {0, 1}

n with bi := {i 2 S}. Recall from (16) that
our optimization problem can be written as:

min
b2{0,1}n

(�p � x + � · p� � · (p � p))T b + �
�
�M + pT b

�2
,

where the first term is linear in b, and the second term is quadratic in b. We choose the problem
parameters, such that the linear term becomes zero, and the quadratic term becomes the SUBSETSUM
problem. For the linear term, we set xi := �(1� pi) for each i 2 [n]. It can be verified that xi � 0,
and that the linear term becomes zero. For the quadratic term, we set M := 1, and set the regularizer
to be any value such that � > 0. Then we set pi := ti

T , and we have pi 2 [0, 1] by the assumption
that ti T for every i 2 [n]. The optimization problem then becomes

min
b2{0,1}n

�

0

@�1 +
X

i2[n]

bi
ti
T

1

A
2

= min
S✓[n]

�

T 2

�T +

X

i2S

ti

!2

. (22)

Note that the optimization problem (22) always attains a non-negative objective value, and attains
an objective of zero if and only if

P
i2S ti = T , that is, there exists a solution to the SUBSETSUM

instance. Therefore, any algorithm for finding the optimal subset S⇤ for our problem can be used to
solve SUBSETSUM, completing the reduction.

B.7 Proof of Theorem 3

We prove the three parts of the proposition separately. To prove upper bounds on the approximation
ratio, we construct “bad” instances. Using the same argument as in the proof of Proposition 2
in Appendix B.4, the values {xi}i2[n] can be rescaled according to �, and it suffices to construct
instances for a fixed value of � > 0.

To prove lower bounds for XGREEDY and XPGREEDY (across all instances), it is without loss of
generality to assume that all xi � 0. Recapp that since the loss ⇢ = L+

1 is monotonic, adding an item
never decreases the penalty term, and thus adding an item with negative value always decreases the
overall objective. Moreover, all items with negative values appear at the end in the orders used by
XGREEDY and XPGREEDY, so there are no more items with positive values once the two greedy
algorithms reach the first negative item. Therefore, XGREEDY and XPGREEDY never choose solutions
containing any item with negative value, and hence such items can be ignored for the purposes of
these proofs.

B.7.1 Proof of Theorem 3(a)

Let M = 1 and � > 1. Consider an instance consisting of two items:
(x1, p1) = (0, 1)

(x2, p2) =

✓
1,

1

2

◆
.

It can be verified that PGREEDY only selects item 1, attaining an objective of 0. On the other hand,
selecting item 2 attains a strictly positive objective of 1

2 .

23

B.7.2 Proof of Theorem 3(b)

We separately prove the upper and lower bounds for XPGREEDY. We denote by SXP the selection
found by XPGREEDY.

Upper bound for XPGREEDY. First, suppose that pmin is such that 1/pmin 2 {2, 3, 4, . . .}. We
assume this without loss of generality in order to show that XPGREEDY is O(pmin) for any pmin 2
(0, 1]. We may make this assumption because, first, for any pmin 2 (1/2, 1] XPGREEDY must be an
O(1) approximation, and for pmin in this range it is therefore also O(pmin). On the other hand, for any
choice pmin 2 (0, 1/2), consider the instance outlined below with 1

d1/pmine
as the minimum probability,

together with an additional item for which (pi, xi) = (pmin, 0). Then XPGREEDY never chooses this
last item, and the instance below demonstrates an upper bound of O(1

d1/pmine
) = O(pmin).

We now construct the instance as follows. Let M = 1 and � = 1+2c
pmin

, and consider an unlimited
number of items from two types:

(x1, p1) =
⇣
1 +

c

2
, 1
⌘

(x2, p2) =

✓
1

pmin
, pmin

◆
.

We assume without loss of generality that c 1/2, since if xi (1� c) · � is true for some c > 1/2
then it is true for c 1/2 also. Then it can be verified that xi (1� c) · � for both types of items.
Specifically

(1� c) · � =
(1� c)(1 + 2c)

pmin
=

1 + c� 2c2

pmin
� 1 + c� 2c2 � 1 +

c

2
= x1

and

(1� c) · � =
1 + c� 2c2

pmin
�

1

pmin
= x2

both hold for any c 2 (0, 1/4].

XPGREEDY adds items one-by-one from the first type. The objective after adding one item is (1+c/2).
If a second item is added, the marginal change in the objective is 1 + c

2 � � = 1 + c
2 �

1+2c
pmin

< 0.
Hence, XPGREEDY selects exactly one item from the first type, attaining an objective of

U(SXP) = 1 + c/2. (23)

Now consider an alternative selection S consisting of t items of the second type. We now show that
for some choice of t, the objective attained by the selection S satisfies U(S) & 1

pmin
. We write the

objective as

U(S) = R(S)� � · V (S)

= t� � · E
⇣
|SZ |� 1

⌘

+

= t� �
⇣
E|SZ |� 1 + P(|SZ | = 0)

⌘

= t� �
�
t · pmin � 1 + (1� pmin)

t
�
.

Choosing t = 1
pmin

, we have

U(S) =
1

pmin
� �

✓
1

pmin
· pmin � 1

◆
� � (1� pmin)

1
pmin

=
1

pmin
� � (1� pmin)

1
pmin

�
1

pmin
�

�

e
.

24

Substituting in � = 1+2c
pmin

, the objective is lower bounded by

U(S) �
1

pmin
�

1

e
·
1 + 2c

pmin

=
1

pmin
·
e� 1� 2c

e

(i)
�

1

pmin
, (24)

where step (i) is true by the assumption that c 1/4.

Combining (23) and (24), we have an instance for which U(SXP) c0 · pminU(S) for some constant
c0, establishing an upper bound of O(pmin) on the approximation ratio.

Lower bound for XPGREEDY. First, if the total number of items is at most M , then it can be
verified that selecting all items is optimal.

We denote by SM be the M items with highest expected values xipi, and denote by SXP the solution
that XPGREEDY finds. Moreover, we have SM ✓ SXP, because all values are assumed nonnegative,
and the penalty term for the L+

1 loss is zero when adding the first M items. By definition, XPGREEDY
only improves the objective in each step. Hence, we have

U(SM) U(SXP). (25)

We now provide a lower bound for the selection SM . Applying the Mean Bound (Lemma 2) with
✏ = min(c, 1/2), we have either

|S⇤
|

c0

pmin
(26a)

where c0 is a positive constant, or

µ⇤

101

100
M. (26b)

If (26a) holds, we have |S⇤
|

cM
pmin

because M � 1 . If (26b) holds, we have pmin · |S⇤
| µ⇤

101
100M , and hence |S⇤

|
101
100 ·

M
pmin

. Combining the two cases, we have

|S⇤
| . M

pmin
. (27)

Next, we consider the expected reward R(SM) for the selection SM . We note that |S⇤
| � |SM | = M

by the optimality of S⇤. This is because xi � 0, so adding any item to a selection containing less
than M items only increases the objective. Recall that the selection SM consists of the M items with
the maximum expected reward pixi. Hence, the mean expected reward pixi for the set SM (over all
items in this set) is greater than or equal to the mean expected reward for the set S⇤. Namely,

1

M
R(SM) =

1

|SM |

X

i2SM

pixi

�
1

|S⇤|

X

i2S⇤

pixi =
1

|S⇤|
R(S⇤).

