
Asymptotic Behaviors of Projected Stochastic
Approximation: A Jump Diffusion Perspective

Jiadong Liang
School of Mathematical Sciences

Peking University
jdliang@pku.edu.cn

Yuze Han
School of Mathematical Sciences

Peking University
hanyuze97@pku.edu.cn

Xiang Li
School of Mathematical Sciences

Peking University
lx10077@pku.edu.cn

Zhihua Zhang
School of Mathematical Sciences

Peking University
zhzhang@math.pku.edu.cn

Abstract

In this paper we consider linearly constrained stochastic approximation prob-
lems with federated learning as a special case. We propose a loopless projection
stochastic approximation algorithm (LPSA) to ensure feasibility by performing the
projection with probability pn at the n-th iteration. Considering a specific family of
the probability pn and step size ηn, we analyze our algorithm from an asymptotic
and continuous perspective. Using a novel jump diffusion approximation, we
show that the trajectories connecting those properly rescaled last iterates weakly
converge to the solution of specific stochastic differential equations (SDEs). By an-
alyzing SDEs, we identify the asymptotic behaviors of LPSA for different choices
of (pn, ηn). We find the algorithm presents an intriguing asymptotic bias-variance
trade-off according to the relative magnitude of pn w.r.t. ηn. It brings insights on
how to choose appropriate {(pn, ηn)}n≥1 to minimize the projection complexity.

1 Introduction

Recently, a novel distributed computing paradigm that called Federated Learning (FL) has been
proposed for collaboratively training a global model from data that remote clients hold [31]. As a
standard optimization algorithm in FL, Local SGD alternates between running stochastic gradient
descent (SGD) independently in parallel on different clients and averaging the sequences only once
in a while. Put simply, it learns a shared global model via infrequent communication. Empirical
investigation finds its superior performance in communication efficiency [30] and theoretical analysis
toward it has already provided a complete picture [26, 1, 15, 42, 43, 15]. Among them, Li et al. [27]
establishes a functional CLT that Local SGD with Polyak-Ruppert averaging simultaneously achieves
the optimal asymptotic variance and diminishing average communication frequency. However, they
are all derived from a discrete perspective.

The use of a continuous-time stochastic process to characterize the entire trajectory of a discrete
stochastic algorithm has been witnessed progresses in recent years, and we call it diffusion ap-
proximation. The continuous approach has advantages in its rich toolbox and can provide intuitive
explanation for uncanny phenomena that are intractable to analyze in discrete cases. It can also
motivate new optimization algorithms and statistical inference methods. Current works applying
diffusion approximation to stochastic optimization algorithms can be roughly divided into two classes.
The first one is to interest the optimization algorithm as a numerical discretization of a specific
stochastic differential equation (SDE) [14] in a finite time interval [0, T]. When the step size η is

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

sufficiently small and the length T (= nη) of the interval is fixed (n is the total iterations), such
approximation is of high accuracy, and it is easy to analyze the geometric properties of our target
algorithms [41, 23, 13, 7, 38, 34, 8]. However, this avenue is difficult to capture the convergence
behaviors around the optimal point due to the fixed T .1 The second class comes up to solve the
issue. It instead considers the iterates divided by a proper power function of step sizes. Under certain
conditions, as n goes to infinity, the rescaled iterates would weakly converge to the stationary solution
of corresponding SDEs [21, 35, 6, 9, 10]. In FL, to the best of our knowledge, no work considers
analyzing Local SGD via the aspect, which is our focus here.

However, it is not easy to serialize Local SGD iterates due to its double-loop nature. Recent
researchers developed a new technique named as ‘loopless’ to simplify the two-loop structure for
SVRG and Katyusha [16]. The key is to replace the hard loop with a probabilistic loop. Specifically,
we will independently toss a (possibly biased) coin ωn with head probability pn at iteration n. When
getting the head ωn = 1, we start a new loop and update the outer-loop intermediate variables; when
getting the tail ωn = 0, we stay in the same loop and keep the intermediate variables. In this way, we
obtain a loopless counterpart algorithm and do not need to distinguish inner and outer loops anymore.
It facilitates theoretical analysis and typically does not deteriorate the convergence rate [12, 29, 28, 11].
It is worth mentioning that Hanzely and Richtárik [12] first introduced the loopless technique to
FL and obtained many efficient FL algorithms. Li [28] used a dynamic pn (which varies with n) to
generalize the scope of original methods. We are then motivated to analyze a loopless version of
Local SGD with decreasing pn, but from an asymptotic and continuous perspective.

1.1 Contribution

Our work is motivated by Local SGD but beyond it. In particular, for a general optimization problems
with linear constrains (of which FL is a special case), we develop a loopless projection stochastic
approximation method (LPSA) as a generalization of Local SGD (see Appendix A for more details).
Such generality renders us the possibility to transfer our techniques and results to other linearly
constrained problems. LPSA is affected by two important hyperparameters, namely the step size
{ηn} and the projection probability {pn}. For the choices of ηn ∝ n−α and pn ∝ min{ηβn, 1}, we
derive a non-asymptotic convergence rate for different α ∈ (0, 1] and β ∈ (0, 1) in Theorem 3.1. We
observe a phase transition for the convergence rate O(n−αmin{1,2−2β}) when β crosses 0.5.

To derive asymptotic results, we obtain two sequences {un} and {vn} by orthogonal decomposition
for the optimized sequence of LPSA. We then construct two sequences of processes which pass
through the appropriately rescaled un and vn, respectively. We show rigorously, when the iteration
goes to infinity, these two sequences of stochastic processes weakly converge to the solutions of
specific SDEs that are driven by either a Brownian motion or a Poisson process. As a corollary,
the rescaled last iterate of un (which we mainly care about) has a known asymptotic distribution
(either Gaussian distribution in Theorem 3.3 or Dirac in Corollary 1). And the phase transition we
mentioned above evolves into a trade-off between the bias caused by the low frequency projection
and the fluctuation resulting from the gradient noise (see Section 3.2.3).

Moreover, according to different convergence rate for every {(ηn, pn)} pair, we consider a selection
scheme at the end of Section 3.2.3, which makes the algorithm have the same nonasymptotic
convergence order as the conventional stochastic approximation and spend as little as possible on
the projection operation which is usually expensive in practice. At the end, we conduct numerical
experiments to confirm the theoretical results.

From a technical level, we propose a novel proof technique to analyze the discontinuity brought by
probabilistic projection. In particular, we borrow tools from jump diffusion and verify necessary
conditions (e.g., stochastic tightness) to apply it. See the paragraph after Theorem 3.4 for a main idea.
We believe our technique can extend to and help analyze other stochastic approximation algorithms
which can be approximated by a jump diffusion.

1A finite T implies not only the algorithm but also its corresponding SDE do not converge to the optimum.

2

2 Problem Formulation

2.1 Loopless Projected Stochastic Approximation

Notice that distributed optimization such as FL can be formulated as a global consensus problem
which is a linearly constrained problem [5]. For the sake of simplicity and generality, we aim to solve
the following problem

min
x

Eζ∼Df(x, ζ) subject to A⊤x = 0 (1)

via a randomly (and infrequently) projected stochastic approximation algorithm. In particular, at
iteration n, we first perform one step of SGD via

xn+ 1
2
= xn − ηn∇f(xn) + ηnξn, (2)

where f(x) = Eζ∼Df(x, ζ) and ξn = ∇f(xn)−∇f(xn, ζn). Here {ξn} is a martingale difference
sequence (m.d.s.) under the natural filtration Fn+1 := σ(ζk, ωk; k ≤ n+1). We then use the loopless
trick introduced in the introduction, i.e., we independently cast a coin with the head probability pn
and obtain the result ωn ∼ Bernoulli(pn). If ωn = 1, we perform one step of projection to ensure
xn+1 fall into the feasible region: xn+1 = PA⊥(xn+ 1

2
) where PA⊥ denotes the projection onto the

null space of A⊤. If ωn = 0, we assign xn+1 as the same value of xn+ 1
2

, i.e., xn+1 = xn+ 1
2

. It is
clear this algorithm (2) mimics the behavior of Local SGD in FL settings (see Appendix A for the
equivalence).

2.2 Assumptions

For the linearly constrained convex optimization problem (1), we make the following assumptions
which are quite common in the literature. Without special clarification, ∥ · ∥ denotes the Euclidean
norm for vectors and the spectral norm for matrices.

Assumption 1 (Smoothness). We assume that f : Rd → R is L-smooth, that is,

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x,y ∈ Rd.

Assumption 2 (Strong convexity). We assume that f : Rd → R is µ-strongly convex, that is,

f(x)− f(y) ≥ ⟨∇f(y),x− y⟩+ µ

2
∥x− y∥2, ∀x,y ∈ Rd.

Assumption 3 (Continuous Hessian matrix). We assume that f : Rd → R is Hessian Lipschitz, that
is, there is a constant L̃ such that∥∥∇2f(x)−∇2f(y)

∥∥ ≤ L̃∥x− y∥, ∀ x,y ∈ Rd.

Assumption 4 (Continuous covariance matrix). Given an m.d.s. {ξt}, we denote the conditional
covariance as E[ξtξ⊤t |Ft] = Σ(xt) and assume it is L-Lipschitz continuous in the sense that

∥Σ(x)− Σ(y)∥2 ≤ L∥x− y∥, ∀x,y ∈ Rd.

Assumption 5. For the m.d.s. {ξn}, we assume there exists a p > 2 such that the p-th moment of
every element in {ξn} is uniformly bounded, that is,

sup
n≥0

E∥ξn∥p < ∞.

The first three assumptions imply we consider the strongly convex case. The last two assumptions
help us identify the asymptotic variance. Especially, the assumption of uniformly bounded p (p > 2)
moments is typically required to establish central limit theorems [9, 10, 27]. Finally, we want to
emphasize that the stationary condition for the problem (1) is different from unconstrained ones;
∇f(x⋆) is not necessarily zero, however, its projection into the null space of A⊤ must be zero.

Proposition 1 ([25], Corollary 2.1). Let PA be the projection onto the column space of A and PA⊥

the projection onto the null space of A⊤. Under Assumption 2, the solution of (1) is unique (denoted
x⋆). Moreover, we have PA⊥(∇f(x⋆)) = 0.

3

2.3 Jump Diffusion

Jump diffusion is a stochastic Lévy process that involves jumps and diffusion. Typically, the former
is modeled by a Poisson process, while the latter is modeled as a Brownian motion. It has wide and
important applications in physics, finance[36], and computer vision.

We say a function f defined on R is càdlàg when f is right-continuous and has left limits everywhere.
For a càdlàg process (Vs)s≥0, we denote Vt− as the left limit of V· at time t. Let Nγ(t) denote the
Poisson process with γ the intensity, which quantifies the number of jumps up to the time t and is
clearly càdlàg. We use Nγ(dt) = Nγ(t)−Nγ(t−) ∈ {0, 1} to indicate whether Nγ jumps at time t
and

∫ T

0
g(t−)N(dt) =

∑
{t:Nγ(t) ̸=Nγ(t−)} g(t−) to denote the integral that drives for a measurable

function g(·). We will consider a special class of jump diffusion in the following form

dXt = α(t,Xt)dt+ β(t,Xt)dWt + φ(t,Xt−)Nγ(dt). (3)

When the coefficient functions α(t,Xt) and β(t,Xt) satisfy conditions like linear growth and
Lipschitz continuity, there exists a solution for the jump diffusion (3) (e.g., Theorem 1.19 in [33]).

3 Main Results

In the section, we are going to capture the convergence behaviors of our projected stochastic approxi-
mation method (2) from both non-asymptotic and asymptotic perspectives. We consider a specific
family of step size ηn and projection probability pn, namely, ηn = η0n

−α and pn = min{ηβn, 1}
indexed by 0 < α ≤ 1 and 0 ≤ β < 1, respectively. The choice of step sizes ηn has been used
to establish CLTs [37, 27], while the choice of pn is quite novel. To provide a complete picture of
convergence, we will consider almost all combinations of α and β.

3.1 Non-asymptotic Analysis

To provide the convergence rate, it is natural to focus on the projection of xn into the column space of
A (since it is the easiest feasible solution one can obtain from xn). Hence, we decompose the iterated
xn into two orthogonal components xn := un+vn where un = PA⊥(xn) and vn = PA(xn).2 We
specify the the convergence rate of E ∥un − x⋆∥2 in terms of α, β and n in the following theorem.

Theorem 3.1. Suppose that Assumptions 1, 2 and 4 hold. Let ηn = η0n
−α and pn = min{ηβn, 1}

with 0 ≤ β < 1. Then for (i) 0 < α < 1 or (ii) α = 1 with η0 > 2/µ (µ is the strong convexity
parameter of the objective function f), we have

E ∥un − x⋆∥2 = O(n−αmin{1,2−2β}).

From Theorem 3.1, as β decreases, that is, the projection happens more frequently, E ∥un − x⋆∥2

converges faster. The rate is O(n−α) when β < 0.5, while the rate is O(n−2α(1−β)) when β > 0.5.
Thus there exists a phase transition when β goes across 0.5, which implies we should analyze
asymptotic performances for these two phases respectively. As an extreme, when β = 1, the
algorithm is possible to disconverge in an artifact quadratic loss with a specific A (see Theorem 3.2).
Though for a specific A, it could apply to FL (see Corollary 2 in Appendix A.2.1 for the detail).

