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Abstract

The framework of feedback graphs is a generalization of sequential decision-
making with bandit or full information feedback. In this work, we study
an extension where the directed feedback graph is stochastic, following
a distribution similar to the classical Erdős-Rényi model. Specifically, in
each round every edge in the graph is either realized or not with a dis-
tinct probability for each edge. We prove nearly optimal regret bounds of
order min

{
minε

√
(αε/ε)T , minε(δε/ε)1/3T 2/3} (ignoring logarithmic fac-

tors), where αε and δε are graph-theoretic quantities measured on the
support of the stochastic feedback graph G with edge probabilities thresh-
olded at ε. Our result, which holds without any preliminary knowledge
about G, requires the learner to observe only the realized out-neighborhood
of the chosen action. When the learner is allowed to observe the realization
of the entire graph (but only the losses in the out-neighborhood of the
chosen action), we derive a more efficient algorithm featuring a dependence
on weighted versions of the independence and weak domination numbers
that exhibits improved bounds for some special cases.

1 Introduction

In this work we study an online learning framework for decision-making with partial feedback.
In each decision round, the learner chooses an action in a fixed set and is charged a loss.
In our setting, the loss of any action in all decision rounds is preliminarily chosen by an
adversary, but the feedback received by the learner at the end of each round t is stochastic.
More specifically, the loss of each action i (including It, the one selected by the learner at
round t) is independently observed with a certain probability p(It, i), where the probabilities
p(i, j) for all pairs i, j are fixed but unknown.
This feedback model can be viewed as a stochastic version of the feedback graph model for
online learning [Mannor and Shamir, 2011], where the feedback received by the learner at
the end of each round is determined by a directed graph defined over the set of actions.
In this model, the learner deterministically observes the losses of all the actions in the
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out-neighborhood of the action selected in that round. In certain applications, however,
deterministic feedback is not realistic. Consider for instance a sensor network for monitoring
the environment, where the learner can decide which sensor to probe in order to maximize
some performance measure. Each probed sensor may also receive readings of other sensors,
but whether a sensor successfully transmits to another sensor depends on a number of
environmental factors, which include the position of the two sensors, but also their internal
state (e.g., battery levels) and the weather conditions. Due to the variability of some of
these factors, the possibility of reading from another sensor can be naturally modeled as a
stochastic event.
Online learning with adversarial losses and stochastic feedback graphs has been studied
before, but under fairly restrictive assumptions on the probabilities p(i, j). Let G be a
stochastic feedback graph, represented by its probability matrix p(i, j) for i, j ∈ V where
V is the action set. When p(i, j) = ε for all distinct i, j ∈ V and for some ε > 0, then G
follows the Erdős-Rényi random graph model. Under the assumption that ε is known and
p(i, i) = 1 for all i ∈ V (all self-loops occur w.p. 1), Alon et al. [2017] show that the optimal
regret after T rounds is of order

√
T/ε, up to logarithmic factors. This result has been

extended by Kocák et al. [2016a], who prove a regret bound of order
√∑

t(1/εt) when the
parameter εt of the random graph is unknown and allowed to change over time. However,
their result holds only under rather strong assumptions on the sequence εt for t ≥ 1. In
a recent work, Ghari and Shen [2022] show a regret bound of order (α/ε)

√
KT , ignoring

logarithmic factors, when each (unknown) probability p(i, j) in G is either zero or at least
ε for some known ε > 0, and all self-loops (i, i) have probability p(i, i) ≥ ε. Here α is the
independence number (computed ignoring edge orientations) of the support graph supp(G);
i.e., the directed graph with adjacency matrix A(i, j) = I{p(i,j)>0}. Their bound holds under
the assumption that supp(G) is preliminarily known to the learner.
Our analysis does away with a crucial assumption that was key to prove all previous results.
Namely, we do not assume any special property of the matrix G, and we do not require
the learner to have any preliminary knowledge of this matrix. The fact that positive edge
probabilities are not bounded away from zero implies that the learner must choose a threshold
ε ∈ (0, 1] below which the edges are deemed to be too rare to be exploitable for learning. If
ε is too small, then waiting for rare edges slows down learning. On the other hand, if ε is
too large, then the feedback becomes sparse and the regret increases.
To formalize the intuition of rare edges, we introduce the notion of thresholded graph supp(Gε)
for any ε > 0. This is the directed graph with adjacency matrix A(i, j) = I{p(i,j)≥ε}. As the
thresholded graph is a deterministic feedback graph G, we can refer to Alon et al. [2015] for
a characterization of minimax regret RT based on whether G is not observable (RT of order
T ), weakly observable (RT of order δ1/3T 2/3), or strongly observable (RT of order

