APPENDIX

A Additional Technical Results

Extra notations. We let $\mathbb{B}_{r}(z)$ denote an open ball of radius r centered at z, and let $\|M\|_{F}$ denote the Frobenius norm. $\|\cdot\|_{2}$ is understood as the spectral norm when it is used with a matrix. Further, for any vector-valued function $h: \mathbb{R}^{d_{\theta}} \rightarrow \mathbb{R}^{l}$ of arbitrary dimensionality l whose first-order partial derivatives exist, we denote its Jacobian matrix with respect to a variable θ by $\boldsymbol{J}_{\theta}(h) \in \mathbb{R}^{l \times d_{\theta}}$.

Here we present additional notions and results which we will use for proofs.
Definition A. 1 (Quadratic growth condition). For each $\beta^{*} \in \mathrm{~s}^{*}(\mathrm{P})$, there exists a neighborhood $\mathbb{B}_{r}\left(\beta^{*}\right)$ with some $r>0$ and a positive constant κ such that

$$
\mathcal{L}(\beta) \geq \mathcal{L}\left(\beta^{*}\right)+\kappa \operatorname{dist}\left(\beta, \mathrm{s}^{*}(\mathrm{P})\right)
$$

for all $\beta \in \mathbb{B}_{r}\left(\beta^{*}\right)$.
The above quadratic growth condition is widely used in nonlinear programming and can be ensured by various forms of second order sufficient conditions [e.g., 51]. Next, we provide the following lemma that underpins the construction of our estimator in Section 3 .
Lemma A.1. For some fixed functions $g: \mathcal{Y} \rightarrow \mathbb{R}$ and $h: \mathcal{X} \rightarrow \mathbb{R}$, let $\mu_{g, a}=\mathbb{E}[g(Y) \mid X, A=a]$, so $\eta=\left\{\pi_{a}, \mu_{g, a}\right\}$. For any random variable T, let

$$
\varphi_{a}(T ; \eta)=\frac{\mathbb{1}(A=a)}{\pi_{a}(X)}\{T-\mathbb{E}[T \mid X, A]\}+\mathbb{E}[T \mid X, A=a]
$$

denote the uncentered efficient influence function for the parameter $\mathbb{E}\{\mathbb{E}[T \mid X, A=a]\}$. Also, define our parameter and the corresponding estimator by $\psi_{g, a}=\mathbb{E}\left[g\left(Y^{a}\right) h(X)\right]$ and $\widehat{\psi}_{g, a}=$ $\mathbb{P}_{n}\left\{\varphi_{a}(g(Y) ; \widehat{\eta}) h(X)\right\}$, respectively. If we assume that:
(D1) either i) $\hat{\eta}$ are estimated using sample splitting or ii) the function class $\left\{\varphi_{a}(\cdot ; \eta): \eta \in\right.$ $\left.(0,1)^{2} \times \mathbb{R}^{2}\right\}$ is Donsker in η
(D2) $\mathbb{P}\left(\widehat{\pi}_{a} \in[\epsilon, 1-\epsilon]\right)=1$ for some $\epsilon>0$
(D3) $\left\|\varphi_{a}(\cdot ; \widehat{\eta})-\varphi_{a}(\cdot ; \eta)\right\|_{2, \mathbb{P}}=o_{\mathbb{P}}(1)$,
Then we have

$$
\left\|\widehat{\psi}_{g, a}-\psi_{g, a}\right\|_{2}=O_{\mathbb{P}}\left(\left\|\widehat{\pi}_{a}-\pi_{a}\right\|_{2, \mathbb{P}}\left\|\widehat{\mu}_{g, a}-\mu_{g, a}\right\|_{2, \mathbb{P}}+n^{-1 / 2}\right) .
$$

If we further assume that

$$
\begin{equation*}
\left\|\widehat{\psi}_{g, a}-\psi_{g, a}\right\|_{2, \mathbb{P}}\left\|\widehat{\mu}_{g, a}-\mu_{g, a}\right\|_{2, \mathbb{P}}=o_{\mathbb{P}}\left(n^{-1 / 2}\right) \tag{D4}
\end{equation*}
$$

then

$$
\begin{equation*}
\sqrt{n}\left(\widehat{\psi}_{g, a}-\psi_{g, a}\right) \xrightarrow{d} N\left(0, \operatorname{var}\left\{\varphi_{a}(g(Y) ; \eta) h(X)\right\}\right), \tag{5}
\end{equation*}
$$

and the estimator $\widehat{\psi}_{g, a}$ achieves the semiparametric efficiency bound, meaning that there are no regular asymptotically linear estimators that are asymptotically unbiased and with smaller variance 4^{4}