Theorem 3.2. If ηn = η0n
−α and pn = min{p0ηn, 1} with 0 < α ≤ 1, for a specific A, there exists

a quadratic function f(x) so that ∇2f(x) ⪰ Id and E ∥un−x⋆∥2 does not converge to 0. Here
Id ∈ Rd×d is the identity matrix, and ∇2f(x) ⪰ Id means ∇2f(x)−Id is positive semidefinite.

3.2 Asymptotic Behavior of the Rescaled Trajectory

In this section, we want to derive an asymptotic convergence for (2). Recall that there exists a
phase transition for the convergence rate of E ∥ut − x⋆∥2 when β crosses 0.5, when the projection
probability is set as pn = ηβn . In the following, we will analyze the asymptotic behaviors of LSPA for
the two cases β ∈ [0, 1/2) and β ∈ (1/2, 1).

2One can check Proposition 4 in Appendix B to see why un is orthogonal to vn.

4

3.2.1 Case 1: Frequent Projection where β ∈ [0, 1/2)

From an asymptotic perspective, the typical central limit theorem (CLT) claims ǔn := un−x∗
√
ηn−1

would weakly converge to a rescaled standard distribution [21]. It helps us capture the large-sample
convergence behaviors and provide ways for future statistical inference. However, we can provide
a stronger result that captures the asymptotic behavior of the whole trajectory. In particular, we
serialize the sequence {ǔn} by constructing a continuous random function (denoted ū

(n)
t) such that

it starts from ū
(n)
0 = ǔn, and as t increases it will pass through ǔn+1, ǔn+2 and so on. We will show

that such a random function ū
(n)
t will weakly converge to the solution of a specific SDE. From the

SDE, we can derive asymptotic variance of ǔn and the whole trajectory evolution.

Since ū
(n)
t should pass all {ǔk}k≥n, we can connect these discrete points by piecewise linear

functions. To that end, we first derive the one-step relation between ǔn and ǔn+1. In particular,

ǔn+1 = ǔn − ηnbn +
√
ηnξ

(1)
n , (4)

bn := PA⊥

(
∇2f(x⋆)− 1

2η0
1{α=1}Id

)
ǔn +

1

ηn
Rn, (5)

where Rn stands for a high-order residual error, and ξ
(1)
n denotes the component of noise ξn on the

null space of A. One can find the derivation of (4) in Appendix C.1. Roughly speaking, (4) can be
viewed as a one-step Euler Maruyama discretization with timescale ηn for an SDE, which starts at
ǔn with local drift coefficient bn and local diffusion coefficient var(ξ(1)n).

Definition 1 (Time interpolation). Let a positive sequence γ = {γn}∞n decrease to zero. For
n ∈ N, t ≥ 0, define

N(n, t, γ) = min
m∈N

{
m ≥ n :

m∑
k=n

γk > t

}
,Γn(γ) =

n−1∑
k=1

γk, and tn(γ) = ΓN(n,t,γ) − Γn.

We introduce a time interpolation for the formal description of the continuous function and fur-
ther analysis. Intuitively, N(n, t, γ) is the number of iterations m at which the sum of step sizes∑m+1

k=n+1 ηk is just larger than t and tn(γ) is the approximation of t when we only use step sizes
{γk}k≥n. Since γn → 0, tn(γ) → t as n goes to infinity. A property of Definition 1 is that
N(n,Γm(γ)− Γn(γ), γ) = m for any m ≥ n. By now, we are ready to construct ū(n)

t . For a given
n ∈ N, let ū(n)

0 = ǔn and define for t ≥ 0,

ū
(n)
t = ǔn +


N(n,t,η)−1∑

k=n

ηkbk + (t− tn(η))bN(n,t,η)


+


N(n,t,η)−1∑

k=n

√
ηkξ

(1)
k +

√
t− tn(η)ξ

(1)
N(n,t,η)

 .

(6)

From the construction, we can see that ū(n)
tk(η)

= ǔn+k.

Theorem 3.3 (Diffusion Approximation). Let Assumptions 1-5 hold. The following family of
continuous stochastic processes {ū(n)

t : t ≥ 0}∞n=1 weakly converges to the stationary weak solution
of the following SDE:

dXt = −PA⊥

(
∇2f(x⋆)− 1

2η0
1{α=1}Id

)
Xtdt+ PA⊥Σ(x⋆)

1
2 dWt. (7)

Further, the rescaled sequence {ǔn}∞n=1 converges weakly to the invariant distribution of the dynam-
ics (7), i.e., N (0, Σ̃). Here the variance Σ̃ satisfies the Lyapunov equation

PA⊥

(
∇2f(x⋆)− 1

2η0
1{α=1}Id

)
Σ̃ + Σ̃

(
∇2f(x⋆)− 1

2η0
1{α=1}Id

)
PA⊥ = PA⊥Σ(x⋆)PA⊥ .

5

Remark 1. By using the continuous time version of the Lyapunov theorem (Lemma 1 in [40]), the
Lyapunov equation has a unique positive semidefinite solution (denoted Σ̃). From Theorem 3.3
and Theorem 4.1.1 in [9], we can tell that when β ∈ [0, 1

2) our algorithm LPSA achieves the same
asymptotic variance as SGD that also uses the same step size. The typical projected SGD corresponds
to the case β = 0, while LPSA allows β to vary in [0, 1

2). One can reduce the projection frequency by
increasing β (equivalently decreasing the probability pn). Hence, when projection is expensive, LPSA
is more efficient in performing projections due to its flexible and moderate projection frequency.

Proof Idea of Theorem 3.3. We shed light on the proof idea of Theorem 3.3. From a high level, we
leverage the general theory for operator semigroups, which are developed by Trotter and Kurtz [39, 17–
19] and are used to analyze stochastic optimization algorithms in [9]. Our diffusion approximation
results are built on it, but generalize it in the sense that we use the celebrated Prokhorov’s theorem to
extend to the whole trajectory. One difficulty is to prove the stochastic tightness of {u(n)

t }. To that
end, we make use of a classic result (e.g. Theorem 7.3 of [4]).

3.2.2 Case 2: Occasional Projection where β ∈ (1/2, 1)

When we step into the low-frequency regime where β ∈
(
1
2 , 1
)
, the situation totally changes.

Intuitively, when LPSA performs much less frequent projection, we will frequently use infeasible xt

to update parameters, which accumulates residual errors. These errors would not only dominate and
slow down the non-asymptotic convergence rate (see Theorem 3.1), but also change the asymptotic
behavior. In this case, we should not only find the right timescale, but also need to figure out how
these errors are accumulated. To solve the issue, we develop a new analysis routine. In the following,
we consider pt = γηβt with γ > 0.

Our solution is to monitor another random process that is related with {vn}, which serves as a bridge
to derive the asymptotic behavior of {un}. The right scale should make the scaled sequence have
non-vanishing expected L2 norm. From Theorem 3.1, it should be v̌n = ηβ−1

n−1vn. In addition, given
v̌n, the candidate value of v̌n+1 before tossing the coin ωn, can be derived from LPSA’s Algorithm 1
in Appendix A, and we denote this candidate as v̌(n+1)−.

v̌(n+1)− := v̌n − ηβndn + ηβnξ
(2)
n , (8)

where dn = ∇f(x∗) + η−β
n Sn with Sn a residual error which satisfies η−β

n Sn = oP(1) (see
Appendix C.2 for more details) and ξ

(2)
n stands for the component of noise ξn on the orthogonal

complementary space A⊥. Due to the probabilistic projection, v̌n+1 takes value v̌(n+1)− with
probability 1− γηβn and takes value zero with probability γηβn . Similar to the previous section, we
then construct a càdlàg random process v̄(n)

t which starts from v̌n and will pass through {v̌(k)−}k≥n.
We can connect these discrete points with a step function. It results in the following construction

v̄
(n)
t = v̄

(n)

tn(η
β)
−
(
t−tn(η

β)
)
(dN(n,t,ηβ)−ξ

(2)

N(n,t,ηβ)
) if t ∈

(
tn(η

β), tn(η
β)+ηβ

tn(η
β)

)
,

v̄
(n)

tn(η
β)

= v̌N(n,t,ηβ).
(9)

From (9), we can claim that v̄(n)

tn(η
β)− = v̌N(n,t,ηβ)− for any t ≥ 0. With probability pN(n,t,ηβ),

v̌N(n,t,ηβ) takes value zero, which causes the process v̄(n)
· to change abruptly at the time tn(η

β).

These discontinuities about v̄(n)
· prevent the diffusion process from working on v̄

(n)
· as the result of

Theorem 3.3. Even so, the following theorem shows that we can still find a suitable process in the
broader jump diffusion class to approximate v̄

(n)
· .

Theorem 3.4 (Jump Approximation). Let Assumptions 1, 2, 4 and 5 hold. The following family of
càdlàg stochastic processes {v̄(n)

t : t ≥ 0}∞n=1 weakly converges to the stationary weak solution of
the following SDE

dYt = −∇f(x⋆)dt−Yt− ·Nγ(dt). (10)
Here Nγ(t) represents Poisson process with intensity γ, and Nγ(dt) = Nγ(t)−Nγ(t−). Further,
the rescaled sequence {v̌n}∞n=1 weakly converges to the invariant distribution of the dynamics (10),

i.e., − ∇f(x⋆)
∥∇f(x⋆)∥ · E

(
∥∇f(x⋆)∥

γ

)
. Here E(θ) represents the exponential distribution with intensity 1

θ .

6

Theorem 3.4 shows that the sequence {v̄(n)
t } constructed by shifting initial points will finally

approximate a jump process with a constant drift as n goes to infinity. The SDE (10) sheds light on how
v̄
(n)
t (equivalently a rescaled version of vn) move as t increases. As the error incurred by infrequent

projections, v̄(n)
t will move towards the direction of ∇f(x∗) (due to the drift term −∇f(x⋆)dt)

and be periodically forced to set as zero vector (due to the correcting term −Yt− ·Nγ(dt)). From
a qualitative perspective, the SDE (10) captures the periodical behavior of vn, hence it shows
without projection the residual error will accumulate along the direction of ∇f(x⋆). As argued in
Proposition 1, ∇f(x⋆) is unlikely to be zero in our constrained problems.

The remaining issue is how to link {v̄(n)
t } to our target {un}. Similarly, we should consider a rescaled

un, that is, ûn := (un −x⋆)/η1−β
n−1 . The following corollary, which is based on Theorem 3.4, shows

when β ∈
(
1
2 , 1
)
, ûn converges to a non-zero vector. Recall that ǔn = un−x∗

√
ηn−1

= η0.5−β
n−1 ûn. The

equation together with Corollary 1 implies ∥Eǔn∥ = η0.5−β
n−1 ∥Eûn∥ → ∞. As a result, the bias in

Corollary 1 instead of the Gaussian fluctuation in Theorem 3.3 becomes the leading term hindering
the convergence.

Corollary 1. Let Assumptions 1- 3 hold. Then ûn := 1

η1−β
n−1

(un − x⋆) converges to a non-zero

vector 1
γ

{
PA⊥

(
∇2f(x⋆)− 1−β

η0
1{α=1}I

)
PA⊥

}† (
PA⊥∇2f(x⋆)∇f(x⋆)

)
in the L2 as n → ∞.

Where G† denotes the pseudoinverse of the symmetric matrix G.

Proof Idea of Theorem 3.4 The main proof idea is similar to that of Theorem 3.4 except that we
need to handle the jump diffusion which introduces additional discontinuity. As a result, for each
n ≥ 0, {v̄(n)

t }t≥n is càdlàg rather than continuous. We then use the approximation result for jump
diffusions developed by Kushner [20] instead of Trotter and Kurtz’s theories. Furthermore, the tool
for proving tightness also needs to change. We replace the classic tool in [4] with a generalized
determination method, the latter used to establish the stochastic tightness for càdlàg processes (e.g.,
Theorem 4.1 in [19]). The remaining issue is to figure out properties (e.g., the mixing nature) of (10).
To that end, we establish the geometric ergodicity of Eq. (10) by combining the coupling method
with the Itô’s formula for jump diffusions, and show that its invariant distribution exists uniquely.

3.2.3 Summary and Discussion

From Sections 3.2.1 and 3.2.2, for the choice pn ∝ ηβn , when β varies, our algorithm has an interesting
bias-variance tradeoff. In fact, Theorems 3.3 and 3.4 reveal that the fluctuation of un is of order
O(η

1
2
n) and the bias is of order O(η1−β

n). When β ∈ [0, 1/2) the fluctuation caused by the randomness
of gradient queries in every iteration dominates the optimization accuracy. And when β ∈ (1/2, 1),
this indicator is manipulated by the biases formed by the accumulation of skewed updates in the
unconstrained state within each ‘inner loop’.

In practice, projection is expensive to perform. Hence, it is important to tune α and β so that the
projection complexity is minimized as much as possible. We use the average projection complexity
(APC) to quantify the projection efficiency. For a target accuracy ϵ > 0, APC is defined as the number
of projections required to obtain an ϵ-accuracy feasible solution. We summarize the derived results
and the corresponding APC in Table 1. We can see that APC is minimized when α → 1 and β → 0.5.
In this case, APC is approaching 1√

ϵ
.