√
αT ).1

Here α and δ are, respectively, the independence and the weak domination number of G;
see Section 2 for definitions. Let αε and δε respectively denote the independence number
and the weak domination number of supp(Gε). As αε and δε both grow when ε gets larger,
the ratios αε/ε and δε/ε capture the trade-off involved in choosing ε. We define the optimal
values for ε as follows:

ε∗
s = arg min

ε∈(0,1]

{αε

ε
: supp(Gε) is strongly observable

}
, (1)

ε∗
w = arg min

ε∈(0,1]

{
δε

ε
: supp(Gε) is observable

}
. (2)

We adopt the convention that the minimum of an empty set is infinity and the relative
arg min is set to 0. The arg min are well defined: there are at most K2 values of ε for which
the support of Gε varies, and the minimum is attained in one of these values. For simplicity,
we let α∗ = αε∗

s
and δ∗ = δε∗

w
. Our first result can be informally stated as follows.

Theorem 1 (Informal). Consider the problem of online learning with an unknown stochastic
feedback graph G on T time steps. If supp(Gε) is not observable for ε = Θ̃(K3/T ), then any
learning algorithm suffers regret linear in T . Otherwise, there exists an algorithm whose

1All these rates ignore logarithmic factors.
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regret satisfies (ignoring polylog factors in K and T )

RT ≤ min
{√

α∗

ε∗
s

T ,

(
δ∗

ε∗
w

)1/3
T 2/3

}
.

This bound is tight (up to polylog factors).

This result shows that, without any preliminary knowledge of G, we can obtain a bound
that optimally trades off between the strongly observable rate

√
(α∗/ε∗

s)T , for the best
threshold ε for which supp(Gε) is strongly observable, and the (weakly) observable rate
(δ∗/ε∗

w)1/3T 2/3, for the best threshold ε for which supp(Gε) is (weakly) observable. Note that
this result improves on Ghari and Shen [2022] bound (αε/ε)

√
KT , who additionally assume

that supp(Gε) and ε (a lower bound on the self-loop probabilities) are both preliminarily
available to the learner. On the other hand, the algorithm achieving the bound of Theorem 1
need not receive any information (neither prior nor during the learning process) besides the
stochastic feedback.
We obtain positive results in Theorem 1 via an elaborate reduction to online learning with
deterministic feedback graphs. Our algorithm works in two phases: first, it learns the edge
probabilities in a round-robin procedure, then it commits to a carefully chosen estimate
of the feedback graph and feeds it to an algorithm for online learning with deterministic
feedback graphs. There are two main technical challenges the algorithm faces: on the one
hand, it needs to switch from the first to the second phase at the right time in order to
achieve the optimal regret. On the other hand, in order for the reduction to work, it needs
to simulate the behaviour of a deterministic feedback graph using only feedback from a
stochastic feedback graph (with unknown edge probabilities). We complement the positive
results in Theorem 1 with matching lower bounds that are obtained by a suitable modification
of the hard instances in Alon et al. [2015, 2017] so as to consider stochastic feedback graphs.
Our last result is an algorithm that, at the cost of an additional assumption on the feedback
(i.e., the learner additionally observes the realization of the entire feedback graph at the end
of each round), has regret which is never worse and may be considerably better than the
regret of the algorithm in Theorem 1. While the bounds in Theorem 1 are tight up to log
factors, we show that the factors α∗/ε∗

s and δ∗/ε∗
w can be improved for specific feedback

graphs. Specifically, we design weighted versions of the independence and weak domination
numbers, where the weights of a given node depend on the probabilities of seeing the loss of
that node. On the technical side, we design a new importance-weighted estimator which uses
a particular version of upper confidence bound estimates of the edge probabilities p(i, j),
rather than the true edge probabilities, which are unknown. We show that the cost of using
this estimator is of the same order as the regret bound achievable had we known p(i, j).
Additionally, the algorithm that obtains these improved bounds is more efficient than the
algorithm of Theorem 1. The improvement in efficiency comes from the following idea: we
start with an optimistic algorithm that assumes that the support of G is strongly observable
and only switches to the assumption that the support of G is (weakly) observable when it
estimates that the regret under this second assumption is smaller. The algorithm learns
which regime is better by keeping track of a bound on the regret of the optimistic algorithm
while simultaneously estimating the regret in the (weakly) observable case, which it can do
efficiently.