Hence, we have

U(SM) = R(SM) �
M

|S⇤|
R(S⇤)

(i)
& pmin · R(S⇤) � pmin · U(S⇤), (28)

where step (i) is true by plugging in (27). Combining (28) with (25), we have

U(SXP) � U(SXP) & pmin · U(S⇤),

completing the proof of the lower bound ⌦(pmin) of the approximation ratio for XPGREEDY.

25

B.7.3 Proof of Theorem 3(c)

We separately prove the upper and lower bounds for XGREEDY.

Upper bound for XGREEDY. Let M = 1 and � = 2
p . Consider an instance consisting of an

unlimited number of items from two types:

(x1, p1) = (1, pmin)

(x2, p2) = (1� ✏, 1),

where ✏ 2 (0, 1) is a constant, and pmin 2 (0, 1). We again suppose without loss of generality that
c 1/2, and it can be verified that xi (1� c) · � for both types of items.

XGREEDY adds items one-by-one from the first type. The objective after adding one item is pmin. If
a second item is added, the marginal change in the objective is pmin � �p2min = �pmin < 0. Hence,
XGREEDY selects exactly one item from the first type, attaining an objective of pmin.

On the other hand, choosing a single item from the second type attains an objective value of (1� ✏).
Therefore XGREEDY has a worst-case approximation ratio of at most pmin

1�✏ , namely O(pmin).

Lower bound for XGREEDY. We modify the construction of SM in the proof of part (b) to be the
set of M items with the highest values xi, Then we apply similar arguments as in part (b), and outline
the steps as follows.

Denote by SM the set of M items with the highest values xi, and denote by SX the solution that
XGREEDY finds. Then again we have SM ✓ SX and hence

U(SM) U(SX). (29)

We now provide a lower bound for the selection SM . Using the same argument as in part (b), we
have (cf. (27)):

|S⇤
| . M

pmin
. (30)

We note that |S⇤
| � |SM | = M by the optimality of S⇤. Since the selection SM consists of the M

items with the maximum values xi, the mean value for the set SM is greater than or equal to the
mean value for the set S⇤. Namely,

1

M

X

i2SM

xi �
1

|S⇤|

X

i2|S⇤|

xi.

Next note that for any i 2 SM , 1
pmin

(pixi) is larger than pjxj for any j 2 S⇤
\ SM , since for such i

and j we have 1
pmin

(pixi) � xi � pjxj . Therefore,

U(SM) = R(SM) =
X

i2SM

pixi � pmin
X

i2SM

xi

� pmin ·
M

|S⇤|

X

i2S⇤

xi

� pmin ·
M

|S⇤|

X

i2S⇤

pixi

(i)
& p2min · R(S⇤) � p2min · U(S⇤), (31)

where step (i) is true by plugging in (30). Combining (29) with (31) completes the proof of the lower
bound ⌦(p2min) of the approximation ratio for XGREEDY.

B.8 Proof of Theorem 4

Notation. We begin with some notation that is used in the proofs in this section. Given any
instance {xi, pi}i2[n], we construct a rounded instance {yi, qi}i2[n] as follows. First we round up the

26

probabilities pi to qi := 2dlog2 pie, that is, the smallest power of two that is greater than or equal to pi.
Then we construct new values yi such that the expected value of each item is preserved. Formally,

qi := min

⇢
1

2i
, i 2 N :

1

2i
� pi

�
,

yi :=
pi
qi

xi.

We slightly abuse the notation, and for any selection S = {xi, pi}i2[n], we denote by S0 :=
{yi, qi}i2[n] the corresponding set with rounded probabilities and values. The parameters M and �
for this rounded instance remain unchanged. Note that by construction, we have

R(S) = R(S0) (32a)
V (S) V (S0) (32b)
U(S) � U(S0), (32c)

Eq. (32a) holds by the definition of the rounded set S0; Eq. (32b) in fact holds for all nondecreas-
ing loss function ⇢, because

P
i2S0 Zi stochastically dominates

P
i2S Zi; Eq. (32c) follows by

combining (32a) and (32b).

Finally, recall the observation from Section 3.2.2 that we assume without loss of generality that
xi > 0 for all i 2 [S], since the marginal contribution of any i for which xi 0 to any U(S) is
nonpositive.

Overview of Algorithm 2. We begin by reiterating the overview of Algorithm 2 presented in
Section 3.2.2. At a high level, this algorithm proceeds first by dividing the items into three groups
according to their values xi.

NL := {i 2 [n] : xi (1� ✏)�}

NM := {i 2 [n] : (1� ✏)� < xi < �}

NH := {i 2 [n] : xi � �}.

Since U is submodular (see Lemma 1), the optimal solution within at least one of these groups is
constant-competitive with U(S⇤). We consider each group separately, and obtain a constant-factor
approximation for each group. We now provide an overview of the three cases. In particular, the
small items in NL are handled by Algorithm 5, and the medium items in set NM are handled by
Algorithm 6.

Algorithm 5 LOWVALUEL+
1 (with universal constant c)

Require: Problem instance I = (x, p,�, M), with xi (1� pmin
4)�

Ensure: S ✓ [n] for which U(S)/U(S⇤) & 1

1: ⌧ c
p2

min
max

n
1, log

⇣
1

pmin

⌘
, log

⇣
�

xmax

⌘o

2: L {S ✓ [n] : |S| ⌧} // Brute-force small instances
3: for S 2 L do
4: Calculate U(S)

5: SL arg maxS2L U(S)
6: Let q be the rounded p and Q {qi} the distinct rounded probabilities; let tr be the multiplicity

of each rounded probability r in the vector q. // Round large instances
7: H ;

8: for s 2
Q

r2Q{0, 1, . . . , tr} do
9: Construct S from the sr many i 2 [n] of highest xi for which qi = r, for each r 2 Q

10: Calculate U(S), using unrounded probabilities and values
11: H H [{S}

12: SH arg maxS2H U(S)
13: return S 2 {SL, SH} maximizing U(S)

27

Algorithm 6 MEDIUMVALUEL+
1

Require: Problem instance I = (x, p,�, M), with (1� pmin
4) · � xi �

Ensure: S ✓ [n] for which U(S)/U(S⇤) = ⌦(1)
1: if n 36

p2
min

then
2: return arg maxS✓[n] U(S)
3: else if µ[n] �M then
4: Choose any S ✓ [n] such that M µS < M + 1
5: else
6: Choose any S ✓ [n] such that µ[n]

3 µS
µ[n]

2

7: return S

• Low-value items NL (Algorithm 5): LOWVALUEL+
1 presented in Algorithm 5 handles

the case where items have low values. It consists of two parts: a search over small candidate
solutions and a search over rounded candidate solutions. In the first part, we brute-force all
small solutions whose size are at most ⌧ (Line 3). This brute-force search succeeds if the
optimal selection is small.
The second part is the technical crux of proving the constant-factor approximation of
LOWVALUEL+

1 . In the second part, we compute rounded probabilities and values (qi, yi) for
each item. This rounding procedure reduces the number of candidate solutions dramatically.
We then brute-force over all rounded solutions (Line 8), select the rounded solution that
maximizes the objective value, and prove that this solution is comparable to the (unrounded)
optimal solution. Since the first part succeeds the case where the optimal solution is small,
we may assume in this second part that the optimal solution is sufficiently large; this allows
us to prove that our selection is robust to rounding.
As an aside, we take the rounding to be to powers of two, but our analysis generalizes to
rounding to powers of (1 + c) for any constant c > 0, and this parameter may be tuned in
order to trade off between runtime and performance in practice.