We find an interesting parallelism between LPSA and Local SGD. In the case of FL, projection
complexity corresponds to communication complexity, because a synchronization in FL is essentially
a projection in linearly constrained problems (see Appendix A for the equivalence). In [27], the
authors analyzed the averaged communication complexity (ACC) for Local SGD with Polyak-Ruppert
averaging.3 They considered a general case where the length of the m-th inner loop could be up
to Em := mν with ν ∈ [0, 1). After Em steps of inner loop, communication would perform to
synchronize local models. Hence, Em plays a role similar to pn in our paper. Li et al. [27] found
that when ν ∈ [0, 1), the averaged Local SGD iterates enjoy an optimal asymptotic normality up

3For a target accuracy ϵ > 0, ACC is defined as the number of communication required to obtain a ϵ-accuracy
global parameter.

7

Table 1: (Non-)Asymptotic results and projection complexity under different choice of ηn and pn.
The first two columns list the non-asymptotic and asymptotic results respectively, and the last column
characterizes projection complexity.

(α, β) E∥un − x⋆∥2 Asymptotic behavior APC

(0, 1]× [0, 1/2) O
(

1
nα

)
3.1 Normal 3.3 O

(
ϵβ−

1
α

)
(0, 1]× (1/2, 1) O

(
1

n2α(1−β)

)
3.1 Biased 1 O

(
ϵ

αβ−1
2α(1−β)

)

to a known constant scale and its ACC is
(
1
ϵ

) 1
1+ν . When ν → 1, ACC is approaching 1√

ϵ
, similar

to our case where APC converges to 1√
ϵ

when α → 1 and β → 0.5. Actually, the 1√
ϵ

average
communication complexity is actually optimal for any first-order oracle distributed algorithms, as
shown in [43]. Hence, it implies our LSPA is efficient and near optimal in projection, because we can
always reduce FL as a special of (1).

4 Experiments

In this section, we validate our theoretical results through comprehensive experiments. Due to space
limitations, we only show some representative results on synthetic datasets under FL settings. For the
results on general linearly constrained problems, please refer to Appendix D.

Experimental Setup We focus on classification problems with cross entropy loss, and ℓ22 regular-
ization is imposed to ensure the strong convexity of the objective function. The synthetic datasets
are generated by following [24]. There are K clients and the sample (xk, zk) on the k-th client is
modeled as xk ∼ N (νk,Λ) and zk = argmax(softmax(Wkxk +bk)) where Λ ∈ Rd×d is diagonal
with the entry (j, j) equal to j−1.2, Wk ∈ RC×d and bk ∈ RC . We consider two specific datasets.
The first one is denoted by IID, where all the clients share the same Wk and bk, and νk ∼ N (0, Id).
For this one, we set K = 100, d = 60 and C = 10. The second one is denoted by Synthetic (a, b),
where a and b control the heterogeneity across clients. Specifically, each entry of Wk and bk is
modeled as N (µk, 1) with µk ∼ N (0, a) and νk ∼ N (ζk, I) with ζk ∼ N (0, bId). For this dataset,
we set K = 20, d = 10 and C = 5.

We find that the results on IID are intuitive enough to demonstrate the convergence rates of the mean
squared error (MSE) E ∥un − x⋆∥2 and the asymptotic behavior of ǔn for β ∈ [0, 1/2). The results
on Synthetic (a, b), a dataset with fewer parameters and more heterogeneity, are more appropriate
to illustrate the asymptotic biased of ûn for β ∈ (1/2, 1). The full results on both the datasets are
deferred to Appendix D.

Convergence Rate We plot the log-log scale graphs of averaged MSEs over 5 repetitions on
IID vs iterations in Figure 1. The value of α is set as {1, 0.8, 0.6} and the value of β is from
{0, 0.2, 0.4, 0.6, 0.8}. For each repetition, we run 2000 steps of LPSA. By Theorem 3.1, the slope of
the line in the log-log scale graph should be −αmin{1, 2− 2β}. This is in accordance with Figure 1
when the iteration is larger than 100. For β ∈ [0, 1/2), the value of β does not affect the slope, while
for β ∈ (1/2, 1), larger β and smaller α both lead to smoother lines.

100 101 102 103

Iterations

10 2

10 1

100

101

102

M
SE

= 1.0
= 0.0
= 0.2
= 0.4
= 0.6
= 0.8

100 101 102 103
Iterations

10 2

10 1

100

101

102

M
SE

= 0.8
= 0.0
= 0.2
= 0.4
= 0.6
= 0.8

100 101 102 103
Iterations

10 2

10 1

100

101

102

M
SE

= 0.6
= 0.0
= 0.2
= 0.4
= 0.6
= 0.8

Figure 1: The log-log scale graphs of averaged MSE on IID over 5 repetition vs iterations.

8

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

= 1.0, = 0.0

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04
= 1.0, = 0.2

Figure 2: The heatmaps of ǔn across two orthog-
onal directions over 100 repetitions on IID.

0 10000 20000 30000 40000 50000
Iterations

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u n
,e

1

Direction e1

0 10000 20000 30000 40000 50000
Iterations

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

u n
,e

2

Direction e2

Figure 3: Trajectories of ûn along two random di-
rections over 5 repetitions on Synthetic (1, 1).

Frequent Projection For α = 1 and β ∈ {0, 0.2}, we run 2000 steps of LPSA over 100 repetitions
on IID and pick up the last 200 iterates. For these iterates, we compute the rescaled vectors ǔn and
project them into a two-dimensional random subspace. Then we plot the heatmaps across the two
dimensions in Figure 2. We observe that the cells near the origin have the lightest colors, and as we
move away from the origin the cell color becomes darker. Since the cells with lighter colors imply
more frequencies, these phenomenons agree with Theorem 3.3, where the limiting distribution of ǔn

is Gaussian. The results with other values of α and β are deferred to Appendix D.4.

Occasional Projection For α = 0.8 and β = 0.6, we run 50000 steps of LPSA over 5 repetition
on Synthetic (1, 1). Then we compute the rescaled sequence ûn and project them along two
random directions e1 and e2. The trajectories depicted in Figure 3 show that the limits of ⟨ûn, e1⟩
and ⟨ûn, e2⟩ are nonzero and verify the asymptotic biased of ûn mentioned in Corollary 1. The
results with other values of α and β are deferred to Appendix D.6.

5 Concluding Remarks

In this paper we study the linearly constrained optimization problem. We propose the LPSA algorithm
that is inspired by Local SGD. The probabilistic projection in LPSA follows the spirit of loopless
methods [16, 12, 28] and simplifies the double-loop structure of original Local SGD, facilitating
theoretical analysis. We thoroughly analyze the (non-)asymptotic properties of properly scaled
trajectories obtained from {un} and discover an interesting phase transition where {un} changes
from asymptotically normal to asymptotically biased as the projection frequency decreases. From a
technical level, we generalize jump diffusion approximations to accommodate the particularity and
discontinuity of LPSA.

There are also some open problems. It is unclear about the asymptotic behavior of un when β = 0.5,
i.e., pn = Θ(

√
η
n
). The jump diffusion approach fails because we can’t analyze {un} via the length

of {vn} anymore. It accounts for failure that {ǔn} and {v̌n} are incompatible in the sense that
they use different time scales and the time interpolation. However, we speculate ǔn would finally
converge weakly to a non-centred Gaussian distribution. In addition, it is also interesting to analyze
the performance of projection complexity of LPSA. From Corollary 1, to achieve a better convergence
rate at lower projection frequencies, we must overcome the asymptotically biased nature of un. One
feasible approach is to build a ‘de-biasing’ algorithm which attenuates the effect of vn during the
update of un. We leave them as future work.

Acknowledgments and Disclosure of Funding

This work has been supported by the National Natural Science Foundation of China (No. 12271011).

9

References
[1] Ahmed Khaled Ragab Bayoumi, Konstantin Mishchenko, and Peter Richtárik. Tighter theory

for local SGD on identical and heterogeneous data. In International Conference on Artificial
Intelligence and Statistics, pages 4519–4529, 2020.

[2] Pascal Bianchi, Gersende Fort, and Walid Hachem. Performance of a distributed stochastic
approximation algorithm. IEEE Transactions on Information Theory, 59(11):7405–7418, 2013.

[3] Patrick Billingsley. Probability and measure. John Wiley & Sons, 2008.

[4] Patrick Billingsley. Convergence of probability measures. John Wiley & Sons, 2013.

[5] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed opti-
mization and statistical learning via the alternating direction method of multipliers. Foundations
and Trends® in Machine learning, 3(1):1–122, 2011.

[6] Jianqing Fan, Wenyan Gong, Chris Junchi Li, and Qiang Sun. Statistical sparse online regression:
A diffusion approximation perspective. In International Conference on Artificial Intelligence
and Statistics, pages 1017–1026. PMLR, 2018.

[7] Yuanyuan Feng, Tingran Gao, Lei Li, Jian-Guo Liu, and Yulong Lu. Uniform-in-time
weak error analysis for stochastic gradient descent algorithms via diffusion approximation.
Communications in Mathematical Sciences, 18(1):163–188, 2020.

[8] Xavier Fontaine, Valentin De Bortoli, and Alain Durmus. Convergence rates and approximation
results for SGD and its continuous-time counterpart. In Conference on Learning Theory, pages
1965–2058. PMLR, 2021.

[9] S. Gadat. Stochastic Optimization algorithms. 2012.

[10] Sébastien Gadat, Fabien Panloup, and Sofiane Saadane. Stochastic heavy ball. Electronic
Journal of Statistics, 12(1):461–529, 2018.

[11] Matilde Gargiani, Andrea Zanelli, Andrea Martinelli, Tyler Summers, and John Lygeros. PAGE-
PG: A simple and loopless variance-reduced policy gradient method with probabilistic gradient
estimation. arXiv preprint arXiv:2202.00308, 2022.

[12] Filip Hanzely and Peter Richtárik. Federated learning of a mixture of global and local models.
arXiv preprint arXiv:2002.05516, 2020.

[13] Li He, Qi Meng, Wei Chen, Zhi-Ming Ma, and Tie-Yan Liu. Differential equations for
modeling asynchronous algorithms. In Proceedings of the 27th International Joint Conference
on Artificial Intelligence, pages 2220–2226, 2018.

[14] Peter Kloeden and Eckhard Platen. Numerical solution of stochastic differential equations.
IEEE transactions on neural networks / a publication of the IEEE Neural Networks Council,
19:1991, 12 2008.

[15] Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian Stich. A
unified theory of decentralized SGD with changing topology and local updates. In International
Conference on Machine Learning, pages 5381–5393. PMLR, 2020.

[16] Dmitry Kovalev, Samuel Horváth, and Peter Richtárik. Don’t jump through hoops and remove
those loops: SVRG and Katyusha are better without the outer loop. In Algorithmic Learning
Theory, pages 451–467. PMLR, 2020.

[17] Thomas G Kurtz. Extensions of Trotter’s operator semigroup approximation theorems. Journal
of Functional Analysis, 3(3):354–375, 1969.

[18] Thomas G Kurtz. A general theorem on the convergence of operator semigroups. Transactions
of the American Mathematical Society, 148(1):23–32, 1970.

[19] Thomas G Kurtz. Semigroups of conditioned shifts and approximation of Markov processes.
The Annals of Probability, pages 618–642, 1975.

10

[20] Harold J Kushner. A martingale method for the convergence of a sequence of processes to a
jump-diffusion process. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 53
(2):207–219, 1980.

[21] Harold J Kushner and Hai Huang. Asymptotic properties of stochastic approximations with
constant coefficients. SIAM Journal on Control and Optimization, 19(1):87–105, 1981.

[22] Harold J Kushner and G Yin. Asymptotic properties of distributed and communicating stochastic
approximation algorithms. SIAM Journal on Control and Optimization, 25(5):1266–1290,
1987.

[23] Qianxiao Li, Cheng Tai, and E Weinan. Stochastic modified equations and adaptive stochastic
gradient algorithms. In International Conference on Machine Learning, pages 2101–2110.
PMLR, 2017.

[24] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127,
2018.

[25] Xiang Li and Zhihua Zhang. Delayed projection techniques for linearly constrained problems:
Convergence rates, acceleration, and applications. arXiv preprint arXiv:2101.01505, 2021.

[26] Xiang Li, Wenhao Yang, Shusen Wang, and Zhihua Zhang. Communication efficient decentral-
ized training with multiple local updates. arXiv preprint arXiv:1910.09126, 2019.

[27] Xiang Li, Jiadong Liang, Xiangyu Chang, and Zhihua Zhang. Statistical estimation and
inference via local sgd in federated learning. arXiv preprint arXiv:2109.01326, 2021.

[28] Zhize Li. ANITA: An optimal loopless accelerated variance-reduced gradient method. arXiv
preprint arXiv:2103.11333, 2021.

[29] Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. PAGE: A simple and optimal
probabilistic gradient estimator for nonconvex optimization. In International Conference on
Machine Learning, pages 6286–6295. PMLR, 2021.

[30] Tao Lin, Sebastian U Stich, and Martin Jaggi. Don’t use large mini-batches, use local sgd.
arXiv preprint arXiv:1808.07217, 2018.

[31] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
Intelligence and Statistics (AISTATS), 2017.