Additional related work. The problem of adversarial online learning with feedback
graphs was introduced by Mannor and Shamir [2011], in the special case where all nodes
in the feedback graph have self-loops. The results of Alon et al. [2015] (also based on prior
work by Alon et al. [2013], Kocák et al. [2014]) have been recently slightly improved by Chen
et al. [2021], with tighter constants in the regret bound. Variants of the adversarial setting
have been studied by Feng and Loh [2018], Arora et al. [2019], Rangi and Franceschetti
[2019] and Van der Hoeven et al. [2021], who study online learning with feedback graphs
and switching costs and online multiclass classification with feedback graphs, respectively.
There is also a considerable amount of work in the stochastic setting [Liu et al., 2018, Cortes
et al., 2019, Li et al., 2020]. Finally, Rouyer et al. [2022] and Ito et al. [2022] independently
designed different best-of-both-worlds learning algorithms achieving nearly optimal (up to
polylogarithmic factors in T ) regret bounds in the adversarial and stochastic settings.
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Following Mannor and Shamir [2011], we can consider a more general scenario where the
feedback graph is not fixed but changes over time, resulting in a sequence G1, . . . , GT of
feedback graphs. Cohen et al. [2016] study a setting where the graphs are adversarially
chosen and only the local structure of the feedback graph is observed. They show that, if the
losses are generated by an adversary and all nodes always have a self-loop, one cannot do
better than

√
KT regret, and we might as well simply employ a standard bandit algorithm.

Furthermore, removing the guarantee on the self-loops induces an Ω(T ) regret. In Section 3,
we are in a similar situation, as we also observe only local information about the feedback
graph and the losses are generated by an adversary. However, we show that if the graphs
are stochastically generated with a strongly observable support for some threshold ε, there
is a

√
αT/ε regret bound. As a consequence, for ε not too small, observing only the local

information about the feedback graphs is in fact sufficient to obtain better results than
in the bandit setting. Similarly, if there are no self-loops in the support but the support
is weakly observable, then our regret bounds are sublinear rather than linear in T . Alon
et al. [2013, 2017] and Kocák et al. [2014] also consider adversarially generated sequences
G1, G2, . . . of deterministic feedback graphs. In the case of directed feedback graphs, Alon
et al. [2013] investigate a model in which Gt is revealed to the learner at the beginning of
each round t. Alon et al. [2017] and Kocák et al. [2014] extend this analysis to the case when
Gt is strongly observable and made available only at the end of each round t. In comparison,
in our setting the graphs (or the local information about the graph) revealed to the learner
(at the end of each round) may not even be observable, let alone strongly observable. Despite
this seemingly challenging setting for previous works, we nevertheless obtain sublinear regret
bounds. Finally, Kocák et al. [2016b] study a feedback model where the losses of other
actions in the out-neighborhood of the action played are observed with an edge-dependent
noise. In their setting, the feedback graphs Gt are weighted and revealed at the beginning
of each round. They introduce edge weights st(i, j) ∈ [0, 1] that determine the feedback
according to the following additive noise model: st(It, j)ℓt(j) + (1 − st(It, j))ξt(j), where
ξt(j) is a zero-mean bounded random variable. Hence, if st(i, j) = 1, then It = i allows to
observe the loss of action j without any noise. If st(i, j) = 0, then only noise is observed.
Note that they assume st(i, i) = 1 for each i, implying strong observability. Although similar
in spirit to our feedback model, our results do not directly compare with theirs.
Further work also takes into account a time-varying probability for the revelation of side-
observations [Kocák et al., 2016a]. While the idea of a general probabilistic feedback graph
has been already considered in the stochastic setting [Li et al., 2020, Cortes et al., 2020], the
recent work by Ghari and Shen [2022] seems to be the first one in the adversarial setting
that generalizes from the Erdős-Rényi model to a more flexible distribution where they allow
“edge-specific” probabilities. We remark, however, that the assumptions of Ghari and Shen
[2022] exclude some important instances of feedback graphs. For example, we cannot hope to
employ their algorithm for efficiently solving the revealing action problem (see for example
[Alon et al., 2015]). In a spirit similar to ours, Resler and Mansour [2019] studied a version
of the problem where the topology of the graph is fixed and known a priori, but the feedback
received by the learner is perturbed when traversing edges.