• Medium-value items NM (Algorithm 6): MEDIUMVALUEL+
1 presented in Algorithm 6

handles items with values close to �. If the number of items is small, it brute-forces over
all possible solutions (Line 2). If the number of items is large, the algorithm chooses any
subset such that the expected number of accepted items is around M (Line 4). If no such
subset exists, then the expected number of accepted items when choosing all items must
be less than M . In this case, then we choose a subset with approximately half the expected
realizations compared to that of all items (Line 6). We choose a proportion less than one in
order to ensure that the penalty incurred is not too large relative to the reward. This subset
(Line 6) along with the subset defined in (Line 4) and always exists, formalized in the proof
of Lemma 4 in Appendix B.8.2.

• High-value items NH: for the group of items with values above �, it is easy to see that
choosing the entire group is optimal.

We now prove the approximation ratio and runtime for ONESIDEDL+
1 .

Proof of Theorem 4. To begin, we split the items in the optimal set S⇤, according to their values:

S⇤

L := S⇤
\NL,

S⇤

M := S⇤
\NM ,

S⇤

H := S⇤
\NH .

By the submodularity of U(S) in Lemma 1, we have U(S⇤

L) + U(S⇤

M) + U(S⇤

H) � U(S⇤). In
particular, this implies that max{U(S⇤

L), U(S⇤

M), U(S⇤

H)} � 1
3 U(S⇤). In order to provide a constant-

factor approximation to U(S⇤), it therefore suffices to identify sets which provide constant-factor
approximations to U(S⇤

L), U(S⇤

M), and U(S⇤

H), and return the set with the highest objective value
among them. We choose ✏ := pmin/4 to determine the boundary between NL and NM , and address
each group separately. In each case we seek to find a subset which competes with the optimal subset
of NL (say), which in turn is an approximation to U(S⇤

L).

28

Low-value items NL. The following lemma provides the approximation guarantee of LOWVAL-
UEL+

1 .

Lemma 3 (Small xi). Suppose that xi (1 � pmin

4) · � for all i 2 [n]. Then

LOWVALUEL+
1 (Algorithm 5) is a constant-factor approximation to U(S⇤) which runs in time

n
c

p2
min

max
n
1,log

⇣
1

pmin

⌘
,log(�

xmax
)
o

, where c is a universal constant.

The proof of this lemma is provided in Appendix B.8.1, and is arguably the heart of the analysis of
ONESIDEDL+

1 . By applying this lemma to [n] = NL we obtain SL with U(SL) within a constant
factor to the optimal objective among selections within NL, and hence a constant factor to U(S⇤

L).

Medium-value items NM. The following lemma provides the approximation ratio guarantee of
MEDIUMVALUEL+

1 .

Lemma 4 (Medium xi). If �
�
1� pmin

4

�
 xi � for all i 2 [n] then MEDIUMVALUEL+

1 (Algo-

rithm 6) finds some S ✓ [n] which is a constant-factor approximation to U(S⇤) and runs in time

nO(1/p2
min

)
.

The proof of this lemma is provided in Appendix B.8.2. By applying this lemma to [n] = NM we
obtain SM with U(SM) within a constant factor to the optimal objective among all selections within
NM, and hence a constant factor to U(S⇤

M).

High-value items NH. This case is simple: we select all items by taking SH = NH . It can be
verified that adding every item strictly increases the objective, and hence NH attains the optimal
objective among all selections within NH. By the optimality of SH , we have U(SH) = U(S⇤

H).

Putting the three cases together, we have SL, SM , and SH , and by the argument provided above at
least one of these is a constant-factor approximation to U(S⇤). Therefore choosing the one with
highest objective value gives a constant-factor approximation.

Runtime. The algorithms for the cases above operate by identifying a collection of sets to test the
objective value of, and then evaluating the objective. Fortunately this can be done efficiently.

Lemma 5 (Efficient Objective Evaluation). Suppose that ⇢(a, M) is known for all a 2 {0, 1, . . . , n}.

For any set of items {xi, pi}i2[n], the objective U([n]) can be computed in O(n2) arithmetic opera-

tions.

This is proved in Appendix B.8.3. Applying this lemma to any candidate subset S shows that the
objective with respect S ✓ [n] can be computed in O(|S|

2) arithmetic operations.

By Lemma 3, the runtime of LOWVALUEL+
1 is n

c
p2min

max
n
1,log

⇣
1

pmin

⌘
,log(�

xmax)
o

. By Lemma 4 the
runtime of MEDIUMVALUEL+

1 is nO(1/p2
min), which is less than that of LOWVALUEL+

1 . Finally, the
high-value items case entails evaluating the objective in of a single set; by Lemma 5 this can be done
in O(n2).

The cost of combining these cases is polynomial in n, and so the brute force stage of LOWVALUEL+
1

dictates the runtime of ONESIDEDL+
1 , giving the claimed runtime of n

c 1
p2min

max
n
1,log

⇣
1

pmin

⌘
,log(�

xmax)
o

for some universal constant c > 0.

We now turn to the statements and proofs of the supporting lemmas.

The following lemma says that the solution can be downsampled so that its
P

i pi is at most a constant
factor from the original, while

P
i pixi is at least a constant factor from the original. Informally, we

simply select the appropriate number of items with the highest xi.

Lemma 6 (Downsampling Lemma). Consider an instance {pi, xi}i2[n] with xi � 0 for all i 2 [n].
Then for any S ✓ [n] and any � 2 [0, 1], there exists some T ✓ S that satisfies

µT � · µS (33a)

29

and

R(T) � �

✓
1�

1

� · pmin · |S|

◆
· R(S). (33b)

The proof of this lemma is provided in Appendix B.8.4. If we were allowed to choose items to be in
T fractionally, then condition (33b) would more closely mimic condition (33a) and the proof of this
lemma would be even more straightforward; as it is, condition (33b) must be slightly weaker since
we must sometimes leave the last item out of T in order to satisfy condition (33a).

This lemma supports the efficient search over rounded solutions which is conducted in LOWVALUEL+
1 .

Informally, it does this by proving that if some starting set satisfies certain properties, then either
there is a small subset with good objective value, or the search over rounded solutions will identify a
subset with good objective value.