[32] Yurii Nesterov. Lectures on Convex Optimization. 2018.

[33] Bernt Øksendal and Agnes Sulem. Stochastic Control of jump diffusions. Springer, 2005.

[34] Antonio Orvieto and Aurelien Lucchi. Continuous-time models for stochastic optimization
algorithms. Advances in Neural Information Processing Systems, 32, 2019.

[35] Mariane Pelletier. Weak convergence rates for stochastic approximation with application to
multiple targets and simulated annealing. Annals of Applied Probability, pages 10–44, 1998.

[36] Eckhard Platen and Nicola Bruti-Liberati. Numerical solution of stochastic differential
equations with jumps in finance, volume 64. Springer Science & Business Media, 2010.

[37] Boris Teodorovich Polyak. Gradient methods for minimizing functionals. Zhurnal
Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 3(4):643–653, 1963.

[38] Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via stochastic
gradient Langevin dynamics: a nonasymptotic analysis. In Conference on Learning Theory,
pages 1674–1703. PMLR, 2017.

[39] Hale F Trotter. Approximation of semi-groups of operators. Pacific Journal of Mathematics, 8
(4):887–919, 1958.

11

[40] CZ Wei. Multivariate adaptive stochastic approximation. The annals of statistics, pages 1115–
1130, 1987.

[41] Andre Wibisono, Ashia C Wilson, and Michael I Jordan. A variational perspective on accelerated
methods in optimization. proceedings of the National Academy of Sciences, 113(47):E7351–
E7358, 2016.

[42] Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan
Mcmahan, Ohad Shamir, and Nathan Srebro. Is local SGD better than minibatch SGD? In
International Conference on Machine Learning, pages 10334–10343. PMLR, 2020.

[43] Blake E Woodworth, Kumar Kshitij Patel, and Nati Srebro. Minibatch vs local SGD for
heterogeneous distributed learning. In Advances in Neural Information Processing Systems,
volume 33, pages 6281–6292, 2020.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See the Introduction part and the comparison with
previous works in Appendix A.

(b) Did you describe the limitations of your work? [Yes] See Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our work

is purely theoretical.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] They are all deferred

in the appendix.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We describe
the experimental details in Appendix D.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix D.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] Our experiments use synthetic
datasets to validate the theoretical results. It is easy to reproduce the experiments on an
average computer using only CPUs.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

A Special Condition: Federated Learning

In this section, we focus on the specific case of Federated Learning (FL). We first present the FL
problem and establish the equivalence between LPSA and local SGD. Then we restate our main
results under the context of FL. We also discuss related works on distributed optimization.

A.1 The Problem and Reduction

In this subsection, we formulate our algorithm in federated settings and show that it is equivalent to
local SGD. Before we proceed, we first give the formal statement of our algorithm

Algorithm 1: Loopless Projected Stochastic Approximation (LPSA)
Input: function f , data distribution D, initial point x0, step size ηn, projection probability pn.
Initialization: let x(k)

0 = x0 for all k.
for n = 0 to T − 1 do

Sample ζn ∼ D and ωn ∼ Bernoulli(pn)
xn+ 1

2
= xn − ηn∇f(xn, ζn)

if ωn = 1 then
xn+1 = PA⊥xn+ 1

2

else
xn+1 = xn+ 1

2

end if
end for
Return: PA⊥xT .

For typical distributed optimization problems, we can rewrite them as a global consensus problem,

min
x(1),x(2),··· ,x(N)

1

N

N∑
k=1

Eζ(k)∼Dk
g(x(k), ζ(k)) s.t. x(1) = · · · = x(N), (11)

where there are N clients, x(k) is the local parameter at the k-th client and ζ(k) repre-
sents the randomness from this client. If we concatenate all the local parameters as x =[
(x(1))⊤, (x(2))⊤, · · · , (x(N))⊤

]⊤ ∈ RNd and ζ = (ζ(1), ζ(2), · · · , ζ(N))⊤, we can rewrite
the equation (11) as the form of equation (1), where f(x, ζ) = 1

N

∑N
k=1 g(x

(k), ζ(k)), D =

D1 ×D2 × · · · × DN and A⊤ is equipped with a particular structure

A⊤ =


Id −Id 0d · · · 0d 0d

0d Id −Id · · · 0d 0d

...
...

...
. . .

...
...

0d 0d 0d · · · Id −Id

 ∈ R(N−1)d×Nd. (12)

In the expression of A⊤, Id ∈ Rd×d is the identity matrix and 0d ∈ Rd×d is the zero matrix. For
such an A, the operators PA⊥ and PA are easy to compute. One can check that

PA⊥(x) =
[
x̄⊤, x̄⊤, · · · , x̄⊤]⊤ (13)

and

PA(x) =
[
(x(1) − x̄)⊤, (x(2) − x̄)⊤, · · · , (x(N) − x̄)⊤

]⊤
,

where x̄ = 1
N

∑N
i=1 x

(i). Then we can establish the equivalent between LPSA and local SGD.
At iteration n, the step xn+ 1

2
= xn − ηn∇f(xn, ζn) represents a step of local update, that is

x
(k)

n+ 1
2

= x
(k)
n − ηn∇g(x

(k)
n , ζ

(k)
n) for each k. If ωn = 1, the projection step xn+1 = PA⊥(xn+ 1

2
)

becomes a round of communication such that all the local parameters share the same value, i.e.,

14

x
(k)
n+1 = 1

N

∑N
i=1 x

(i)

n+ 1
2

for each k; if ω = 0, no communication happens and x
(k)
n+1 = x

(k)

n+ 1
2

.

Finally, Algorithm 1 returns the average of all local parameters PA⊥xT = 1
N

∑N
k=1 x

(k)
T .

The above reduction analysis implies that under the context of FL, Algorithm 1 becomes a loopless
version of local SGD. The main difference between LPSA and original Local SGD is that LPSA has
a stochastic length of local updates, which is determined by how frequent we observe ωn = 1. Since
pn gradually decreases, the expectation of local updates would gradually increase. Such a difference
does not deteriorate the convergence under certain conditions, as shown in Theorem 3.1. Moreover,
the probabilistic loop also facilitates theoretical analysis.

A.2 Restatement of Theoretical Results

In this subsection, we examine the theoretical results and give a revision of Theorem 3.2 under the
FL condition.

For simplicity, we define the population loss function on client k as gk(x
(k)) :=

Eζ(k)∼Dk
g(x(k), ζ(k)). Then we have f(x) = Eζ∼Df(x, ζ) =

1
N

∑N
k=1 gk(x

(k)),

∇f(x) =
1

N


∇g1(x

(1))
∇g2(x

(2))
...

∇gn(x
(N))


and

∇2f(x) =
1

N


∇2g1(x

(1)) 0d · · · 0d

0d ∇2g2(x
(2)) · · · 0d

...
...

. . .
...

0d 0d · · · ∇2gN (x(N))

 .

We first focus on Proposition 1. Note that the solution to (11) must be of the form

x⋆ =
[
(x(⋆))⊤, (x(⋆))⊤, · · · , (x(⋆))⊤

]⊤
∈ RNd.

Proposition 1 implies that the solution satisfies 1
N

∑N
k=1 ∇gk(x

(⋆)) = 0. This equation does not
imply that the ∇gk(x

⋆) are all equal to zero. In fact, under the heterogeneous setting, where the gk
are different due to the diversity across the clients, we typically have ∇f(x(⋆)) ̸= 0. This is crucial
for the validity of Theorem 3.4 and Corollary 1. As for the homogeneous setting where the gk share
the same form, 1

N

∑N
k=1 ∇gk(x

(⋆)) = 0 does imply ∇gk(x
(⋆)) = 0 and consequently ∇f(x⋆) = 0.

In this case, Theorem 3.4 and Corollary 1 do not hold any more. However, the homogeneous setting
is beyond the scope of our paper and is left for future work. Thus, we assume ∇f(x⋆) ̸= 0 from now
on.

Now we turn to the results in Section 3.1. With PA⊥ described in (13), we have

un =
[
(x̄n)

⊤, (x̄n)
⊤, · · · , (x̄n)

⊤]⊤ ,

where x̄n = 1
N

∑N
k=1 x

(k)
n . As a result, E ∥un − x⋆∥2 = NE

∥∥x̄n − x(⋆)
∥∥2. Then Theorem 3.1

guarantees that E
∥∥x̄n − x(⋆)

∥∥2 = O(n−αmin{1,2−2β}), which is what we desire. The revision of
Theorem 3.2 is deferred to the last part of this subsection.

As for the results in Section 3.2, we first take a glance at Theorem 3.3. Since the expression of PA⊥

implies we can just focus on the first d dimensions of (7), Theorem 3.3 actually characterize the
asymptotic behavior of x̄n−x(⋆)

√
ηn−1

when β ∈ [0, 1
2). Then we consider the bias vector mentioned in

Corollary 1. Direct computation shows

PA⊥∇2f(x⋆)∇f(x⋆) =
1

N2
PA⊥


∇2g1(x

(⋆))∇g1(x
(⋆))

∇2g2(x
(⋆))∇g2(x

(⋆))
...

∇2gN (x(⋆))∇gN (x(⋆))


15

=
1

N3


Id
Id
...
Id

 N∑
k=1

∇2gk(x
(⋆))∇gk(x

(⋆))

Even if ∇gk(x
(⋆)) ̸= 0 for any k, the bias vector could still be equal to the zero vector. For example,

∇2gk(x
(⋆)) are all the same and

∑N
k=1 ∇gk(x

(⋆)) = 0. For such a special case, the convergence of
E
∥∥x̄n − x(⋆)

∥∥2
2

could be faster, since the leading term hindering the convergence vanishes.

A.2.1 Revision of the Lower Bound

Finally, we present a revised version of Theorem 3.2. Recall that the Hessian matrix ∇2f(x) is a
block diagonal matrix. Although Theorem 3.1 provides a counter example for the general case, it
does not specify the form of ∇2f(x). Fortunately, with A defined in (12), we can find a counter
example such that ∇2f(x) is a diagonal matrix.
Corollary 2. Consider the problem (11). If ηn = η0n

−α and pn = min{p0ηn, 1} with 0 < α ≤ 1,
then there exists a quadratic function f(x) such that ∇2f(x) is a diagonal matrix, ∇2f(x) ⪰ Id
and E ∥un − x⋆∥2 does not converge to 0.

The proof of Corollary 2 is deferred to Appendix B.3.

A.3 Related Work

In this section, we focus on several works that investigate the asymptotic and dynamical nature of
distributed optimization. We can trace this line of research back from the classical work [22] by
Kushner et al. Unlike the prevailing federated learning algorithm (multi-step local computation
between adjacent communications), Kushner et al. [22] consider a random, incomplete decentralized
communication within each iteration. And the randomness of these communications are characterized
by a sequence of random gossip matrices {Wn}. In particular, the algorithm has the following form,

Local step: xn+ 1
2 ,i

= xn,i + ϵYn,i

Gossip step: xn+1,i =

N∑
j=1

ωn+1(i, j)xn+ 1
2 ,j

(14)

where Wn = [ωn(i, j)]
N
i,j=1 and N is the number of nodes.

For the algorithm, Kushner et al. [22] proved that the trajectories of the final iteration converge weakly
to the solution of the particular ODE as the step size ϵ converges to zero, and formally discussed
the weak convergence of the rescaled sequences to the solution of a specific linear SDE (i.e. the
diffusion approximation result). However, there are several limitations to this work. First of all, the
most critical point is that the above theoretical results are discussed in the case of fixed step sizes. As
the iteration increases, the variance term of a stochastic approximation begins to dominate the rate of
convergence, and the use of a constant step size at this point will make the effect of variance never
fall to zero. So a fixed step size means a fixed and finite total iteration (depending on the constant
step size and the required estimation accuracy). This makes all the asymptotic results in [22] less
practical. In addition, the article assumes (without proof) some intermediate results such as tightness
and weak convergence at the initial point, making his theoretical results incomplete.

Thereafter, Bianchi et al. [2] consider the same random gossip stochastic approximation algorithm.
Unlike [22], Bianchi et al. replace the fixed step size with a decreasing step size and obtain the
asymptotic normality of rescaled final iteration and Polyak-Ruppert averaging sequence. But note
that Bianchi et al. [2] assume that all gossip matrices have the same distribution, implying that
their asymptotic results hold only if the communication frequency does not decrease as the iteration
increases. This is equivalent to the case in LPSA where the projection probability is set as a constant.
In particular, they assume the step size γn ∼ 1

nα satisfies that α ∈ (12 , 1]. In the end, neither of the
above two works analyzes the effect of communication frequency on the asymptotic performance of
the distributed stochastic approximation algorithm, which is explicitly reflected in our analysis in the
form of bias-variance tradeoff.

16

B Proof of Section 3.1

In this section, we give the proof of Theorems 3.1 and 3.2.

B.1 Useful Propositions and Lemmas

In this subsection, we present some existing results and auxiliary lemmas useful for our later analysis.
Proposition 2 ([32], Theorem 2.1.9, property of strong convexity). If f(x) is µ-strongly convex, then
we have

⟨∇f(x)−∇f(y),x− y⟩ ≥ µ ∥x− y∥2 , ∀x,y ∈ Rd.