2 Problem Setting

A feedback graph over a set V = [K] of actions is any directed graph G = (V,E), possibly
with self-loops. For any vertex i ∈ V , we use N in

G (i) = {j ∈ V : (j, i) ∈ E} to denote the
in-neighborhood of i and Nout

G (i) = {j ∈ V : (i, j) ∈ E} to denote its out-neighborhood
(we may omit the subscript when the graph is clear from the context). The independence
number α(G) of a feedback graph G is the cardinality of the largest subset S of V such
that, for all distinct i, j ∈ S, it holds that (i, j) and (j, i) are not in E. We also use the
following terminology for directed graphs G = (V,E) [Alon et al., 2015]. Any i ∈ V is:
observable if N in

G (i) ̸= ∅, strongly observable if i ∈ N in
G (i) or V \ {i} ⊆ N in

G (i), and weakly
observable if it is observable but not strongly. The graph G is: observable if all i ∈ V are
observable, strongly observable if all i ∈ V are strongly observable, and weakly observable if
it is observable but not strongly. The weak domination number δ(G) of G is the cardinality
of the smallest subset S of V such that for all weakly observable i ∈ V \ S there exists j ∈ S
such that (j, i) ∈ E.
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In the online learning problem with a stochastic feedback graph, an oblivious adversary
privately chooses a stochastic feedback graph G and a sequence ℓ1, ℓ2, . . . of loss functions
ℓt : V → [0, 1]. At each round t = 1, 2, . . ., the learner selects an action It ∈ V to play and,
independently, the adversary draws a feedback graph Gt from G (denoted by Gt ∼ G). The
learner then incurs loss ℓt(It) and observes the feedback

{
(i, ℓt(i)) : i ∈ Nout

Gt
(It)
}

. In some
cases we consider a richer feedback, where at the end of each round t the learner also observes
the realized graph Gt. The learner’s performance is measured using the standard notion of
regret,

RT = max
k∈V

E

[
T∑

t=1

(
ℓt(It)− ℓt(k)

)]

where I1, . . . , IT are the actions played by the learner, and the expectation is computed
over both the sequence G1, . . . , GT of feedback graphs drawn i.i.d. from G and the learner’s
internal randomization.
Fix any stochastic feedback graph G = {p(i, j) : i, j ∈ V }. We sometimes use e to denote a
pair (i, j), in which case we write pe to denote the probability p(i, j). When Gt = (V,Et) is
drawn from G, each pair (i, j) ∈ V ×V independently becomes an edge (i.e., (i, j) ∈ Et) with
probability p(i, j). For any ε > 0, we define the thresholded version Gε of G represented by
{p′(i, j) : i, j ∈ V }, where p′(i, j) = p(i, j)I{p(i,j)≥ε}. We also define the support feedback
graph of G as the graph supp(G) = (V,E) having E = {(i, j) ∈ V × V : p(i, j) > 0}. To
keep the notation tidy, we write α(G) instead of α(supp(G)) and similarly for δ.

3 Block Decomposition Approach

In this section, we present an algorithm for online learning with stochastic feedback graphs
via a reduction to online learning with deterministic feedback graphs. Our algorithm
EdgeCatcher (Algorithm 3) has an initial exploration phase followed by a commit phase.
In the exploration phase, the edge probabilities are learned online in a round-robin fashion.
A carefully designed stopping criterion then triggers the commit phase, where we feed the
support of the estimated stochastic feedback graph to an algorithm for online learning with
(deterministic) feedback graphs.

3.1 Estimating the Edge Probabilities

As a first step we design a routine, RoundRobin (Algorithm 1), that sequentially estimates
the stochastic feedback graph until a certain stopping criterion is met. The stopping criterion
depends on a nonnegative function Φ that takes in input a stochastic feedback graph G
together with a time horizon. Let τ̂ ≤ T/K be the index of the last iteration of the outer
for loop in Algorithm 1. We want to make sure that, for all τ ≤ τ̂ , the stochastic feedback
graphs Ĝτ are valid estimates of the underlying G up to a Θ(ετ ) precision. To formalize this
notion of approximation, we introduce the following definition.

Definition 1 (ε-good approximation). A stochastic feedback graph Ĝ = {p̂e : e ∈ V 2} is an
ε-good approximation of G = {pe : e ∈ V 2} for some ε ∈ (0, 1], if the following holds:

1. All the edges e ∈ supp(G) with pe ≥ 2ε belong to supp(Ĝ);
2. For all edges e ∈ supp(Ĝ) with pe ≥ ε/2 it holds that |p̂e − pe| ≤ pe/2;
3. No edge e ∈ V 2 with pe < ε/2 belongs to supp(Ĝ).