Lemma 7 (Rounding Lemma). Consider the one-sided ⇢ = L+
1 loss. Consider any selection S ✓ [n]

that simultaneously satisfies

U(S) � 0 (34a)

µS
3

2
M (34b)

�V (S)
1

15
R(S). (34c)

Then there exists some subset T ✓ S that satisfies either

U(T) �
1

3
U(S) and |T |

24

pmin

, (35a)

or

U(T) � U(T 0) �
1

24
U(S), (35b)

where T 0
denotes the rounded instance of the set T .

The proof of this lemma is provided in Appendix B.8.5.

This next lemma bounds the penalty of a subset with expected realized size smaller than M . It uses
the independence of the events Zi to apply tail bounds to the probability that the realized size of the
subset exceeds M . When applied to a downsampled subset derived from Lemma 6, it will show that
the penalty decreases exponentially while the reward decreases only linearly, yielding a subset which
is within a small factor of the starting set’s objective but is much less balanced.

Lemma 8 (Downsampling Penalty Bound). Consider the one-sided ⇢ = L+
1 loss. Consider any

selection S ✓ [n] such that µS M . Then for all k 2 N+, the penalty term is bounded as

V (S) � · k · e
�2(M�µS)2

|S| ·

✓
1� e

�4(M�µS)k
|S|

◆�2

. (36)

The proof of this lemma is provided in Appendix B.8.6. Informally, under this loss the penalty
increases linearly in the extent to which the realized size of S exceeds M , while the probability that
such a violation occurs decreases exponentially. The parameter k is the size of the buckets for which
the analysis of these competing influences is performed.

B.8.1 Proof of Lemma 3

Recall that we define ⌧ := c
p2

min
max

n
1, log

⇣
1

pmin

⌘
, log

⇣
�

xmax

⌘o
in Line 2 of Algorithm 5. Let c0 be

the universal constant identified in Lemma 2. With pmin 1, it is straightforward to verify that there
exists a universal constant c, such that ⌧ is bounded by

⌧ >
c0

pmin
log

✓
4

pmin

◆
, (37a)

⌧ �
24

pmin
(37b)

⌧ �
9

2

✓
1

p2min

✓
7 + log

✓
1

pmin

◆
+ 3 log

✓
�

xmax

◆◆◆
(37c)

30

We use these bounds in the remaining proof.

In Line 2-5, we evaluate the objective for each selection S with |S| ⌧ by brute-force. Hence, if
|S⇤

| ⌧ , then the optimal selection is correctly identified. It remains to consider the case when
|S⇤

| > ⌧ .

When |S⇤
| > ⌧ , we apply the Mean Bound (Lemma 2) with ✏ = pmin

4 . We have either

|S⇤
|

c0
pmin

log

✓
4

pmin

◆
(38a)

or

µ⇤

101

100
M. (38b)

The bound (37a) on ⌧ contradicts (38a). Hence we have that (38b) holds, namely µ⇤

101
100M from.

We call a set S “balanced” if �V (S) > 1
15R(S), that is, the penalty term is a nontrivial portion of

the reward term. Otherwise, we call the set “unbalanced”. We consider the following two cases
separately depending on whether the set S⇤ is balanced or not.

Case 1: |S⇤
| > ⌧ and �V (S⇤) 1

15R(S⇤).

Note that the optimal selection always has a nonnegative objective for the L+
1 loss. That is, U(S⇤) � 0.

Hence, conditions (34) are satisfied. Applying the Rounding Lemma (Lemma 7), there exists some
T ✓ S⇤ such that

U(T) �
1

3
U(S⇤) and |T |

24

pmin
, (39a)

or

U(T)
(i)
� U(T 0) �

1

24
U(S⇤), (39b)

In this first case (39a), by the bound (37b) on ⌧ , we have

⌧ �
24

pmin
� |T |.

Hence, the selection T is included in the brute-force search. We obtain a constant-factor approxima-
tion to U(S⇤) in the brute-force search over small solutions (Line 5 of Algorithm 5).

In the second case (39b), if |T | ⌧ , then again the selection T is included in the brute-force search
in Line 5 of Algorithm 5, and the brute-force identifies a solution which is at least as good and hence
a constant-factor approximation. If |T | > ⌧ , then Line 6 to Line 12 search over all possible rounded
solutions, including T 0 which is a constant-factor approximation due to (39b). Hence, it identifies a
solution which is at least as good and hence a constant-factor approximation. identifies some bT for
which U(bT) � U(bT 0) � U(T 0), which provides a constant-factor approximation to U(S⇤).

Case 2: |S⇤
| > ⌧ and �V (S⇤) > 1

15R(S⇤).
As an overview of this case, we appeal to the Downsampling Lemma (Lemma 6) with a small
downsampling ratio in order to obtain some T ✓ S, and then argue that �V (T) 1

15R(T). Then we
obtain a constant-factor approximation to U(T) by solving the rounded problem in Case 1.

Downsampling to an unbalanced set. Starting with the optimal selection S⇤, we apply the Down-
sampling Lemma (Lemma 6) construction some T ✓ S⇤ such that this T is unbalanced but still
yields a large objective. Specifically, applying Lemma 6 with � = 1

2 , there exists some T ✓ S⇤ that
satisfies µT

µ⇤

2 and

R(T) �

✓
1

2
�

1

|S⇤| · pmin

◆
R(S⇤). (40)

We assume that the selection T is sufficiently unbalanced as:

V (T)
R(T)

15
. (41)

31

We now identify a constant-factor approximation by similar arguments as in Case 1. Specifically,
under the assumption (41), the objective of T satisfies

U(T)
(i)
�

14

15
R(T)

(ii)
�

14

15
·

✓
1

2
�

1

|S⇤| · pmin

◆
R(S⇤)

�
14

15
·

✓
1

2
�

1

|S⇤| · pmin

◆
U(S⇤), (42)

where step (i) is due to the assumption (41), and step (ii) is due to (40). By the assumption |S⇤
| � ⌧

and the bound (37b) on ⌧ , we have

|S⇤
| � ⌧ �

24

pmin
. (43)

Applying (43) to inequality (42), the selection T is a constant-factor approximation to S⇤ with
U(T) � 1

4U(S⇤). Since T is sufficiently unbalanced by assumption (41), using the same arguments
as in Case 1 to the set T identifies a selection that is a constant-factor approximation to T , and
therefore to U(S⇤). It now remains to prove (41).

Proving (41). Recall from (38b) that µ⇤

101
100M . Hence, we have µT

µ⇤

2
101
200M < M .

Then we provide an upper bound on the variance term V (T) by applying Lemma 8 to the set T .
Applying Lemma 8 with k = 1, we have

V (T) � · Exp
✓
�2(M � µT)2

|T |

◆

| {z }
T1

·

✓
1� e

�4(M�µT)
|T |

◆�2

| {z }
T2

. (44)

We bound the two terms in (44) separately.