Proposition 3 (Cauchy–Schwarz Inequality). For any vectors a, b ∈ Rd and positive number γ, it
holds that

2 ⟨a, b⟩ ≤ γ ∥a∥2 + 1

γ
∥b∥2 .

Moreover, for any positive integer n and any vectors x1,x2, . . . ,xn ∈ Rd, it holds that∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

≤ n

n∑
i=1

∥xi∥2 .

Proposition 4 ([25], Proposition 2.1 and Lemma B.1, property of projection). Suppose that A is a
p× q matrix. Let PA be the projection onto the column space of A and PA⊥ the projection onto the
null space of A⊤. Then we have

1. Linearity: PA(αx+ βy) = αPA(x) + βPA(y) for any x,y ∈ Rp and α, β ∈ R.

2. Non-expansiveness: max{∥PA(x)−PA(y)∥, ∥PA⊥(x)−PA⊥(y)∥} ≤ ∥x− y∥ for any
x,y ∈ Rp.

3. Orthogonality: any x ∈ Rp can be decomposed uniquely into x = u + v where u =
PA⊥(x) and v = PA(x) satisfying ⟨u,v⟩ = 0.

More specifically, we have PA(x) = A(A⊤A)†A⊤x = (A⊤)†A⊤x and PA⊥(x) = Ip −
PA(x) =

(
Ip −A(A⊤A)†A⊤)x =

(
Ip − (A⊤)†A⊤)x with † the pseudo inverse.

Proposition 5 (Stolz–Cesàro theorem). Let {an} and {bn} be two sequences of real numbers such
that

1. 0 < b1 < b2 < · · · < bn < . . . and limt→∞ bt = ∞.

2. limn→∞
an+1−an

bn+1−bn
= l ∈ R.

Then, limn→∞
an

bn
exists and is equal to l.

Lemma 1. Let {rn} ⊂ (0, 1) be a sequence of positive numbers that decays to zero monotonically.
If rn

rn+1
− 1 = o(rn), for p ≥ 1, we have that

lim
T→∞

∑T
n=1 r

p
n

∏T
s=n+1(1− rs)

rp−1
T

= 1.

Lemma 2. Let {rn} ⊂ (0, 1) be a sequence of positive numbers that decays to zero monotonically
and a is a positive number. If rn

rn+1
− 1 = arn + o(rn), for p ≥ 1 and 1/a > p− 1, we have

lim
T→∞

∑T
n=1 r

p
t

∏T
s=n+1(1− rs)

rp−1
T

=
1

1− a(p− 1)
.

Lemma 3. Let {rn} ⊂ (0, 1) be a sequence of positive numbers that decays to zero monotonically
and {sn} is a sequence of positive numbers. If rn

rn+1
− 1 = arn + o(rn) for a ≥ 0 and sn+1 =

(1− rn)sn + o(rn). Then we have sn = o(1).

The proof of the three lemmas are deferred to Appendix B.4.

17

B.2 Proof of Theorem 3.1

In this subsection, we give the formal statement of Theorem 3.1 and its proof. Before that, we first
present the one-step descent lemmas of E ∥un − x⋆∥2 and E ∥vn∥2, whose proof is deferred to
Appendix B.5.

Lemma 4 (One-step descent of E ∥un − x⋆∥2). Suppose that Assumptions 1, 2 and 4 hold. Then
there exists a n0 such that for any n ≥ n0,

E∥un+1 − x⋆∥2 ≤ (1− µηn)E∥un − x⋆∥2 + 3L2

µ
ηnE∥vn∥2 + 2η2nΣ

(1)
⋆ , (15)

where Σ
(1)
⋆ := E ∥PA⊥ξ⋆∥2 with ξ⋆ = ∇f(x⋆)−∇f(x⋆, ζ), ζ ∼ D.

Lemma 5 (One-step descent of E ∥vn∥2). Suppose that Assumptions 1, 2 and 4 hold. Then there
exists a n0 such that for any n ≥ n0

E∥vn+1∥2 ≤
(
1− pn

2

)
E∥vn∥2 +

7L2η2n
pn

E∥un − x⋆∥2 + 7L2η2n
pn

∥∇f(x⋆)∥2 + 2η2nΣ
(2)
⋆ , (16)

where Σ
(2)
⋆ := E ∥PAξ⋆∥2 with ξ⋆ = ∇f(x⋆)−∇f(x⋆, ζ), ζ ∼ D.

Now we are prepared to give the formal statement of Theorem 3.1.

Theorem B.1 (Formal statement of Theorem 3.1). Suppose that Assumptions 1, 2 and 4 hold. Let
ηn = η0n

−α and pn = min{p0ηβn, 1} with 0 ≤ β < 1. Then for (i) 0 < α < 1 or (ii) α = 1 with
η0 > 2/µ, we have

E∥un − x⋆∥2 = O
(
ηn + η2−2β

n

)
E ∥vn∥2 = O

(
η2−2β
n

)
Proof. (Proof of Theorem B.1)

Let zn = ∥un − x⋆∥2 + c0
√

pn

ηn
∥vn∥2 with c0 =

√
3/(7µ). By Lemmas 4 and 5, there exists a n0

such that for any n ≥ n0, we have

Ezn+1 ≤

(
1−min

{
µηn,

pn
2

}
+ 7c0L

2 η
3/2
n

p
1/2
n

)
Ezn + 2η2nΣ

(1)
⋆

+ 7c0L
2 η

3/2
n

p
1/2
n

∥∇f(x⋆)∥2 + 2c0η
3/2
n p1/2n Σ

(2)
⋆ .

With pn = min{p0ηβn, 1} for some 0 ≤ β < 1, there exists a n1 ≥ n0 such that for any n ≥ n1, we
have pn = p0η

β
n and

Ezn+1 ≤
(
1− µηn

2

)
Ezn + 2η2nΣ

(1)
⋆ +

7c0L
2

√
p0

η3/2−β/2
n ∥∇f(x⋆)∥2 + 2c0

√
p0η

3/2+β/2
n Σ

(2)
⋆ .

(17)

For any T ≥ n1, applying the recursion (17) (T − n1) times yields

EzT ≤ Ezn1

T−1∏
n=n1

(
1− µηn

2

)
+ 2Σ

(1)
⋆

T−1∑
n=n1

η2n

T−1∏
s=n+1

(
1− µηs

2

)

+
7c0L

2

√
p0

∥∇f(x⋆)∥2
T−1∑
n=n1

η3/2−β/2
n

T−1∏
s=n+1

(
1− µηs

2

)

+ 2c0
√
p0Σ

(2)
⋆

T−1∑
n=n1

η3/2+β/2
n

T−1∏
s=n+1

(
1− µηs

2

)
.

(18)

18

For case (i) where 0 < α < 1, we have ηn = η0n
−α. Thus, for the first term, we have

Ezn1

T−1∏
n=n1

(
1− µηn

2

)
≤ Ezn1

exp

(
−µ

2

T−1∑
n=n1

ηn

)

≤ Ezn1
exp

(
−µη0(T

1−α − n1−α
1)

2(1− α)

)
.

For other terms, one can check that ηn

ηn+1
− 1 = o(ηn). Then by Lemma 1, we have

E∥un − x⋆∥2 ≤ Ezn=O

(
c0L

2 ∥∇f(x⋆)∥2
√
p0 µ

η1/2−β/2
n

)
=O

(
L2 ∥∇f(x⋆)∥2

√
p0µ

η1/2−β/2
n

)
. (19)

This implies that there exists a positive number c1 such that E∥un−x⋆∥2 ≤ c1
L2∥∇f(x⋆)∥2

√
p0µ

η
1/2−β/2
n

for any n ≥ n1. Substituting this into (16) yields that

E∥vn+1∥2 ≤
(
1− p0η

β
n

2

)
E∥vn∥2 +

7c1L
4 ∥∇f(x⋆)∥2

p
3/2
0

√
µ

η5/2−3β/2
n E∥un − x⋆∥2

+
7L2

p0
η2−β
n ∥∇f(x⋆)∥2 + 2η2nΣ

(2)
⋆

hold for any n ≥ n1. Following the same argument as before, we can prove

E∥vn∥2 = O

(
L2 ∥∇f(x⋆)∥2

p20
η2−2β
n

)
. (20)

Then there exists c2 > 0 such that E∥vn∥2 ≤ c2L
2∥∇f(x⋆)∥2

2

p2
0

η2−2β
n for any n ≥ n1. Substituting this

into (15) yields that

E∥un+1 − x⋆∥2 ≤ (1− µηn)E∥un − x⋆∥2 +
3c2L

4 ∥∇f(x⋆)∥22
µp20

η3−2β
n + 2η2nΣ

(1)
⋆

hold for any n ≥ n1. Following the same procedure again, we can obtain

E∥un − x⋆∥2 = O

(
Σ

(1)
⋆

µ
ηn +

L4 ∥∇f(x⋆)∥2

µ2p20
η2−2β
n

)
. (21)

For case (ii) where α = 1 with η0 > 2/µ, we can still obtain (18). Since ηn = η0t
−1, for the first

term on the right-hand side of (18), we have

Ezn1

T−1∏
n=n1

(
1− µηn

2

)
≤ Ezn1

exp

(
−µ

2

T−1∑
n=n1

ηn

)

≤ Ezn1 exp

(
−µη0(lnT − lnn1)

2

)
= O

(
T−µη0/2

)
.

For other terms, one can check that ηn

ηt+1
− 1 = 2

µη0
· µηn

2 + o(ηn). Then by Lemma 2, we have (19)
holds for η0 > 2/µ. Following the same procedure as before, we can also obtain (20). Substituting
this into (15) yields that

E∥un+1 − x⋆∥2 ≤ (1− µηn)E∥un − x⋆∥2 + 3c2L
2

µ
η3−2β
n + 2η2nΣ

(1)
⋆

holds for any n ≥ n1. Since ηn

ηt+1
− 1 = 1

µη0
· µηn + o(ηn), following the same procedure as before,

we can obtain (21) for η0 > 2/µ > max{2− 2β, 1}/µ.

19

B.3 Proof of Theorem 3.2

We first give a formal statement of Theorem 3.2 that can combines Theorem 3.2 and Corollary 2.
Theorem B.2. If ηn = η0n

−α and pn = min{p0ηn, 1} with 0 < α ≤ 1, for a specific A ∈ Rp×r

with r < p, there exists a quadratic function f(x) defined on Rp so that ∇2f(x) ⪰ Ip and
E ∥un−x⋆∥2 does not converge to 0. Here Ip ∈ Rp×p is the identity matrix, and ∇2f(x) ⪰ Ip
means ∇2f(x)−Ip is positive semidefinite. Moreover, if PA is not of the form PA =

∑
i∈I eie

⊤
i ,

where I ⊆ {1, 2, . . . , p} and ei is the unit vector in Rp with the i-th element equal to 1, ∇2f(x) can
be chosen as a diagonal matrix such that ∇2f(x) ⪰ Ip.

Before give the proof of Theorem B.2, we first give the proof of Corollary 2 based on Theorem B.1.

Proof. (Proof of Corollary 2)

With A defined in (12), we have p = Nd and r = (N − 1)d. Recall that for x =[
(x(1))⊤, (x(2))⊤, · · · , (x(N))⊤

]⊤ ∈ RNd, we have

PA⊥(x) =
[
x̄⊤, x̄⊤, · · · , x̄⊤]⊤

where x̄ = 1
N

∑N
k=1 x

(k). As a result, we have PA⊥e1 = 1
N

∑N−1
k=0 e1+kd. This implies that PA⊥

can not be of the form PA⊥ =
∑

i∈I eie
⊤
i . Thus, ∇2f(x) can be chosen as a diagonal matrix.

Now we present the proof of Theorem B.2.

Proof. (Proof of Theorem B.2)

Consider the quadratic function f(x) = 1
2x

⊤Bx+c⊤x where the positive definite matrix B ∈ Rp×p

and the vector c ∈ Rp are specified later.

The exact solution to problem (1) We first compute the exact solution to problem (1), where
A ∈ Rp×r for some positive integer r < p. With out loss of generalization, we assume rank(A) = r.

Suppose that the singular value decomposition (SVD) of A is A = UDAV
⊤ where U ∈ Rp×p

and V ∈ Rr×r are orthogonal matrices and DA ∈ Rp×r is a rectangular diagonal matrix with
diagonal entries in descending order. One can check that the solution to A⊤x = 0 has the form
x =

(
Ip − (A⊤)†A⊤)w = PA⊥(w) where w is an arbitrary vector in Rp and (A⊤)† is the pseudo

inverse of A⊤. From the SVD of A, we have

Ip − (A⊤)†A⊤ = U

[
0r 0r×(p−r)

0(p−r)×r Ip−r

]
U⊤,

where 0m×n ∈ Rm×n denote the zero matrix and reduces to 0n ∈ Rn×n for m = n. We denote the
first r columns of U by U1 and last p− r columns of U by U2 for simplicity, Then the problem (1)
becomes the following unconstrained problem

min
w∈Rp

1

2
w⊤ (Ip − (A⊤)†A⊤)⊤ B

(
Ip − (A⊤)†A⊤)w +w⊤ (Ip − (A⊤)†A⊤)⊤ c.