We can now state the following theorem; we defer the proof in Appendix B. The proof follows
from an application of the multiplicative Chernoff bound on edge probabilities.
Theorem 2. If RoundRobin (Algorithm 1) is run on the stochastic feedback graph G,
then, with probability at least 1 − 1/T , the estimate Ĝτ is an ετ -good approximation of G
simultaneously for all τ ≤ τ̂ , where τ̂ ≤ T/K is the index of the last iteration of the outer
for loop in Algorithm 1.
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Algorithm 1: RoundRobin
Environment: stochastic feedback graph G, sequence of losses ℓ1, ℓ2, . . . , ℓT ;
Input: time horizon T , stopping function Φ, actions V = {1, 2, . . . ,K};
ne ← 0, for all e ∈ V 2;
for each τ = 1, 2, . . . , ⌊T/K⌋ do

for each i = 1, 2, . . .K do
Play action i and observe Nout

Gt
(i) from Gt ∼ G; // t is the time step

ne ← ne + 1 for all e ∈ Nout
Gt

(i);
p̂τ

e ← ne/τ for all edges e ∈ V 2;
ετ ← 60 ln(KT )/τ ;
Ĝτ ←

(
V, {e ∈ V 2 : p̂τ

e ≥ ετ}
)

with weights p̂τ
e ; // estimated feedback graph

if Φ(Ĝτ , T ) ≤ τK then
output Ĝτ , ετ ;

output Ĝτ , ετ ;

3.2 Block Decomposition: Reduction to Deterministic Feedback Graph

As a second step, we present BlockReduction (Algorithm 2) which reduces the problem
of online learning with stochastic feedback graph to the corresponding problem with deter-
ministic feedback graph. Surprisingly enough, in order for this reduction to work, we do not
need the exact edge probabilities: an ε-good approximation is sufficient for this purpose.
The intuition behind BlockReduction is simple: given that each edge e in supp(Gε)
appears in Gt with probability pe ≥ ε at each time step t, if we wait for Θ

(
(1/ε) ln(T )

)
time

steps it will appear at least once with high probability. Applying a union bound over all
edges, we can argue that considering ∆ = Θ

(
(1/ε) ln(KT )

)
realizations of the stochastic

feedback graph, then all the edges in supp(Gε) are realized at least once with high probability.
Imagine now to play a certain action a consistently during a block Bτ of ∆ time steps. We
want to reconstruct the average loss suffered by a′ in Bτ :

cτ (a′) =
∑

t∈Bτ

ℓt(a′)
∆ , (3)

and we want to do it for all a′ in the out-neighborhood of a. Let ∆τ
(a,a′) be the number of

times that the loss of a′ is observed by the learner; i.e., the number of times that (a, a′) is
realized in the ∆ time steps. With this notation, we can define the natural estimator ĉτ (a′):

ĉτ (a′) =
∑

t∈Bτ

ℓt(a′)
I{(a,a′)∈Et}

∆τ
(a,a′)

. (4)

Conditioning on the event Eτ
(a,a′) that the edge (a, a′) in Ĝ is observed at least once in block

Bτ , we show in Lemma 2 in Appendix B that ĉτ (a′) is an unbiased estimator of cτ (a′).
Therefore, we can construct unbiased estimators of the average of the losses on the blocks as
if the stochastic feedback graph were deterministic. This allows us to reduce the original
problem to that of online learning with deterministic feedback graph on the meta-instance
given by the blocks. The details of BlockReduction are reported in Algorithm 2, while
the theoretical properties are summarized in the next result, whose proof can be found in
Appendix B.
Theorem 3. Consider the problem of online learning with stochastic feedback graph G,
and let Ĝ be an ε-good approximation of G. Let A be an algorithm for online learning with
arbitrary deterministic feedback graph G with regret bound RA

N (G) over any sequence of
N losses in [0, 1]. Then, the regret of BlockReduction (Algorithm 2) run with input
(T, ε/2, Ĝ,A) is at most ∆RA

N

(
supp(Ĝ)

)
+ ∆, where N = ⌊T/∆⌋ and ∆ = ⌈ 4

ε ln(KT )⌉.
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Algorithm 2: BlockReduction
Environment: stochastic feedback graph G, sequence of losses ℓ1, ℓ2, . . . , ℓT ;
Input: time horizon T , threshold ε, estimate Ĝ of G, learning algorithm A;
∆← ⌈ 2

ε ln(KT )⌉, N ← ⌊T/∆⌋, Ĝ← supp(Ĝ);
Initialize A with time horizon N and graph Ĝ;
Bτ ← {(τ − 1)∆ + 1, . . . , τ∆}, for all τ = 1, . . . , N ;
for each round τ = 1, 2, . . . , N do

Draw action aτ from the probability distribution over actions output by A;
for each round t ∈ Bτ do

Play action aτ and observe the revealed feedback; // Gt ∼ G
For all a′ ∈ Nout

Ĝ
(aτ ), compute ĉτ (a′) as in (4), and feed them to A;

Play arbitrarily the remaining T −∆N rounds;

For online learning with deterministic feedback graphs we use the variants of Exp3.G
contained in Alon et al. [2015]. Together with Theorem 3, this gives the following corollary;
the details of the proof are in Appendix B.
Corollary 1. Consider the problem of online learning with stochastic feedback graph G, and
let Ĝ be an ε-good approximation of G for ε ≥ 1/T and with support Ĝ.