Proof. The proof is indeed very similar to that of the conventional doubly robust estimator for the mean potential outcome, and we only give a brief sketch here.
Let us introduce an operator $\mathcal{I F}: \psi \rightarrow \varphi$ that maps functionals $\psi: \mathbb{P} \rightarrow \mathbb{R}$ to their influence functions $\varphi \in L_{2}(\mathbb{P})$. Then it suffices to show that $\mathcal{I F}\left(\psi_{g, a}\right)=\mathcal{I F}\left(\mathbb{E}\left[\mu_{g, a}(X) h(X)\right]\right)=$ $\varphi_{a}(g(Y) ; \eta) h(X)$. In the derivation of the efficient influence function of the general regression

[^0]function in Section 3.4 of [23], when h is known and only depends on X, it is clear to see that pathwise differentiability [23], Equation (6)] still holds when $h(x)$ is multiplied and thus
\[

$$
\begin{aligned}
\mathcal{I} \mathcal{F}\left(\mu_{g, a}(x) h(x)\right) & =\frac{\mathbb{1}(X=x, A=a)}{\mathbb{P}(X=x, A=a)}\left\{g(Y) h(x)-\mu_{g, a}(x) h(x)\right\} \\
& =\mathcal{I} \mathcal{F}\left(\mu_{g, a}(X)\right) h(X) .
\end{aligned}
$$
\]

Hence, $\mathcal{I F}\left(\mathbb{E}\left[\mu_{g, a}(X) h(X)\right]\right)=\varphi_{a}(g(Y) ; \eta) h(X)$.
Another way to see this is that since the influence function is basically a (pathwise) derivative (i.e., Gateaux derivative) we can think of multiplying by $h(x)$ as multiplying by a constant, which does not change the form of the original derivative, beyond multiplying by the "constant" $h(x)$. We refer the reader to [23] and references therein for more details about the efficient influence function and influence function-based estimators.

B Proofs

For proofs, let us consider the following more general form of stochastic nonlinear programming with deterministic constraints and some finite-dimensional decision variable x in some compact subset $\mathcal{S} \in \mathbb{R}^{k}$:

$$
\begin{array}{ll}
\underset{x \in \mathcal{S}}{\operatorname{minimize}} & f(x) \\
\text { subject to } & g_{j}(x) \leq 0, \quad j=1, \ldots, m
\end{array} \quad\left(\mathrm{P}_{n l}\right) \begin{aligned}
& \underset{x \in \mathcal{S}}{\operatorname{minimize}} \hat{f}(x) \\
& \text { subject to } \\
& g_{j}(x) \leq 0, \quad j=1, \ldots, m .
\end{aligned} \quad\left(\widehat{\mathrm{P}}_{n l}\right)
$$

We consider the case that f, \widehat{f} are C^{1} functions. In the proofs, the active set J_{0} is defined with respect to $\mathrm{P}_{n l}$.

B. 1 Proof of Theorem 4.1

Lemma B.1. Let $\widehat{x} \in \mathrm{~s}^{*}\left(\widehat{\mathrm{P}}_{n l}\right)$ and assume that f is twice differentiable with Hessian positive definite. Then under Assumption (B1) we have

$$
\operatorname{dist}\left(\widehat{x}, \mathrm{~s}^{*}\left(\underline{\mathrm{P}_{n l}}\right)\right)=O\left(\sup _{x^{\prime}}\left\|\nabla_{x} \widehat{f}\left(x^{\prime}\right)-\nabla_{x} f\left(x^{\prime}\right)\right\|\right) .
$$

Proof. Due to the positive definiteness of the Hessian of f, from the KKT condition at $x^{*} \in \mathrm{~s}^{*}\left(\overline{\left.\mathrm{P}_{n l}\right)}\right.$ with multipliers γ_{j}^{*}

$$
\nabla_{x} L\left(x^{*}, \gamma^{*}\right)=\nabla_{x} f\left(x^{*}\right)+\sum_{j \in J_{0}\left(x^{*}\right)} \gamma_{j}^{*} \nabla_{x} g_{j}\left(x^{*}\right)=0
$$

it follows that the following second order condition holds:

$$
d^{\top} \nabla_{x}^{2} L\left(x^{*}, \gamma^{*}\right) d>0 \quad \forall d .
$$

Hence, by Still [51, Theorem 2.4] the quadratic growth condition holds at x^{*}. Then by Shapiro [47, Lemma 4.1] and the mean value theorem, we have

$$
\operatorname{dist}\left(\widehat{x}, \mathrm{~s}^{*}\left(\widehat{\mathrm{P}_{n l}}\right)\right) \leq \alpha\left(\sup _{x^{\prime}}\left\|\nabla_{x} \widehat{f}\left(x^{\prime}\right)-\nabla_{x} f\left(x^{\prime}\right)\right\|\right)
$$

for some constant $\alpha>0$, which completes the proof.