= min
w2∈Rp−r

1

2
w⊤

2 B2w2 +w⊤
2 c2,

where w2 = U⊤
2 w, B2 = U⊤

2 BU2 and c2 = U⊤
2 c. The solution is w⋆

2 = −B−1
2 c2. From the

expression of Ip − (A⊤)†A⊤, we know that the first r elements of U⊤w will not affect the value of
x. Thus, the solution to the original problem (1) is x⋆ = −U2B

−1
2 c2.

Moreover, one can check

PA = U

[
Ir 0r×(p−r)

0(p−r)×r 0(p−r)×(p−r)]

]
U⊤ = U1U

⊤
1

and

PA⊥ = U

[
0r×r 0r×(p−r)

0(p−r)×r Ip−r

]
U⊤ = U2U

⊤
2 .

20

Recursions of Eun and Evn From the definition of un and the linearity of PA⊥ , we have

un+1 − x⋆ = PA⊥(xn − ηnBxn − ηnc+ ηnξn)− x⋆

= un − x⋆ − ηnPA⊥(Bxn + c) + ηnPA⊥ξn
= un − x⋆ − ηnPA⊥B(un − x⋆)− ηnPA⊥Bvn − ηnPA⊥(Bx⋆ + c) + ηnPA⊥ξn
= un − x⋆ − ηnPA⊥BPA⊥(un − x⋆)− ηnPA⊥Bvn − ηnPA⊥(Bx⋆ + c) + ηnPA⊥ξn.

The optimality of x⋆ implies that PA⊥(Bx⋆ + c) = 0. Taking expectation yields

Eun+1 − x⋆ = (Ip − ηnPA⊥BPA⊥)(Eun − x⋆)− ηnPA⊥B Evn. (22)

As for the iteration of Evt. From the definition of vn, with probability 1− pn we have

vt+1 = PA(xn − ηnBxn − ηnc+ ηnξn)

= vn − ηnPA(Bxn + c) + ηnPAξn
= vn − ηnPAB(un − x⋆)− ηnPABvn − ηnPA(Bx⋆ + c) + ηnPAξn
= (Ip − ηnPABPA)vn − ηnPAB(un − x⋆)− ηnPA(Bx⋆ + c) + ηnPAξn,

and with probability pn we have vn+1 = 0. Taking expectation yields

Evn+1=(1−pn)(Ip−ηnPABPA)Evn − (1−pn)ηn [PAB(Eun−x⋆) + PA(Bx⋆+c)] . (23)

Simultaneous diagonalization of PABPA and PA⊥BPA⊥ We first express the two matrices as
follows:

PABPA = U

[
Ir 0r×(n−r)

0(n−r)×r 0n−r

]
U⊤BU

[
Ir 0r×(n−r)

0(n−r)×r 0n−r

]
U⊤

= U

[
B1 0r×(n−r)

0(n−r)×r 0n−r

]
U⊤,

PA⊥BPA⊥ = U

[
0r 0r×(n−r)

0(n−r)×r In−r

]
U⊤BU

[
0r 0r×(n−r)

0(n−r)×r In−r

]
U⊤

= U

[
0r 0r×(n−r)

0(n−r)×r B2

]
U⊤,

where B1 = U⊤
1 BU1 and B2 = U⊤

2 BU2 are positive definite. We suppose the eigenvalue
decomposition of B1 and B2 is B1 = Q1DB1

Q⊤
1 and B2 = Q2DB2

Q⊤
2 . With Q :=[

Q1 0r×(n−r)

0(n−r)×r Q2

]
and P := UQ, we obtain the eigenvalue decomposition of PA⊥BPA⊥

and PABPA as follows

PABPA = P

[
DB1

0r×(n−r)

0(n−r)×r 0n−r

]
P⊤ =: PD̃B1

P⊤

and

PA⊥BPA⊥ = P

[
0r 0r×(n−r)

0(n−r)×r DB2

]
P⊤ =: PD̃B2P

⊤.

Proof by contradiction Left multiplication of (23) by P⊤ yields

Eṽn+1 = (Ip − D̃n)Eṽn − ηn(1− pn)B0(Eun − x⋆)− (1− pn)ηnc0. (24)

where ṽn := P⊤vn, B0 := P⊤PAB, D̃n := ηnD̃B1+pnIp−ηnpnD̃B1 and c0 := P⊤PA(Bx⋆+

c). Adding (p0Ip + D̃B1)
−1c0 to both sides of (24), we obtain

Eṽn+1 + (p0Ip + D̃B1
)−1c0

= (Ip − D̃n)Eṽn − ηn(1− pn)B0(Eun − x⋆)− (1− pn)ηnc0 + (p0Ip + D̃B1
)−1c0

= (Ip − D̃n)[Eṽn + (p0Ip + D̃B1
)−1c0]− ηn(1− pn)B0(Eun − x⋆)

21

+ [pn − p0ηn(1− pn)](p0Ip + D̃B1)
−1c0. (25)

Suppose E∥un − x⋆∥2 = o(1), which implies Eun − x⋆ = o(1). Let D̃n =

diag
{
d̃n,1, d̃n,2, . . . , d̃n,p

}
amd D̃B1

= diag
{
d̃B1,1, d̃B1,2, . . . , d̃B1,p

}
. Left multiplication of

(25) by e⊤i gives∣∣∣∣∣Ee⊤i ṽn+1 +
1

p0 + d̃B1,i

e⊤i c0

∣∣∣∣∣ ≤ (1− d̃n,i)

∣∣∣∣∣Ee⊤i ṽn +
1

p0 + d̃B1,i

e⊤i c0

∣∣∣∣∣+ o(ηn),

where ei is the unit vector with the i-th element equal to 1. Since d̃n,i = ηndB1,i(1− pn) + pn and
pn = min{p0ηn, 1}, o(ηn) = o(d̃n,i). Lemma 3 implies Ee⊤i ṽn+1 = − 1

p0+dB1,i
e⊤i c0 + o(1). It

follows that Eṽn = −(p0Ip + D̃B1
)−1c0 + o(1). Thus we have

Evn = −P (p0Ip + D̃B1
)−1P⊤PA(Bx⋆ + c) + o(1). (26)

Denote the limit of Evn by v∞ and we come back to the iteration (22). Left multiplication of (22) by
P⊤ yields

Eũn+1 = (Ip − ηnD̃B2)Eũn − ηnP
⊤PA⊥Bv∞ + o(ηn),

where ũn = P⊤(un − x⋆). Similar to the above argument, adding P⊤PA⊥Bv∞ to both sides and
using Lemma 3, we can obtain

Eũn = −P⊤PA⊥Bv∞ + o(1)

= P⊤PA⊥BP (p0Ip + D̃B1
)−1P⊤PA(Bx⋆ + c) + o(1).

It remains to prove that there exists a positive definite matrix B ∈ Rp×p and a vector c ∈ Rp such
that the limit is nonzero.

Specification of B and c From the expression of x⋆, we have

Bx⋆ + c = c−BU2(U
⊤
2 BU2)

−1U⊤
2 c = (Ip −BU2(U

⊤
2 BU2)

−1U⊤
2)c.

Define B̃ := Ip −BU2(U
⊤
2 BU2)

−1U⊤
2 for short. We examine the column space of B̃, which is

denoted by R(B̃). We can easily find U⊤
2 B̃ = 0(p−r)×r. Thus R(B̃) ⊆ R(U1). On the other hand,

we have B̃U1 = U1, which implies rank(B̃) ≥ rank(U1). As a result, R(B̃) = R(U1). Then for
any z ∈ Rr, there exists a c ∈ Rp such that B̃c = U1z. It suffices to prove that there exists a positive
definite matrix B ∈ Rp×p and a vector z ∈ Rr such that P⊤PA⊥BP (p0Ip + D̃B1

)−1P⊤PAU1z
is nonzero.

Since P = UQ, PA = U1U
⊤
1 , PA⊥ = U2U

⊤
2 , Q =

[
Q1 0r×(n−r)

0(n−r)×r Q2

]
, D̃B1

=[
DB1

0r×(n−r)

0(n−r)×r 0n−r

]
and B1 = Q1DB1

Q⊤
1 , we have

P⊤PA⊥BP (p0Ip + D̃B1
)−1P⊤PAU1z

= Q⊤U⊤U2U
⊤
2 BUQ(p0Ip + D̃B1

)−1Q⊤U⊤U1z

= Q⊤
[

0
U⊤

2

]
B[U1 U2]

[
(p0Ir +B1)

−1 0r×(p−r)

0(p−r)×r
1
p0
Ip−r

] [
z
0

]
= Q⊤

[
0

U⊤
2 BU1(p0Ip + D̃B1

)−1z

]
.

Then it suffices to prove that there exist a positive matrix B ∈ Rp×p such that U⊤
2 BU1 is nonzero.

Suppose that U1 = (p1,p2, . . . ,pr) = (pki)p×r and U2 = (q1, q2, . . . , qp−r) = (qkj)p×(p−r).
Then the column vectors of U1 and U2 form an orthonormal basis of Rp.

If there exist i,j and k0 such that pk0iqk0j ̸= 0, Then we can take B as a diagonal matrix Ip +Ek0k0

where Eij is the p× p matrix with (i, j) entry equal to 1 and others equal to 0. The (j, i) entry of
U⊤

2 BU1 is
∑p

k=1 pkiqkj + pk0iqk0j = pk0iqk0j ̸= 0. And one can check B ⪰ Ip.

22

Otherwise, there must exist i, j, k0 and l0 such that pk0iql0j ̸= 0 and k0 ̸= l0. Since in this case
pkiqkj = 0 for any k, then we have qk0j = pl0i = 0. We take B = 2Ip +Ek0l0 +El0k0 . Then the
(j, i) entry of U⊤

2 BU1 is 2
∑p

k=1 pkiqkj + pk0iql0j + pl0iqk0j = pk0iql0j ̸= 0. And one can check
B ⪰ Ip.

As a result, there always exists B and c such that the limit of ∥Eũn∥ is nonzero. This implies
E ∥un − x⋆∥2 ̸= o(1), which induces a contradiction.

In the latter case, for any ei ∈ Rp, either e⊤i U1 or e⊤i U2 is zero. Note that U1 and U2 are of
full column rank. Then we have U1 =

∑
i∈I1

eip̃
⊤
i and U2 =

∑
j∈I2

ej q̃
⊤
j where |I1| = r,

|I2| = p − r, I1 ∪ I2 = {1, 2, . . . , p}, I1 ∩ I2 = ∅, p̃i (i ∈ I1) are orthonormal basis of Rr and
q̃j (j ∈ I2) are orthonormal basis of Rp−r. As a consequence, PA = U1U

⊤
1 =

∑
i∈I1

eie
⊤
i and

PA⊥ = U2U
⊤
2 =

∑
j∈I2

eje
⊤
j . This implies that if PA is not of this form there must exist i, j, k0

such that pk0iqk0j ̸= 0. Then we can choose B as a diagonal matrix such that B ⪰ Ip.

B.4 Proof of Lemmas 1, 2 and 3

Proof. (Proof of Lemma 1)

Define aT =
∑T

n=1 r
p
n

∏n
s=1

1
1−rs

and bT = rp−1
T

∏T
s=1

1
1−rs

. We first prove that bT+1 > bT for
sufficiently large T and limT→∞ bT = ∞. Since

bT+1

bT
=

(
rT+1

rT

)p−1

· 1

1− rT+1

=
1

(1 + o(rT))p−1
· (1 + rT+1 + o(rT+1))

= (1 + o(rT+1))(1 + rT+1 + o(rT+1))

= 1 + rT+1 + o(rT+1),

then we have bT+1 > bT for sufficiently large T . Besides, rn
rn+1

− 1 = o(rn) implies 1
rn

− 1
rn+1

=

o(1). By Stolz–Cesàro theorem, we have limn→∞
1

nrn
= 0 and limn→∞

∑n
s=1 1/s∑n
s=1 rs

= 0. As a
consequence,

bT ≥ rp−1
T exp

(
T∑

s=1

rs

)

= rp−1
T exp

(∑T
s=1 rs∑T
s=1 1/s

T∑
s=1

1/s

)

≥ rp−1
T exp

(∑T
s=1 rs∑T
s=1 1/s

log T

)

= (TrT)
p−1 exp

[(∑T
s=1 rs∑T
s=1 1/s

− p+ 1

)
log T

]
.

Thus limT→∞ bT = ∞. Now we use Stolz–Cesàro theorem to prove limT→∞
aT

bT
= 1. With the

definition of aT and bT , we have

aT+1 − aT = rpT+1

T+1∏
s=1

1

1− rs

and

bT+1 − bT = rp−1
T+1

T+1∏
s=1

1

1− rs
− rp−1

T

T∏
s=1

1

1− rs

= (rp−1
T+1 − rp−1

T)

T+1∏
s=1

1

1− rs
+ rp−1

T rT+1

T+1∏
s=1

1

1− rs
.

23

It follows that
aT+1 − aT
bT+1 − bT

=
rpT+1

rp−1
T+1 − rp−1

T + rp−1
T rT+1

=
rT+1

1− (rT /rT+1)p−1 + rT+1(rT /rT+1)p−1

=
rT+1

1− (1 + o(rT))p−1 + rT+1(1 + o(1))

=
rT+1

o(rT) + rT+1(1 + o(1))

=
1

1 + o(1)
,

which implies limT→∞
aT+1−aT

bT+1−bT
= 1. By Stolz–Cesàro theorem, we obtain what we want.