• If Ĝ is strongly observable with independence number α, then the regret of BlockRe-
duction run with parameter ε/2 using Exp3.G for strongly observable graphs as base
algorithm A satisfies: RT ≤ 4Cs

√
(α/ε)T

(
ln(KT )

)3/2
, where Cs > 0 is a constant in the

regret bound of A.
• If Ĝ is (weakly) observable with weak domination number δ, then the regret of BlockRe-

duction run with parameter ε/2 using Exp3.G for weakly observable graphs as base
algorithm A satisfies: RT ≤ 4Cw(δ/ε)1/3(ln(KT )

)2/3
T 2/3, where Cw > 0 is a constant

in the regret bound of A.

Note that we can explicitly compute valid constants Cs = 12 + 2
√

2 and Cw = 8 directly
from the bounds in Alon et al. [2015].

3.3 Explore then Commit to a Graph

We are now ready to combine the two routines we presented, RoundRobin and BlockRe-
duction, in our final learning algorithm, EdgeCatcher. EdgeCatcher has two phases:
in the first phase, RoundRobin is used to quickly obtain an ε-good approximation Ĝ of the
underlying feedback graph G, for a suitable ε. In the second phase, the algorithm commits
to Ĝ and feeds it to BlockReduction. The crucial point is when to commit to a certain
(estimated) stochastic feedback graph. If we commit too early, we might not observe a denser
support graph, which implies missing out on a richer feedback. If we wait for too long, then
the exploration phase ends up dominating the regret. To balance this trade-off, we use the
stopping function Φ. This function takes as input a probabilistic feedback graph together
with a time horizon and outputs the regret bound that BlockReduction would guarantee
on this pair. It is defined as

Φ(G, T ) = min
{

4Cs

√
α∗

ε∗
s

T
(

ln(KT )
)3/2

, 4Cw

(
δ∗

ε∗
w

(
ln(KT )

)2
)1/3

T 2/3

}
(5)

for the specific choice of Exp3.G as the learning algorithm A adopted by BlockReduction.
Note that the dependence of Φ on the feedback graph G is contained in the topological
parameters α∗ and δ∗ and the corresponding thresholds ε∗

s and ε∗
w, defined in Equations (1)

and (2); see Appendix A for more details on their computation. If we apply Φ to a
stochastic feedback graph that is observable w.p. zero, its value is conventionally set to
infinity. Observe that, otherwise, the min is achieved for a specific ε∗ and a specific G∗ = Gε∗ .
In Appendix B, we provide a sequence of lemmas (Lemmas 3 and 4 in particular) showing
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Algorithm 3: EdgeCatcher
Environment: stochastic feedback graph G, sequence of losses ℓ1, ℓ2, . . . , ℓT ;
Input: time horizon T and actions V = {1, 2, . . . ,K};
Let Φ defined as in Equation (5);
Run RoundRobin(T,Φ, V ) and obtain Ĝ and ε̂;
Compute ε̂∗

s and ε̂∗
w for graph Ĝ as in Equations (1) and (2);

Let ε̂∗ be the best threshold as in Equation (5);
if ε̂∗ = ε̂∗

s then Let A be Exp3.G for strongly observable feedback graph;
else Let A be Exp3.G for weakly observable feedback graph;

Let T ′ = T − τ̂K be the remaining time steps; // τ̂ as in RoundRobin
Run BlockReduction(T ′, ε̂∗/2, Ĝε̂∗ ,A);

that, if RoundRobin outputs an ε-good approximation of the graph, then the regret is
bounded by a multiple of the stopping criterion evaluated at G. Combined with Theorem 2,
which tells us that RoundRobin does in fact output an ε-good approximation of the graph
with high probability, this proves our main result for this section.
Theorem 4. Consider the problem of online learning with stochastic feedback graph G on
T time steps. If supp(Gε(K,T )) is observable for ε(K,T ) = CK3(ln(KT ))2/T for a given
constant C > 0, then there exists an algorithm whose regret RT satisfies (ignoring polylog
factors in K and T ) RT ≤ min

{√
(α∗/ε∗

s)T ,
(
δ∗/ε∗

w

)1/3
T 2/3

}
.