Recall from (38b) that µ⇤

101
100M . We then have

M � µT �

✓
100

101
�

1

2

◆
µ⇤ >

1

3
µ⇤. (45)

Using (45), we bound the term T1 as

T1 = Exp
✓
�2(M � µT)2

|T |

◆
 Exp

✓
�

2(µ⇤)2

9|T |

◆
(i)
 Exp

✓
�

2

9
p2min · |S⇤

|

◆

(ii)

1

720

p3minxmax

�

where step (i) is true by plugging in µ⇤
� |S⇤

|·pmin, and |S⇤
| � |T | due to T ✓ S⇤; step (ii) is true by

the fact that |S⇤
| � ⌧ with (37c). Let imax be the item with the highest value. With M � 1, the utility

for selecting the item with the highest value is U({imax}) = R({imax}) = pimaxxmax � pminxmax.
Hence, the reward of the optimal selection is bounded by R(S⇤) � U(S⇤) � U({imax}) � pminxmax.
Hence,

T1
p2min
45

R(S⇤)

�
, (46)

Using again M � µT �
1
3µ⇤
�

1
3 · |S⇤

| · pmin and |S⇤
| � |T |, we bound the term T2 as

T2 =

✓
1� e

�4(M�µT)
|T |

◆�2

⇣
1� e

�4µ⇤
9|S⇤|

⌘�2

 (1� e�
4
9pmin)�2

16

p2min
, (47)

where step (i) is true because it can be shown by algebra that

1� e�
4
9p �

1

4
p � 0 for every p 2 [0, 1].

Plugging term T1 from (46) and term T2 from (47) back to (44) yields

V (T) � ·
1

45
R(S⇤)

(i)

1

15�

✓
1

2
�

1

|S⇤| · pmin

◆
R(S⇤)

(ii)

R(T)

15�
, (48)

where step (i) is true by |S⇤
| � ⌧ � 24

pmin
due to (37b), and step (ii) is true due to (40), proving (41).

32

Runtime. We conclude by analyzing the runtime of LOWVALUEL+
1 .

The number of sets S such that |S| ⌧ is bounded by |L| = 2⌧ n⌧ . For each S 2 L, we compute
U(S) in O(⌧2). By Lemma 5, the objective of each such set may be evaluated in O(⌧2) operations,
and so the runtime of evaluating the objective for all of these small subsets is nO(⌧).

We also compute the objective for the O(n|Q|) rounded sets identified in Algorithm 5, where
|Q|

l
log2(

1
pmin

)
m

, which again by Lemma 5 can be done in O(n2) operations per set. This is

therefore nO(⌧) also.

All of the other simple steps of LOWVALUEL+
1 are also polynomial in n or ⌧ . Therefore, its overall

runtime is nO(⌧).

B.8.2 Proof of Lemma 4

First, we observe that when n 36
p2

min
, we find the optimal solution exactly by brute forcing over all

possible solutions S ✓ [n] (Line 2 of Algorithm 6). Hence, in the rest of the proof we assume that
n � 36

p2
min

. We discuss the two cases of µ[n] M (Line 6) and µ[n] > M (Line 4) separately.

We start by establishing a reformulation of the objective under L+
1 penalty which is convenient when

all items have value close to �, and a pair of upper and lower bounds.

Bounding the objective. Recall that our objective is of the form U(S) = EZ [FS(Z)], where the
random vector Z 2 {0, 1}

n is the Bernoulli realization of each item, and FS(Z) is the realized utility:

FS(Z) :=
X

i2S

Zixi � �

X

i2S

Zi �M

!

+

=
X

i2S

Zixi � � · max

0,
X

i2S

Zi �M

!

= min

X

i2S

Zixi,
X

i2S

Zixi � � ·

X

i2S

Zi �M

!!
. (49)

Plugging in the assumption that (1� ✏) · � xi � to (49), and recalling that |SZ | :=
P

i2S Zi,
we derive the upper bound

FS(Z) min

(
� · |SZ |, � · M +

X

i2S

Zi(xi � �)

)

FS(Z)

�
 min {|SZ |, M} , (50a)

and the lower bound

FS(Z) � min {(1� ✏)� · |SZ |, (1� ✏)� · |SZ |� �(|SZ |�M)}

FS(Z)

�
� min {(1� ✏) · |SZ |, M � ✏ · |SZ |} . (50b)

We denote ✏ = pmin
4 for notational simplicity. As an overview, for the two cases to be presented below,

we apply the upper bound (50a) to the optimal set S⇤, and the lower bound (50b) to our candidate
sets which we are proving are competitive with S⇤.

Case 1: µ[n] > M and n � 36
p2

min
. Consider any arbitrary set S ✓ [n] that satisfies (cf. Line 4 of

Algorithm 6):

M

X

i2S

pi < M + 1. (51)

33

Such a set S always exists because each pi 1. Furthermore, such a set in S can be found efficiently,
by greedily adding items to the set in an arbitrary order one-by-one until condition (51) is satisfied.
We denote by E the event that at most half of the Bernoulli random variables from S are 1. Formally,
E := {|SZ | M/2}. By the multiplicative Chernoff bound,

P(E) = P
⇣
|SZ |

M

2

⌘ (i)
 Pr

⇣
|SZ |

µS

2

⌘
 e�

µS
8

(ii)
 e�

M
8 , (52)

where steps (i) and (ii) are true by the construction of S in (51). We derive a lower bound on FS(Z)
depending on E . Conditional on E , the penalty term is 0 and we have FS(Z) � 0. We now consider
the case conditional on E . By the assumption of µS < M + 1 from (51), we have the deterministic
relation |SZ |

M+1
pmin

. Applying the lower bound in (50b), conditional on E ,

FS(Z) � � · min

⇢
(1� ✏) ·

M

2
, M � ✏ · |SZ |

�

� � · min

⇢
(1� ✏)M

2
, M �

✏(M + 1)

pmin

�

= �M · min

⇢
1� ✏

2
, 1�

✏(M + 1)

M · pmin

�

(i)
= �M ·

1� ✏

2
where step (i) holds because by the assumption ✏ pmin

4 and M � 1 (recall that M 2 N+), we have
✏

pmin

1
4 and M+1

M 2. Therefore, we have 1 � ✏(M+1)
M ·pmin

�
1
2 . Taking an expectation over Z, we

then have
U(S) = E[FS(Z)]

� 0 · Pr (E) +
(1� ✏)�M

2
· Pr

�
E
�

(i)
�

(1� ✏)(1� e�
M
8)

2
· �M

(ii)
�

(1� ✏)(1� e�
M
8)

2
· U(S⇤),

where step (i) is true by (52), and step (ii) is true by applying (50a) to the optimal selection S⇤. Since
✏ = pmin

4
1
4 and M � 1 by assumption, this guarantees a constant-factor approximation of S to the

optimal subset S⇤.