Proof. (Proof of Lemma 2)

Define aT =
∑T

n=1 r
p
t

∏n
s=1

1
1−rs

and bT = rp−1
T

∏T
s=1

1
1−rs

. We first prove that bT+1 > bT for
sufficiently large T and limT→∞ bT = ∞. Since

bT+1

bT
=

(
rT+1

rT

)p−1

· 1

1− rT+1

=
1

(1 + arT + o(rT))p−1
(1 + rT+1 + o(rT+1))

= (1− a(p− 1)rT + o(rT))

(
1 +

rT
1 + arT + o(rT)

+ o(rT)

)
= (1− a(p− 1)rT + o(rT)) (1 + rT + o(rT))

= 1 + [1− a(p− 1)]rT + o(rT),

then we have bT+1 > bT for sufficiently large T . Besides, rn
rn+1

− 1 = arn + o(rn) implies
1
rn
− 1

rn+1
= a+o(1). By Stolz–Cesàro theorem, we have limt→∞

1
nrn

= a and limn→∞

∑n
s=1 1/s∑n
s=1 rs

=

a. As a consequence,

bT ≥ rp−1
T exp

(
T∑

s=1

rs

)

= rp−1
T exp

(∑T
s=1 rs∑T
s=1 1/s

T∑
s=1

1/s

)

≥ rp−1
T exp

(∑T
s=1 rs∑T
s=1 1/s

log T

)

= (TrT)
p−1 exp

[(∑T
s=1 rs∑T
s=1 1/s

− p+ 1

)
log T

]
= (1/a+ o(1))p−1 exp [(1/a+ o(1)− p+ 1) log T] .

Thus limT→∞ bT = ∞.

Now we use Stolz–Cesàro theorem to prove limT→∞
aT

bT
= 1

1−a(p−1) . With the definition of aT and
bT , we have

aT+1 − aT = rpT+1

T+1∏
s=1

1

1− rs

and

bT+1 − bT = rp−1
T+1

T+1∏
s=1

1

1− rs
− rp−1

T

T∏
s=1

1

1− rs

24

= (rp−1
T+1 − rp−1

T)

T+1∏
s=1

1

1− rs
+ rp−1

T rT+1

T+1∏
s=1

1

1− rs
.

It follows that

aT+1 − aT
bT+1 − bT

=
rpT+1

rp−1
T+1 − rp−1

T + rp−1
T rT+1

=
rT+1

1− (rT /rT+1)p−1 + rT+1(rT /rT+1)p−1

=
rT+1

1− (1 + arT + o(rT))p−1 + rT+1(1 + arT + o(rT))p−1

=
rT+1

1− 1− a(p− 1)rT + o(rT) + rT+1(1 + o(1))

=
1

−a(p− 1)rT /rT+1 + o(1) + 1 + o(1)

=
1

1− a(p− 1) + o(1)
,

which implies limT→∞
aT+1−aT

bT+1−bT
= 1

1−a(p−1) . By Stolz–Cesàro theorem, we obtain what we
want.

Proof. (Proof of Lemma 3)

Suppose that sn = o(1) does not hold. Then for any positive number ε > 0, there exists a sequence
of positive integers {ni} that increases to ∞ such that sni ≥ ε. From the recursion of sn, there exists
a positive integer T such that

sn+1 ≤ (1− rn)sn +
ε

2
rn (27)

for any n ≥ T . For ni > T , we have

ε ≤ sni ≤ (1− rni−1)sni−1 +
ε

2
rni−1 ≤ (1− rni−1)sni−1 + εrni−1.

It follows that sni−1 ≥ ε. Since ni increases to ∞, we have sn ≥ ε for any n ≥ T by induction. For
any T1 > T , summing (27) from T to T1 − 1 , we have

T1∑
n=T+1

sn ≤
T1−1∑
n=T

sn −
T1−1∑
n=T

snrn +
ε

2

T1−1∑
n=nT

rn.

Rearranging the terms yields

sT ≥ sT1
+

T1−1∑
n=T

snrn − ε

2

T1−1∑
n=T

rn ≥ sT1
+

ε

2

T1−1∑
n=T

rn.

From the proofs of Lemmas 1 and 2, we have limn→∞

∑n
s=1 1/s∑n
s=1 rs

= a. Thus limT1→∞
∑T1

n=T rn =

∞, which induces a contradiction. As a consequence, we have sn = o(1).

B.5 Proof of Lemmas 4 and 5

Proof. (Proof of Lemma 4)

From the update rule and the linearity of PA⊥ , we have

E∥un+1 − x⋆∥2 = E∥PA⊥(xn − ηn∇f(xn) + ηnξn)− x⋆)∥2

= E∥un − x⋆ − ηnPA⊥(∇f(xn)−∇f(x⋆)) + ηnPA⊥ξn∥2

= E∥un − x⋆∥2 + η2nE∥PA⊥(∇f(xn)−∇f(x⋆))∥2

− 2ηnE ⟨un − x⋆,PA⊥(∇f(xn)−∇f(x⋆))⟩+ η2nΣ
(1)
n , (28)

25

where the last equality is due to that {ξn} is a m.d.s. and Σ
(1)
n := E∥PA⊥ξn∥2.

For the second term of (28), we have

∥PA⊥(∇f(xn)−∇f(x⋆))∥2 = ∥PA⊥(∇f(xn)−∇f(un)) + PA⊥(∇f(un)−∇f(x⋆))∥2

(a)

≤ 2∥PA⊥(∇f(xn)−∇f(un))∥2 + 2∥PA⊥(∇f(un)−∇f(x⋆))∥2

(b)

≤ 2L2 ∥vn∥2 + 2L2 ∥un − x⋆∥2 ,

where (a) is by Proposition 3 and (b) is due to non-expansiveness of PA⊥ and smoothness of f . For
the third term of (28), we have

− ⟨un − x⋆,PA⊥(∇f(xn)−∇f(x⋆))⟩
(a)
= −⟨un − x⋆,∇f(xn)−∇f(x⋆)⟩
= −⟨un − x⋆,∇f(xn)−∇f(un)⟩ − ⟨un − x⋆,∇f(un)−∇f(x⋆)⟩
(b)

≤ µ

4
∥un − x⋆∥2 + 1

µ
∥∇f(xn)−∇f(un)∥2 − µ ∥un − x⋆∥2

(c)

≤ −3µ

4
∥un − x⋆∥2 + L2

µ
∥vn∥2 ,

where (a) follows from the orthogonality between PA and PA⊥ , (b) is by Propositions 2 and 3 and
(c) is due to the smoothness of f . For the last term of (28), we first show that |Σ(1)

n − Σ
(1)
⋆ | ≤

dLE ∥xn − x⋆∥. From the definition of Σ(1)
n and Σ

(1)
⋆ , we have

|Σ(1)
n − Σ

(1)
⋆ | =

∣∣E trace
(
PA⊥(ξnξ

⊤
n − ξ⋆(ξ⋆)⊤)PA⊥

)∣∣
=
∣∣trace (PA⊥(Eξnξ⊤n − Eξ⋆(ξ⋆)⊤)PA⊥

)∣∣
≤ d ∥PA⊥E(Σ(xn)− Σ(x⋆))PA⊥∥
≤ dLE ∥xn − x⋆∥ ,

where the last inequality is due to the non-expansiveness of PA⊥ and Assumption 3. It follows that

Σ(1)
n ≤ Σ

(1)
⋆ + |Σ(1)

n − Σ
(1)
⋆ |

≤ Σ
(1)
⋆ + dLE ∥xn − x⋆∥

≤ Σ
(1)
⋆ + dLE(∥un − x⋆∥+ ∥vn∥)

(a)

≤ Σ
(1)
⋆ + dL

[
Σ

(1)
⋆

dL
+

dL

2Σ
(1)
⋆

E(∥un − x⋆∥2 + ∥vn∥2)

]

= 2Σ
(1)
⋆ +

d2L2

2Σ
(1)
⋆

E ∥un − x⋆∥2 + d2L2

2Σ
(1)
⋆

∥vn∥2 ,

where (a) follows from Proposition 3.

By substituting these inequalities, we obtain

E ∥un+1 − x⋆∥2 ≤
(
1− 3µ

2
ηn + 2L2η2n +

d2L2

2Σ
(1)
⋆

η2n

)
E ∥un − x⋆∥2

+

(
2L2

µ
ηn + 2L2η2n +

d2L2

2Σ
(1)
⋆

η2n

)
E ∥vn∥2 + 2η2nΣ

(1)
n

(a)

≤ (1− µηn)E∥un − x⋆∥2 + 4L2

µ
ηnE∥vn∥2 + 2η2nΣ

(1)
n ,

where (a) holds if n is large enough.

Proof. (Proof of Lemma 5)

26

From the update rule and the linearity of PA, we have

E ∥vn+1∥2 = (1− pn)E ∥PA(xn − ηn∇f(xn)ηnξn)∥2

= (1− pn)E ∥vn − ηnPA∇f(xn) + ηnPAξn∥2

= (1− pn)E ∥vn∥2 + (1− pn)η
2
nE ∥PA∇f(xn)∥2 (29)

− 2(1− pn)ηnE ⟨vn,PA∇f(xn)⟩+ (1− pn)η
2
nΣ

(2)
n ,

where the last equality is due to that {ξn} is a m.d.s. and Σ
(2)
n := E ∥PAξn∥2.

For the second term of (29), we have

∥PA∇f(xn)∥2 = ∥PA(∇f(xn)−∇f(un) +∇f(un)−∇f(x⋆) +∇f(x⋆))∥2

(a)

≤ 3 ∥PA(∇f(xn)−∇f(un))∥2 + 3 ∥PA(∇f(un)−∇f(x⋆))∥2 + 3 ∥PA∇f(x⋆)∥2

(b)

≤ 3L2 ∥vn∥2 + 3L2 ∥un − x⋆∥2 + 3 ∥∇f(x⋆)∥2 ,

where (a) is by Proposition 3 and (b) follows from non-expansiveness of PA and smoothness of f .

For the third term of (29), we have

− ⟨vn,PA∇f(xn)⟩
(a)
= −⟨vn,∇f(xn)⟩
= −⟨vn,∇f(xn)−∇f(un)⟩ − ⟨vn,∇f(un)−∇f(x⋆)⟩ − ⟨vn,∇f(x⋆)⟩
(b)

≤ −µ ∥vn∥2 +
pn
8ηn

∥vn∥2 +
2ηn
pn

∥∇f(un)−∇f(x⋆)∥2 + pn
8ηn

∥vn∥2 +
2ηn
pn

∥∇f(x⋆)∥2

(c)

≤ −µ ∥vn∥2 +
pn
4ηn

∥vn∥2 +
2L2ηn
pn

∥un − x⋆∥2 + 2ηn
pn

∥∇f(x⋆)∥2 ,

where (a) follows from the orthogonality between PA and PA⊥ , (b) is by Propositions 2 and 3 and
(c) is due to the smoothness of f . For the last term of (29), we can obtain

Σ(2)
n ≤ 2Σ

(2)
⋆ +

d2L2

2Σ
(2)
⋆

E ∥un − x⋆∥2 + d2L2

2Σ
(2)
⋆

∥vn∥2

by following similar procedure in the proof of Lemma 4. By substituting these inequalities, we obtain

E ∥vn+1∥2 ≤ (1− pn)

(
1− 2µηn + 3L2η2n +

pn
2

+
d2L2

2Σ
(2)
⋆

η2n

)
E ∥vn∥2

+

(
4L2η2n
pn

+ 3L2η2n +
d2L2

2Σ
(2)
⋆

η2n

)
E ∥un − x⋆∥2

+

(
4η2n
pn

+ 3η2n

)
∥∇f(x⋆)∥2 + 2η2nΣ

(2)
n

(a)

≤
(
1− pn

2

)
E ∥vn∥2 +

7L2η2n
pn

E ∥un − x⋆∥2 + 7η2n
pn

∥∇f(x⋆)∥2 + 2η2nΣ
(2)
n ,

where (a) holds if n is large enough.

27

C Proof of Section 3.2

C.1 Proof of Case 1

We can deduce the recursive relationship of ǔn by the definition of un and the update rule (2).

ǔn+1 = PA⊥

xn+ 1
2
− x⋆

√
ηn

= PA⊥
1

√
ηn

(xn − ηn∇f(xn) + ηnξn − x⋆)

=

√
ηn−1√
ηn

ǔn −√
ηnPA⊥ {(∇f(xn)−∇f(un)) + (∇f(un)−∇f(x⋆))}+√

ηnPA⊥ξn

=

√
ηn−1√
ηn

ǔn −√
ηnηn−1PA⊥

{∫ 1

0

∇2f (tx⋆ + (1− t)un) dt

}
ǔn +R(1)

n +
√
ηnPA⊥ξn

= ǔn − ηnPA⊥

(
∇2f(x⋆)− 1

2η0
1{α=1}I

)
ǔn +R(1)

n +R(2)
n +R(3)

n +
√
ηnξ

(1)
n

(30)
Where R(i)

n , i = 1, 2, 3 are higher order term with respect to ηn with the form:

R(1)
n = −√

ηnPA⊥(∇f(xn)−∇f(un))

R(2)
n = −

(
1−

√
ηn−1

ηn
+

ηn
2η0

1{α=1}

)
ǔn + (ηn −√

ηnηn−1)PA⊥∇2f(x⋆)ǔn

R(3)
n =

√
ηnηn−1PA⊥

(
∇2f(x⋆)−

∫ 1

0

∇2f (tx⋆ + (1− t)un) dt

)
ǔn

(31)

Where θn is an entry-wise linear interpolation point from un to x⋆ and Lemma 6 shows that 1
ηn

R(i)
n

are o(1) in some sense.