4 Lower Bounds

In this section, we provide lower bounds that match the regret bound guaranteed by
EdgeCatcher, shown in Theorem 4, up to polylogarithmic factors in K and T . These
lower bounds are valid even if the learner is allowed to observe the realization of the entire
feedback graph at every time step, and knows a priori the “correct” threshold ε to work with.
Theorem 5 summarizes the lower bounds whose proofs can be found in Appendix C.
Theorem 5 (Informal). Let A be a possibly randomized algorithm for the online learning
problem with stochastic feedback graphs. Consider any directed graph G = (V,E) with |V | ≥ 2
and any ε ∈ (0, 1]. There exists a stochastic feedback graph G with supp(G) = G and, for a
sufficiently large time horizon T , there is a sequence ℓ1, . . . , ℓT of loss functions on which
the expected regret of A with respect to the stochastic generation of G1, . . . , GT ∼ G is

• Ω(
√

(α(Gε)/ε)T ) if G is strongly observable;
• Ω̃((δ(Gε)/ε)1/3T 2/3) if G is weakly observable;
• Ω(T ) if G is not observable.

The lower bound in the non-observable case is the same as Alon et al. [2015, Theorem 6]
with a deterministic feedback graph. The remaining lower bounds are nontrivial adaptations
of the corresponding bounds for the deterministic case by Alon et al. [2015, 2017]. The
main technical hurdle is due to the stochastic nature of the feedback graph, which needs
to be taken into account in the proofs. The rationale behind the constructions used for
proving the lower bounds is as follows: since each edge is realized only with probability ε, any
algorithm requires 1/ε rounds in expectation in order to observe the loss of an action in the
out-neighborhood of the played action, whereas one round would suffice with a deterministic
feedback graph. Note that Theorem 5 implies that, if supp(Gε(K,T )) is not observable for
ε(K,T ) as in Theorem 4, then there is no hope to achieve sublinear regret, as the lower
bounds for both strongly and weakly observable supports are linear in T for all ε ≤ ε(K,T ).

5 Refined Graph-Theoretic Parameters

Although the results from Section 3 are worst-case optimal up to log factors, we may find that
the factors

√
α(Gε)/ε and (δ(Gε)/ε)1/3 for strongly and weakly observable supp(Gε) = Gε,
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respectively, may be improved upon in certain cases. In particular, we show that, under
additional assumptions on the feedback that we receive, we can obtain better regret bounds.
To understand our results, we need some initial definitions. The weighted independence
number for a graph H = (V,E) and positive vertex weights w(i) for i ∈ V is defined as

αw(H,w) = max
S∈I(H)

∑
i∈S

w(i) ,

where I(H) denotes the family of independent sets in H. We consider two different weight
assignments computed in terms of any stochastic feedback graph G with edge probabilities
p(i, j) and supp(G) = G. They are defined as w−

G (i) =
(
minj∈N in

G
(i) p(j, i)

)−1 and w+
G (i) =(

minj∈Nout
G

(i) p(i, j)
)−1. Then, the two corresponding weighted independence numbers are

α−
w (G) = αw(G,w−

G ) and α+
w (G) = αw(G,w+

G ). The parameter of interest for the results in
this section is αw(G) = α−

w (G) + α+
w (G). For more details on the weighted independence

number see Appendix E. We also use the following definitions of weighted weak domination
number δw for a graph H and positive vertex weights w, and self-observability parameter σ:

δw(H,w) = min
D∈D(H)

∑
i∈D

w(i) , σ(G) =
∑

i:i∈N in
G

(i)
(p(i, i))−1 ,

where D(H) denotes the family of weakly dominating sets in H. In this section, we focus
on the weighted weak domination number δw(G) = δw(G,w+

G ). To gain some intuition on
the graph-theoretic parameters introduced above, consider the graph with only self-loops,
also used in Example 1 below. If all p(i, i) = ε, the learner needs to pull a single arm 1/ε
times for one observation in expectation, and K/ε times to see the losses of all arms once.
However, when the edge probabilities are different we need to pull arms for

∑K
i=1 1/p(i, i)

times. The weighted independence number, weighted weak domination and self-observability
generalize this intuition and tell us how many observations the learner needs to see all losses
at least once in expectation. We now state the main result of this section.
Theorem 6 (Informal). There exists an algorithm with per-round running time of O(K4)
and whose regret is bounded (ignoring logarithmic factors) by

min
{
T, min

ε

{√
αw(Gε)T : supp(Gε) is strongly observable

}
,

min
ε

{
(δw(Gε))1/3

T 2/3 +
√
σ(Gε)T : supp(Gε) is observable

}}
,

The regret bound in Theorem 6 follows from Theorem 11 in Appendix D. The running time
bound is determined by approximating δw for all K2 possible thresholds. In each of the
thresholded graphs, we can compute a (ln(K) + 1)-approximation for the weighted weak
domination number in O(K2) time by reduction to set cover [Vazirani, 2001]. Doing so only
introduces an extra factor of order (ln(K))1/3 in the regret bound.
An important property of the bound in Theorem 6 is that it is never worse than the bounds
obtained before. The following example shows that the regret bound in Theorem 6 can also
be better than previously obtained regret bounds.
Example 1 (Faulty bandits). Consider a stochastic feedback graph G for the K-armed
bandit setting: p(i, i) = εi ∈ (0, 1] for all i ∈ V and p(i, j) = 0 for all i ̸= j. In this case, the
regret of EdgeCatcher is Õ