Case 2: µ[n] M and n � 36
p2

min
. In this case n is large enough to apply concentration bounds, so

we downsample the set [n] by a factor of two and discount the probability that |SZ | exceeds M . This
differs from Case 1 in that we cannot compare our objective against � · M . In particular, we consider
any arbitrary set S ✓ [n] that satisfies (cf. Line 6 of Algorithm 6):

µ[n]

3
 µS

µ[n]

2

M

2
. (53)

We first show that such a set S always exists. Note that we have µ[n] � npmin � np2min � 36 by
the assumption of n � 36

p2
min

. Hence, µ[n]

2 �
µ[n]

3 � 1. Since each pi 1, a set S always exists.
Moreover, it can be found efficiently, by greedily adding items one-by-one in any arbitrary order until
condition (53) is satisfied. In what follows, we separately bound the values of U(S) and U(S⇤). We
use an intermediate quantity of the expectation of the random variable |SZ | truncated at 2µS , defined
by

G(|SZ |) := E
h
|SZ | · {|SZ | 2µS}

i
.

Lower bound on U(S). Due to the condition (53) that µS
M
2 , we have

G(|SZ |) := E
h
|SZ | · {|SZ | 2µS}

i

 E [|SZ | · {|SZ | M}] . (54)

34

We claim the deterministic relation

min

⇢
|SZ |,

M � ✏|SZ |

(1� ✏)

�
� |SZ | · {|SZ | M}. (55)

To see (55), we observe that when |SZ | M , the left-hand side has

1

1� ✏
(M � ✏|SZ |) �M � |SZ |. (56a)

When |SZ | > M , the right-hand side is zero, and the left-hand side is nonnegative, because

M � 2µS � 2pmin|S| � 2pmin|SZ | � ✏|SZ |. (56b)

Plugging (55) to (54), we have

G(|SZ |) Emin

⇢
|SZ |,

M � ✏|SZ |

1� ✏

�

1

1� ✏
Emin

⇢
|SZ |,

M � ✏|SZ |

1� ✏

�

=
1

(1� ✏)2
E
h
min {(1� ✏) · |SZ |, M � ✏ · |SZ |}

i

(i)

1

(1� ✏)2
·
U(S)

�
, (57)

where step (i) follows from (50b).

Upper bound on U(S⇤). We decompose the expectation of |SZ | as

E|SZ | = G(|SZ |) + E [|SZ | · {|SZ | > 2µS}] ,

and hence

G(|SZ |) = µS � E
h
|SZ | · {|SZ | > 2µS}

i

(i)
� µS � E

h
|SZ | · {|SZ | > M}

i

= µS � E
h
M · {|SZ | > M} + (|SZ |�M) · {|SZ | > M}

i

= µS �M · P
⇣
|SZ | > M

⌘

| {z }
T1

�E
h
(|SZ |�M)+

i

| {z }
T2

, (58)

where step (i) is true by the condition (53) that µS
M
2 . We now analyze the two terms T1 and

T2 separately. We define � such that M = (1 + �)µS , and we have � � 1 by the construction of S
in (53).

For the term T1, we apply the multiplicative Chernoff bound. We have

P
⇣
|SZ | > M

⌘
 P

⇣
|SZ | > 2µS

⌘
 e�

µS
3 .

Then

T1 2µS · e�
µS
3

(i)

e

6
, (59)

where it can verified that step (i) holds for any µS 2 R.

For the term T2, note that T2 = V (S)
� , and by condition (53) we have µS

M
2 M . Applying

Lemma 8 with k = d 1
pmin
e yields

T2

⇠
1

pmin

⇡
· Exp

✓
�2(M � µS)2

|S|

◆
·

✓
1� e

�4(M�µS)
|S|

l
1

pmin

m◆�2

.

35

Using the relations |S|
µS

pmin
and M � µS � µS , we have

T2

⇠
1

pmin

⇡
· Exp

✓
�2µ2

S

µS/pmin

◆
·

✓
1� e

�4µS
µS/pmin

l
1

pmin

m◆�2

=

⇠
1

pmin

⇡
· Exp (�2pminµS) ·

�
1� e�4

��2

⇠
1

pmin

⇡
·
�
1� e�4

��2
. (60)

Plugging term T1 from (59) and term T2 from (60) back to (58) yields

G(|SZ |) � µS �
6

e
� 1.04 ·

⇠
1

pmin

⇡
.

Recall from the construction of S in (53) that µ[n]

3 µS
µ[n]

2 . Furthermore, by the assumption
that n � 36

p2
min

, we have

µ[n] � npmin �
36

pmin
� max

⇢
36, 18

⇠
1

pmin

⇡�
. (61)

Hence, we have

G(|SZ |) �
µ[n]

3
�

µ[n]

12
�

µ[µS]

12
�

µ[n]

6
.

Applying inequality (50a) with the fact that E[|SZ |] µ[n], we have

U(S⇤) � · µ[n]

and hence

G(|SZ |) �
µ[n]

6
�

U(S⇤)

6�
. (62)

Finally, combining (57) and (62) yields

U(S)

U(S⇤)
�

�(1� ✏)2 · G(|SZ |)

6� · G(|SZ |)
=

(1� ✏)2

6
,

yielding a constant-factor approximation with ✏ = pmin
4

1
4 .

Runtime. MEDIUMVALUEL+
1 (Algorithm 6) begins by brute forcing over small sets, and there

are 2n 236/p
2
min n36/p2

min such sets. By Lemma 5, the objective value for each such set can be
evaluated in polynomial time, and so the runtime in this case is n3+36/p2

min .

For the other two cases (Line 3 and Line 5), the chosen set can be identified in O(n). Therefore the
overall runtime of MEDIUMVALUEL+

1 is nO(1/p2
min).

B.8.3 Proof of Lemma 5

Recall from (1) that the objective is computed as U([n]) = R([n])� � · V ([n]), with

R([n]) :=
X

i2[n]

pixi

V ([n]) := E ⇢

0

@
X

i2[n]

Zi, M

1

A .

It is clear that computing the reward term R may be done in O(n) operations. We now show that the
penalty term V can be computed in O(n2) operations.

36

We start by rewriting the term V as:

V ([n]) =
nX

k=0

P
⇣ X

i2[n]

Zi = k
⌘

· ⇢(k, M) (63)

For any integer m 2 {0, 1, . . . , n}, we define the (m + 1)-dimensional vector {w(m)
}
m
k=0 by

w(m)
k := P

⇣ X

i2[m]

Zi = k
⌘
.

Since we assume that the relevant values of ⇢ are known at the outset, it suffices to show that the
probabilities involved in (63), or equivalently the (n + 1)-dimensional vector {w(n)

k }
n
k=0, can be

computed in O(n2) operations.

We iteratively compute the vector of {w(m)
k }

m
k=0 for m 2 {0, 1, . . . , n}. First, we observe that

w(0) = 0. Then we observe the iterative relation that for each m 2 [n] and k 2 {0, . . . , m}, we have

w(m)
k = pm · w(m�1)

k�1 + (1� pm) · w(m�1)
k .

Hence, given the values of the m-dimensional vector {w(m�1)
k }

m�1
k=0 , computing each term w(m)

k
takes c operations, where c is a universal constant. Hence, given the values of the m-dimensional
vector w(m�1)

· , it takes c(m+1) operations to compute the (m+1)-dimensional vector w(m)
· . Hence,

the number of operations for computing the vector w(n)
· , by iteratively taking m 2 {1, 2, . . . , n}, is

c
nX

m=1

(m + 1) = O(n2),

completing the proof.