Now, by the fact that both of the objective functions in $(\mathbb{P}$ and (\widehat{P}) are differentiable with respect to β, by Lemma A. 1 and B.1 we obtain the result.

B. 2 Proof of Theorem 4.2

Lemma B.2. Assume that f is twice differentiable whose Hessian is positive definite. Then under Assumption (B1) (B2) if LICQ and SC hold at x^{*}, we have

$$
n^{1 / 2}\left(\widehat{x}-x^{*}\right) \xrightarrow{d}\left[\begin{array}{cc}
\nabla_{x}^{2} f\left(x^{*}\right)+\sum_{j} \gamma_{j}^{*} \nabla_{x}^{2} g_{j}\left(x^{*}\right) & \mathrm{B}\left(x^{*}\right) \\
\mathrm{B}^{\top}\left(x^{*}\right) & 0
\end{array}\right]^{-1}\left[\begin{array}{l}
\mathbf{1} \\
\mathbf{0}
\end{array}\right] \Upsilon,
$$

where

$$
n^{1 / 2}\left(\nabla_{x} \widehat{f}\left(x^{*}\right)-\nabla_{x} f\left(x^{*}\right)\right) \xrightarrow{d} \Upsilon .
$$

Proof. First consider the following auxiliary parametric program with respect to $\left(\overline{P_{n l}}\right)$ with the parameter vector $\xi \in \mathbb{R}^{k}$.

$$
\begin{array}{ll}
\underset{x \in \mathcal{S}}{\operatorname{minimize}} & f(x)+x^{\top} \xi \\
\text { subject to } & g_{j}(x) \leq 0, \quad j=1, \ldots, m
\end{array}
$$

$\left(\overline{\mathrm{P}_{\xi}}\right)$ can be viewed as a perturbed program of $\left(\overline{\mathrm{P}_{n l}} ;\right.$ for $\xi=0,\left(\mathrm{P}_{\xi}\right)$ coincides with the program $\left(\overline{\mathrm{P}_{n l}}\right)$. Here, the parameter ξ will play a role of medium that contain all relevant stochastic information in ($\widehat{\mathrm{P}}_{n l}$,48]. Let $\bar{x}(\xi)$ denote the solution of the program P_{ξ}. Clearly, we get $\bar{x}(0)=x^{*}$.
We have already shown that $\widehat{x} \xrightarrow{p} x^{*}$ at the rate of $n^{1 / 2}$ and that the quadratic growth condition holds at x^{*} under the given conditions in Theorem 4.1. Further, since the Hessian $\nabla_{x}^{2} f\left(x^{*}\right)$ is positive definite and LICQ holds at x^{*}, the uniform version of the quadratic growth condition also holds at $\bar{x}(\xi)$ (see Shapiro [48, Assumption A3]). Hence by Shapiro [48, Theorem 3.1], we get

$$
\widehat{x}=\bar{x}(\xi)+o_{\mathbb{P}}\left(n^{-1 / 2}\right)
$$

where

$$
\xi=\nabla_{x} \widehat{f}\left(x^{*}\right)-\nabla_{x} f\left(x^{*}\right)
$$

If $\bar{x}(\xi)$ is Frechet differentiable at $\xi=0$, we have

$$
\bar{x}(\xi)-x^{*}=D_{0} \bar{x}(\xi)+o(\|\xi\|)
$$

where the mapping $D_{0} \bar{x}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ is the directional derivative of $\bar{x}(\cdot)$ at $\xi=0$. Since $\bar{x}(0)=x^{*}$, this leads to

$$
n^{1 / 2}\left(\widehat{x}-x^{*}\right)=D_{0} \bar{x}\left(n^{1 / 2} \xi\right)+o_{\mathbb{P}}(1)
$$

Now we shall show that such mapping $D_{0} \bar{x}(\cdot)$ exists and is indeed linear. To this end, we will show that $\bar{x}(\xi)$ is locally totally differentiable at $\xi=0$, followed by applying an appropriate form of the implicit function theorem. Define a vector-valued function $H \in \mathbb{R}^{(k+m)}$ by

$$
H(x, \xi, \gamma)=\binom{\nabla_{x} f(x)+\sum_{j} \gamma_{j} \nabla_{x} g_{j}(x)+\xi}{\operatorname{diag}(\gamma)(g(x))}
$$