(√
KT/(mini εi)). On the other hand, Theorem 6 provides

the bound Õ
(√

T
∑

i(1/εi)
)
, as αw(G) = 2

∑
i 1/εi. In the special case when εi = ε ∈ (0, 1]

for some i ∈ V while εj = 1 for all j ̸= i, the regret of EdgeCatcher is Õ(
√
KT/ε), while

Theorem 6 guarantees a Õ(
√

(K + 1/ε)T ) regret bound. □

To derive these tighter bounds, we exploit the additional assumption that the realized
feedback graph Gt is observed at the end of each round. This allows us to simultaneously
estimate the feedback graph and control the regret, rather than performing these two tasks
sequentially as in Section 3. In particular, we use this extra information to construct a novel
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importance-weighted estimator for the loss, which for t > 1 is defined to be

ℓ̃t(i) = ℓt(i)
P̂t(i)

I{i∈Nout
Gt

(It)}∩{i∈Nout
Ĝt

(It)} , (6)

where P̂t(i) =
∑

j∈N in
Ĝt

(i) πt(j)p̂t(j, i) is the estimated probability of observing the loss of

arm i at round t, πt(i) is the distribution we sample It from, and Ĝt is the support of
the estimated graph Ĝt. Note that we ignore losses that we receive due to missing edges
in Ĝt. We show that we pay an additive term in the regret for wrongly estimating an
edge, which is why it is important to control which edges are in Ĝt. Ideally, we would use
Pt(i) =

∑
j∈N in

Ĝt
(i) πt(j)p(j, i) rather than P̂t(i), as this is the true probability of observing

the loss of arm i in round t. However, since we do not have access to p(j, i), we use instead
an upper confidence estimate of p(j, i) for rounds t ≥ 2 given by

p̂t(j, i) = p̃t(j, i) +
√

2p̃t(j, i)
t− 1 ln(3K2T 2) + 3

t− 1 ln(3K2T 2) ,

where p̃t(j, i) = 1
t−1

∑t−1
s=1 I{(j,i)∈Es}. We denote by ĜUCB

t the stochastic graph with edge
probabilities p̂t(j, i). Note that the support of ĜUCB

t is a complete graph because p̂t(j, i) > 0
for all (j, i) ∈ V × V . These estimators for the edge probabilities are sufficiently good for
our purposes whenever event K occurs, which we define as the event that, for all t ≥ 2,

|p̃t(j, i)− p(j, i)| ≤
√

2p̃t(j, i)
t− 1 ln(3K2T 2) + 3

t− 1 ln(3K2T 2), ∀(j, i) ∈ V × V .

An important property of ℓ̃t can be found in Lemma 1 below. It tells us that we may treat
ℓ̃t as if event K is always realized, i.e., p̂t(j, i) is always an upper bound estimator on p(j, i).
The proof of Lemma 1 is implied by Lemma 6 in Appendix D.
Lemma 1 (Informal). Let ek denote the basis vector with ek(i) = I{i=k} as i-th entry for
each i ∈ [K]. The loss estimate ℓ̃t defined in (6) satisfies

RT = Õ

(
E

 T∑
t=2

√√√√ K∑
i=1

πt(i)
(t− 1)P̂t(i)

∣∣∣∣∣∣ K
+ max

k∈V
E

[
T∑

t=2

K∑
i=1

(
πt(i)− ek(i)

)
ℓ̃t(i)

∣∣∣∣∣ K
])

. (7)

Lemma 1 shows that we only suffer Õ
(√∑T

t=2
∑K

i=1
πt(i)
Pt(i)

)
additional regret compared

to when we know p(j, i). Lemma 1 also shows that ℓ̃t behaves nicely in the sense that,
conditioned on K, we have ℓ̃t(i) ≤ ℓt(i)

Pt(i) I{i∈Nout
Gt

(It)}∩{i∈Nout
Ĝt

(It)}. This is a crucial property to
bound the regret of our algorithm. We show that, with a modified version of Exp3.G [Alon
et al., 2015], the second sum on the right-hand side of (7) is bounded by a term of order√∑T

t=2
∑K

i=1
πt(i)
Pt(i) , meaning that the regret is also bounded similarly. Our final step is to

prove that the above term is bounded in terms of the minimum of the weighted independence
number and the weighted weak domination number plus self-observability.
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