B.8.4 Proof of Lemma 6

We re-index the items {pi, xi}i2[n] in decreasing order of the value xi, such that x1 � . . . � xn.

First, note that if p1 > � · µS , then T = ; satisfies the lemma. Clearly for this T (33a) holds. Then
because R(S) � 0 we also have

0 > � �
pi
µS
� � �

1

µS
� �

✓
1�

1

� · pmin|S|

◆
,

and so multiplying by R(S) yields

R(T) = 0 > �

✓
1�

1

� · pmin|S|

◆
· R(S),

satisfying (33b).

Otherwise we assume that p1 � · µS . We construct a set T be selecting as many items as possible
in the decreasing order of the value xi, subject to the constraint that (33a) is satisfied. Formally, we
consider the set T := {1, . . . , t}, where

t := max

(
m 2 [n] :

mX

i=1

pi � · µS

)
.

By the definition of t, the set T satisfies (33a). It remains to show that the set T also satisfies (33b).

If � = 1 then the resulting T = S clearly suffices. Otherwise � < 1, and so we have t < n (we
assume that each item has strictly positive probability without loss of generality. By the definition of
t, we have

Pt+1
i=1 pi > � · µS . Equivalently,

µT > � · µS � pt+1. (64)

37

In what follows, we use the following inequality that holds for any for {ai}i2[n] and {bi}i2[n] with
bi � 0:

min
i

ai

bi

P
i aiP
i bi
 max

i

ai

bi
. (65)

To see why this is true, note that for any {ri}i2[n] and {wi}i2[n], with wi � 0 and
P

i wi = 1, we
have

min
i

ri
X

i

wiri max
i

ri.

We recover (65) by setting ri = ai
bi

and wi = biP
i bi

.

Applying (65) yields

R(T)

µT
=

P
i2T pixiP
i2T pi

(i)
� xt

(ii)
�

P
i2S\T pixiP
i2S\T pi

=
R(S \ T)

µS � µT
, (66)

where steps (i) and (ii) hold because the items are sorted in the decreasing order of xi. Plugging
R(S) = R(T) + R(S \ T) into (66) and rearranging yields

R(T) �
µT

µS
R(S)

(i)
�

✓
� �

1

µS

◆
R(S)

(ii)
�

✓
� �

1

pmin · |S|

◆
R(S),

where step (i) is true by (64), and step (ii) follows again from the fact that µS � pmin|S|. Hence, the
set T satisfies (33b), completing the proof.

B.8.5 Proof of Lemma 7

To begin, we partition S into “high,” “bucketable,” and “leftover” items according to their pi so that
S = H tB t L in Algorithm 7.

Algorithm 7 PARTITION

Require: S 2 [n], p 2 [0, 1]n

Ensure: A partition S = H tB t L with B = D1 tD2 tD3

1: H {i 2 S : pi �
1
4}

2: L {}

3: D1, D2, D3 {}

4: for ` = 2, . . . ,
l
log2(

1
pmin

)
m
� 1 do

5: B`
 {i 2 S : 2�(`+1)

 pi < 2�`
}

6: for j = 0, . . . ,
j
|B`

|

3

k
� 1 do

7: B`
j {b`3j+1, b

`
3j+2, b

`
3j+3}

8: D1 D1 [{b`3j+1}

9: D2 D2 [{b`3j+2}

10: D3 D3 [{b`3j+3}

11: L L [{bj̀
3 |B`|

3

k
+1

, . . . , b`
|B`|

}

12: return S = H tB t L with B = D1 tD2 tD3

Algorithm 7 first let H = {i 2 S : pi �
1
4}, the high-probability items. Next consider the collection

of buckets B` = {i 2 S \ H : 2�(`+1)
 pi < 2�`

}. Note that the number of buckets is at most
log2(

1
pmin

). Form the contents of each B` into groups of three, {B`
j}j (that is, the set

��B`
j

�� = 3 for

38

each j. If the number of items in B` is not divisible by 3, we leave them to L). Let B = [` [j B`
j ,

and let L be the leftover L := S \ (H [B) which do not belong to groups of three.

Next note that R(H) + R(B) + R(L) = R(S) and that V (H), V (B), V (L) V (S). We handle
the cases when each of these is large separately.

Case 1: R(H) � R(S)
3 . If |H|

24
pmin

then the set H satisfies (35a). We now consider the case
|H| > 24

pmin
, and construct a set T ✓ H that satisfies (35b).

Applying Lemma 6 with k = 6 yields a set T ✓ H such that

µT
1

6
µH (67a)

and

R(T)
(i)
�

1

6
·

✓
1�

6

pmin · |H|

◆
· R(H)

(ii)
�

1

8
R(H), (67b)

where step (i) follows from Lemma 6 and step (ii) is true by the assumption that |H| > 24
pmin

. By the
definition of H , we have pi � 1/4 for each i 2 H , and hence

|T | 4µT

(i)

2

3
µH

2

3
µS

(ii)
 M,

where step (i) is true by (67a), and step (ii) is true by the assumption that µS
3
2M . Hence, we have

V (T) = V (T 0) = 0. By the rounding procedure, we have R(T 0) = R(T). Therefore,

U(T 0) = U(T) = R(T)
(i)
�

1

8
R(H)

(ii)
�

1

24
R(S) �

1

24
U(S), (68)

where step (i) is due to (67b) and step (ii) is true by the assumption of this case. Hence, the set T
satisfies the condition (35b).

Case 2: R(L) � R(S)
3 . Recall that the number of buckets is at most log2(

1
pmin

). Since there are at
most two elements in L from each bucket, the number of items in L is at most |L| 2 log2(

1
pmin

) <
2

pmin
, satisfying condition (35a).

Case 3: R(B) � R(S)
3 . Further partition B into three equal-sized sets B = D1 t D2 t D3 by

arbitrarily assigning each member of each bucket-group B`
j to a distinct D`, as performed in each

iteration of line 6. Without loss of generality, assume that D1 has the maximum reward among these
three sets, namely R(D1) � max{R(D2), R(D3)}, so that R(D1) �

R(B)
3 �

R(S)
9 .

In what follows, we first show that the set D1 satisfies (35b) under the assumption
V (D0

1) V (S). (69)
Then we show that assumption (69) always holds.

Proving (35b) for set D1. For the reward term, we have

R(D0

1) = R(D1) �
1

9
R(S).

For the penalty term, recall that we assume � · V (S) 1
15R(S). Combining the reward term and the

penalty term, we have
U(D0

1) = R(D0

1)� � · V (D0

1)
(i)
�

1

9
R(S)� � · V (S)

�
1

9
R(S)�

1

15
R(S)

�
1

24
U(S),

where step (i) uses assumption (69). Hence, the set D0

1 satisfies condition (35b). It remains to prove
assumption (69).