where a vector g is understood as a stacked version of $g_{j}^{\prime} s$. Due to the SC and LICQ conditions, the solution of $H(x, \xi, \gamma)=0$ satisfies the KKT condition for $(\overline{\mathrm{P}} \xi$: i.e., $H(\bar{x}(\xi), \xi, \bar{\gamma}(\xi))=0$ where $\bar{\gamma}(\xi)$ is the corresponding multipliers. Now by the classical implicit function theorem [e.g., 11, Theorem 1B.1] and the local stability result [51, Theorem 4.4], there always exists a neighborhood $\mathbb{B}_{\bar{r}}(0)$, for some $\bar{r}>0$, of $\xi=0$ such that $\bar{x}(\xi)$ and its total derivative exist for $\forall \xi \in \mathbb{B}_{\bar{r}}(0)$. In particular, the derivative at $\xi=0$ is computed by

$$
\nabla_{\xi} \bar{x}(0)=-\boldsymbol{J}_{x, \gamma} H(\bar{x}(0), 0, \bar{\gamma}(0))^{-1}\left[\boldsymbol{J}_{\xi} H(\bar{x}(0), 0, \bar{\gamma}(0))\right]
$$

where in our case $\bar{x}(0)=x^{*}, \bar{\gamma}(0)=\gamma^{*}$, and thus

$$
\boldsymbol{J}_{x, \gamma} H(\bar{x}(0), 0, \bar{\gamma}(0))=\left[\begin{array}{cc}
\nabla_{x}^{2} f\left(x^{*}\right)+\sum_{j} \gamma_{j}^{*} \nabla_{x}^{2} g_{j}\left(x^{*}\right) & \mathrm{B}\left(x^{*}\right) \\
\mathrm{B}^{\top}\left(x^{*}\right) & 0
\end{array}\right],
$$

with $\mathrm{B}=\left[\nabla_{x} g_{j}\left(x^{*}\right)^{\top}, j \in J_{0}\left(x^{*}\right)\right]$, and

$$
\boldsymbol{J}_{\xi} H(\bar{x}(0), 0, \bar{\gamma}(0))=\left[\begin{array}{l}
\mathbf{1} \\
\mathbf{0}
\end{array}\right] .
$$

Here the inverse of $\boldsymbol{J}_{x, \gamma} H(\bar{x}(0), 0, \bar{\gamma}(0))$ always exists (see Still [51, Ex 4.5]). Therefore we obtain that

$$
D_{0} \bar{x}\left(n^{1 / 2} \xi\right)=\left[\begin{array}{cc}
\nabla_{x}^{2} f\left(x^{*}\right)+\sum_{j} \gamma_{j}^{*} \nabla_{x}^{2} g_{j}\left(x^{*}\right) & \mathrm{B}\left(x^{*}\right) \\
\mathrm{B}^{\top}\left(x^{*}\right) & 0
\end{array}\right]^{-1}\left[\begin{array}{l}
\mathbf{1} \\
\mathbf{0}
\end{array}\right] n^{1 / 2} \xi .
$$

Finally, if $n^{1 / 2} \xi \xrightarrow{d} \Upsilon$, by Slutsky's theorem it follows

$$
n^{1 / 2}\left(\widehat{x}-x^{*}\right) \xrightarrow{d}\left[\begin{array}{cc}
\nabla_{x}^{2} f\left(x^{*}\right)+\sum_{j} \gamma_{j}^{*} \nabla_{x}^{2} g_{j}\left(x^{*}\right) & \mathrm{B}\left(x^{*}\right) \\
\mathrm{B}^{\top}\left(x^{*}\right) & 0
\end{array}\right]^{-1}\left[\begin{array}{l}
\mathbf{1} \\
\mathbf{0}
\end{array}\right] \Upsilon .
$$

Then, the desired result for Theorem 4.2 immediately follows by the fact that

$$
\nabla_{\beta} \mathcal{L}=-\mathbb{E}\left\{Y^{a}(Z ; \eta) h_{1}(V, \beta)+\left(1-Y^{a}\right) h_{0}(V, \beta)\right\}
$$

where

$$
\begin{aligned}
& h_{1}(V, \beta)=\frac{1}{\log \sigma\left(\beta^{\top} \boldsymbol{b}(V)\right)} \boldsymbol{b}(V) \sigma\left(\beta^{\top} \boldsymbol{b}(V)\right)\left\{1-\sigma\left(\beta^{\top} \boldsymbol{b}(V)\right)\right\}, \\
& h_{0}(V, \beta)=-\frac{1}{\log \left(1-\sigma\left(\beta^{\top} \boldsymbol{b}(V)\right)\right)} \boldsymbol{b}(V) \sigma\left(\beta^{\top} \boldsymbol{b}(V)\right)\left\{1-\sigma\left(\beta^{\top} \boldsymbol{b}(V)\right)\right\},
\end{aligned}
$$

followed by applying Lemma A. 1 .

[^0]: ${ }^{4}$ This is also a local asymptotic minimax lower bound.