39

Proving (69). For any sets S1 and S2, we say that S1 stochastically dominates S2, if the random
variable

P
i2S1

Zi stochastically dominates the random variable
P

i2S2
Zi. Namely, for any t 2 R,

we have

P
⇣X

i2S1

Zi � t
⌘
� P

⇣X

i2S2

Zi � t
⌘

Since the one-sided loss L+
1 is nondecreasing, it can be verified that if S1 stochastically dominates

S2, then V (S1) � V (S2).

By construction we have B ✓ S, and hence S stochastically dominates B. If B stochastically
dominates D0

1, then we have

V (D0

1) V (B) V (S),

proving (69). It remains to prove that B stochastically dominates D0

1.

For each bucket group Bz = B`
j , let Bz = {p1, p2, p3} with p1 2 D1. Then let the associated

random variables be

Xz := Ber(q1) and Yz := Ber(p1) + Ber(p2) + Ber(p3),

where qi is obtained by rounding pi up to the nearest power of two. Note that
P

i2D0
1
Z 0

i =
P

z Xz ,
where the Z 0

i are the realizations derived from the rounded probabilities, and
P

i2B Zi =
P

z Yz .
Moreover, {Xz}z are independent, and {Yz}z are independent. It suffices to show the stochastic
dominance of Yz over Xz for each bucket group bz , and then the stochastic dominance of B over D0

1
follows.

To show the stochastic dominance of Yz over Xz , we consider the probabilities

P(Xz = 0) = 1� q1
P(Yz = 0) = (1� p1)(1� p2)(1� p3),

and show that P(Xz = 0) � P(Yz = 0). By the construction of each bucket group B`, we have
p1, p2, p3 2 [2�(l+1), 2�l) and hence q1 = 2�l. Consequently, we have p1, p2, p3 �

q1
2 . We have

P(Xz = 0) = 1� q1
(i)
�

⇣
1�

q1
2

⌘3
� (1� p1)(1� p2)(1� p3) = P(Yz = 0).

where it can be verified that step (i) holds for every q1 2 [0, 1
4]. Hence, Yz stochastically dominates

Xz , completing the proof of (69).

B.8.6 Proof of Lemma 8

For notational simplicity, we assume � = 1 without loss of generality, and denote the random variable
T :=

P
i2S Zi. We write the penalty term V (S) as

V (S) = E (T �M)+

=
1X

i=1

i · P
⇣
T = M + i

⌘
, (70)

We consider the probability that the value of T lies in each interval (M + ik, M + (i + 1)k], for each
integer i � 0. We have

V (S)
1X

i=0

(i + 1)k · P
⇣
M + ik < T M + (i + 1)k

⌘

 k ·

1X

i=0

(i + 1) · P
⇣
T > M + ik

⌘
.

40

We bound each term P
⇣
T > M + ik

⌘
by Hoeffding’s inequality. We have E[T] = µS M by

assumption. Hence, by Hoeffding’s inequality,

P
⇣
T > M + ik

⌘
 Exp

✓
�

2(M + ik � µS)2

|S|

◆

= Exp
✓
�

2(M � µS)2

|S|

◆
· Exp

✓
�

4(M � µS)ik + 2(ik)2

|S|

◆

 Exp
✓
�

2(M � µS)2

|S|

◆
· Exp

✓
�

4(M � µS)ik

|S|

◆
. (71)

Plugging (71) into (70) yields

V (S) k · Exp
✓
�

2(M � µS)2

|S|

◆
·

1X

i=0

(i + 1) · Exp
✓
�

4(M � µS)ik

|S|

◆

 k · Exp
✓
�

2(M � µS)2

|S|

◆
·

1X

i=0

(i + 1) ·

✓
e�

4(M�µS)k
|S|

◆i

(i)
= k · Exp

✓
�

2(M � µS)2

|S|

◆
·

✓
1� e

�4(M�µS)k
|S|

◆�2

,

where step (i) uses the fact that for any 0 < x < 1, we have
1X

i=0

(i + 1)xi =
1X

t=0

1X

i=t

xi =
1X

i=0

xt

1� x
=

1

1� x

1X

i=0

xt =
1

(1� x)2
.

B.9 Proof of Theorem 5

We fix any arbitrary problem instance (x, p,�, M) for the L1 loss, and problem instance (x0, p, �0, M)
for the L+

1 loss, with

x0

i := xi � �

�0 := 2�.

We fix any arbitrary S ✓ [n], and demonstrate the desired equality

UL1(S) = UL+
1
(S0)� � · M. (72)

by induction on the number of elements in S. First, we consider |S| = 0, or equivalently S = ;.
Then it can be verified that

UL1(S) = ��M

UL+
1
(S0) = 0,

satisfying (72).

Next suppose that (72) holds for all set S with |S| k. We consider the marginal change to the
objective when adding any item j 62 S to the set S. Let Sj = for some S with |S| < j. The marginal
change to the objective with the L1 loss is

UL1(S [{j})� UL1(S) = pjxj + � · EZS[{j}

"�����
X

i2S

Zi + Zj �M

������

�����
X

i2S

Zi �M

�����

#

= pjxj + � · pj · EZS

"�����
X

i2S

Zi + 1�M

������

�����
X

i2S

Zi �M

�����

#

| {z }
T

(73)

41

Note that the term T satisfies

T =

⇢
1 if

P
i2S Zi �M

�1 if
P

i2S Zi < M.
(74)

Using the fact (74) in (73), we have

UL1(S [{j})� UL1(S) = pjxj + � · pj

"
P
⇣X

i2S

Zi �M
⌘
� P

⇣X

i2S

Zi < M
⌘#

= pjxj + � · pj

"
2 · P

⇣X

i2S

Zi �M
⌘
� 1

#

= pj(xj � �) + 2�pj · P
⇣X

i2S

Zi �M
⌘

= pjx
0

j + �0pj · P
⇣X

i2S

Zi �M
⌘
. (75)

Using a similar analysis, the marginal change to the objective with the L+
1 loss is

UL+
1
(S [{j})� UL+

1
(S) = pjx

0

j + �0
· EZS[{j}

"⇣X

i2S

Zi + Zj �M
⌘

+
�

⇣X

i2S

Zi �M
⌘

+

#

= pjx
0

j + �0pj · P
⇣X

i2S

Zi �M
⌘
. (76)

Combining (75) and (76) demonstrates that the marginal change is equal for the L1 and L+
1 losses,

under their respective instances. Therefore, applying the induction hypothesis that (72) holds for all
S with |S| k completes the induction step.

42

	Introduction
	Problem Formulation
	Theoretical Results
	Warm-Up: Penalty Only
	The General Objective
	An FPTAS for L2 Loss
	Approximations for L1+ Loss

	Numerical Experiments
	Experimental Setting
	Experimental Results

	Discussion
	Additional Experiments
	Comparison to Optimal
	Other Objectives

	Proofs
	Preliminaries
	Proof of Lemma 1
	Proof of Lemma 2

	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 3(a)
	Proof of Theorem 3(b)
	Proof of Theorem 3(c)

	Proof of Theorem 4
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8

	Proof of Theorem 5