Lemma 6. When Assumptions 1, 2 and 4 hold, and let pt = ηβt where β ∈ [0, 1/2), then for any
i ∈ {1, 2}, E∥R(i)

n ∥2 = o(η2n). For R(3)
n , we have E∥R(3)

n ∥2 = O(η2n) and E∥R(3)
n ∥ = o(ηn).

We first show the tightness of the rescaling sequence we built. Actually, we make use of a classical
criterion (Theorem 7.3 in [3]) to prove this property of ū(n)

t .

Proposition 6. The sequence ū(n) is tight if these two conditions hold

1. For each positive η, there exists an a and an n0 such that

P(∥ǔn∥ ≥ a) ≤ η ∀n ≥ n0 (32)

2. For any T > 0, for any positive ϵ, η, a δ exists and an integer n0 exists such that:

P

(
sup

s∈[t,t+δ]

∥∥∥ū(n)
s − ū

(n)
t

∥∥∥ ≥ ε

)
≤ ηδ; ∀t ∈ [0, T] ∀n ≥ n0 (33)

28

Proof. (Proof of Lemma 6) When α < 1,

E∥R(1)
n ∥2 ≤ ηnE∥∇f(xn)−∇f(un)∥2 ≤ ηnL

2E∥vn∥2 ≾ L2ηn × η2−2β
n = o(η2n)

E∥R(2)
n ∥2 ≾

(
1−

√
ηn−1

ηn

)2

+ (ηn −√
ηnηn−1)

2 =

(
1

ηn
+ ηn

)
(
√
ηn −√

ηn−1)
2

≾
(ηn − ηn−1)

2

η2n
= [1− (1 + o(ηn))]

2 = o(η2n)

E
∥∥∥R(3)

n

∥∥∥2 ≾ η2nE
∥∥∥∥{∫ 1

0

∇2f (tx⋆ + (1− t)un) dt−∇2f(x⋆)

}
ǔn

∥∥∥∥2
≾ η2nE∥ǔn∥2 = O(η2n)

E
∥∥∥R(3)

n

∥∥∥ ≾ ηnE
∥∥∥∥∫ 1

0

∇2f (tx⋆ + (1− t)un) dt−∇2f(x⋆)

∥∥∥∥ · ∥ǔn∥

≾ ηnE ∥ǔn∥
∫ 1

0

∥∥∇2f(tx⋆ − (1− t)un)−∇2f(x⋆)
∥∥ dt

≾ ηnE ∥ǔn∥
∫ 1

0

(1− t) ∥un − x⋆∥ dt ≾ η3/2n E ∥ǔn∥2 = o(ηn).

(34)

And when α = 1

E
∥∥∥R(2)

n

∥∥∥2 ≾

(
1−

√
1 +

1

n− 1
+

1

2n

)2

+
1

n
(
1√
n
− 1√

n− 1
)2 = o(

1

n2
).

Lemma 7 (Tightness of ū(n)). Suppose that Assumptions 1, 2 and 4 holds, and assume that there
exists a positive number p > 2 such that sup

n≥0
E∥ξn∥p < ∞. Then the sequence of random processes

{ū(n)} is tight under the Skorokhod topology in finite interval.

Proof. (Proof of Lemma 7)

From the construction of ū(n)
t we know it is a continuous process. What remains we have to do is to

verify two conditions (32) and (33).

For the first condition about initialization of the process, it is easy to check by the convergence rate
result for un − x⋆.

For the condition (33), note that we have

ū(n)
s − ū

(n)
t =


N(n,s,η)−1∑
k=N(n,t,η)

ηkbk −
[
(t− tn(η))bN(n,t,η) − (s− sn(η)bN(n,s,η))

]
+


N(n,s,η)−1∑
k=N(n,t,η)

√
ηkξk −

√
t− tn(η)ξN(n,t,η) +

√
s− sn(η)ξN(n,s,η)


=: B+Ξ

(35)

29

From the discussion following Lemma 6, we can see that E∥bn∥2 is uniformly bounded. So

P

(
sup

s∈[t,t+δ]

∥B∥ ≥ ϵ

2

)
≤ P

 N(n,s,η)∑
k=N(n,t,η)

ηk∥bk∥ ≥ ϵ

2


≤ 4

ϵ2
E

 N(n,s,η)∑
k=N(n,t,η)

ηk∥bk∥

2

≤ 4

ϵ2

 N(n,s,η)∑
k=N(n,t,η)

ηk

E

 N(n,s,η)∑
k=N(n,t,η)

ηk∥bk∥2


≤ 4

ϵ2
sup
k

E∥bk∥2
 N(n,s,η)∑

k=N(n,t,η)

ηk

2

≤ C (δ + ηn)
2

ϵ2

(a)

≤ η(δ + ηn)

4

(b)

≤ ηδ

2

(36)

Where (a) and (b) holds when we take δ + ηn0
< ηϵ2

4C and ηn0
< δ.

On the other hand, thanks to the property of monotone interpolation, we have

∥Ξ∥ ≤ max
j∈{0,1}

∥∥∥∥∥∥
N(n,s,η)−j∑
k=N(n,t,η)

√
ηkξk −

√
t− tn(η)ξN(n,t,η)

∥∥∥∥∥∥ . (37)

By leveraging the Doob’s inequality and the assumption of bounded p-th moment of ξk, we can get

P

(
sup

s∈[t,t+δ]

∥Ξ∥ ≥ ϵ

2

)
≤ P

 max
j≤N(n,s,η)

∥∥∥∥∥∥
j∑

k=N(n,t,η)

√
ηkξk −

√
t− tn(η)ξN(n,t,η)

∥∥∥∥∥∥ ≥ ϵ

2


≤ 2p

ϵp
E

∥∥∥∥∥∥
N(n,s,η)∑

k=N(n,t,η)

√
ηkξk −

√
t− tn(η)ξN(n,t,η)

∥∥∥∥∥∥
p

(a)

≤ Cp2p

ϵp

N(n,s,η)∑
k=N(n,t,η)

ηp/2n E∥ξk∥p

≤ C
ϵp
η

p
2−1
n

N(n,s,η)∑
k=N(n,t,η)

ηk

(b)

≤ C
ϵp
η

p
2−1
n (δ + ηn)

(c)

≤ η(δ + ηn)

4
≤ ηδ

2
(38)

Where (a) holds by the Burkholder’s inequality and (b), (c) hold when we choose η
p
2−1
n0 ≤ ϵpη

4C and
ηn0 ≤ δ.

Combine (36) and (38), finally we can derive that

P

(
sup

s∈[t,t+δ]

∥∥∥ū(n)
s − ū

(n)
t

∥∥∥ ≥ ε

)
≤ P

(
sup

s∈[t,t+δ]

∥B∥ ≥ ϵ

2

)
+ P

(
sup

s∈[t,t+δ]

∥Ξ∥ ≥ ϵ

2

)

≤ ηδ

2
+

ηδ

2
= ηδ

(39)

So far, we conclude the proof of Lemma 7.

30

Lemma 8. Suppose Assumptions 1, 1 and 4 holds, and assume that there exists a positive number
p > 2 such that sup

n≥0
E∥ξn∥p < ∞. And suppose

E[ξtξ⊤t |Ft]
n→∞−→ Σ in probability (40)

Where Σ is a positive definite d × d-matrix. Then for any C2 function g : Rd → R, compactly
supported with Lipschitz continuous second derivatives, we have

E[g(ǔn+1)− g(ǔn)|Fn] = ηnLg(ǔn) +Rg
n (41)

Where 1
ηn

Rg
n → 0 in L1 and L is the infinitesimal generator defined by

∀ϕ ∈ C2 (Rp) Lϕ(x) =
〈
−PA⊥

(
∇2f(x⋆)− 1

2η0
1{α=1}Id

)
PA⊥x,∇ϕ

〉
+

1

2
tr
(
∇2ϕ(x)Σ

)
(42)

Proof. (Proof of Lemma 8)

C will represent a universal constant whose value may change from line to line, for the sake of
convenience. We use a Taylor expansion between un and un+1

g(ǔn+1)− g(ǔn) = ⟨∇g(ǔn), ǔn+1 − ǔn⟩+
1

2
(ǔn+1 − ǔn)

⊤∇2g(ǔn)(ǔn+1 − ǔn)

+
1

2
(ǔn+1 − ǔn)

⊤ (∇2g(λn)−∇2g(ǔn)
)
(ǔn+1 − ǔn)︸ ︷︷ ︸

R(4)
n

(43)

Since ∇2g is Lipschitz continuous and compactly supported, ∇2g is also ϵ-Hölder continuous for all
ϵ ∈ (0, 1]. Then combine the equation (30) we can control the order of R(4)

n .

E∥R(4)
n ∥ ≾ E∥ǔn+1 − ǔn∥2+ϵ

≤ E
∥∥∥∥ηnPA⊥

(
∇2f(x⋆)− 1

2η0
1{α=1}Id

)
PA⊥ǔn +R(1)

n +R(2)
n +R(3)

n +
√
ηnξn

∥∥∥∥2+ϵ

≾ η
1+ ϵ

2
n

So we deduce 1
ηn

R(4)
n → 0 in L1. Further, we make use of the update formula (30) again

E[⟨∇g(ǔn), ǔn+1 − ǔn⟩|Fn]

=E
[
⟨∇g(ǔn),−ηnPA⊥

(
∇2f(x⋆)− 1

2η0
1{α=1}Id

)
PA⊥ǔn +R(1)

n +R(2)
n +R(3)

n +
√
ηnξn⟩|Fn

]
=− ηnE

[
⟨∇g(ǔn),PA⊥

(
∇2f(x⋆)− 1

2η0
1{α=1}Id

)
PA⊥ǔn⟩|Fn

]
+

3∑
i=1

E[⟨∇g(ǔn),R(i)
n ⟩|Fn]

(44)

Note by Lemma 6, we have

E

∣∣∣∣∣E
[〈

∇g(ǔn),
R(i)

n

ηn

〉∣∣∣∣∣Fn

]∣∣∣∣∣ ≤ E

∣∣∣∣∣
〈
∇g(ǔn),

R(i)
n

ηn

〉∣∣∣∣∣
≾E

∥∥∥∥∥R(i)
n

ηn

∥∥∥∥∥ ≤

E

∥∥∥∥∥R(i)
n

ηn

∥∥∥∥∥
2
 1

2

= o(1)

(45)

31

And at last,

1

2
E
[
(ǔn+1 − ǔn)

⊤∇2g(ǔn)(ǔn+1 − ǔn)|Fn

]
=
ηn
2
E
[
ξ⊤n ∇2g(ǔn)ξn|Fn

]
+

η
3
2
n

2
E
〈
bn,∇2g(ǔn)ξn

〉
+
η2n
2
E⟨bn,∇2g(ǔn)bn⟩

(46)

Cause g is compactly supported, the norm of ∇2g is bounded. And by Lemma 6, we can deduce
E∥bn∥2 is uniformly bounded. Therefore, the last two terms of (46) are o(ηn). Combine the above
analysis, we have

E[g(ǔn+1)− g(ǔn)|Fn]

=− ηn

〈
∇g(ǔn),PA⊥

(
∇2f(x⋆)− 1

2η0
1{α=1}Id

)
PA⊥ǔn

〉
+

ηn
2

〈
∇2g(ǔn),Σ

〉
+Rg

n

(47)

with E∥Rg
n∥ = o(ηn).

Proof. (Proof of Theorem 3.3) The proof of this main results is divided into two steps. At first, we
prove that every weak limits of sequence of random process {ū(n)} is a solution of the martingale
problem (L, C), where C denotes the class of C2-functions with compact support and Lipschitz
continuous second derivatives. L is defined by (42). Then, from the property of Langevin dynamics,
we know that (7) convergence to a unique invariant distribution π⋆. Further, by proving that the limit
of every weakly converged subsequence equals to π⋆ and combining it with the Prokhorov’s theorem,
we conclude ǔn converges to π⋆ weakly. Finally, repeat the first step of this proof, and we have
{ū(n)

t } converges to the solution of equation (7) with initial distribution π⋆.

Step 1 Let g belong to C and let F (n)
t denote the natural filtration of ū(n)

t . We aim to derive the
following equation, which can guarantee that every sub-limit of {ū(n)

t } is a weak solution of the
martingale problem (L, C).

∀t ≥ 0, g
(
ū
(n)
t

)
− g

(
ū
(n)
0

)
−
∫ t

0

Lg
(
ū(n)
s

)
ds = M(n,g)

t +R(n,g)
t (48)

Where M(n,g)
t is a F (n)

t -martingale and R(n,g)
t converges to zero in L1.

In fact, we set

M(n,g)
t =

N(n,t,η)−1∑
k=n+1

{g (ǔk+1)− g (ǔk)− E [g (ǔk+1)− g (ǔk) | Fk]}

R(n,g)
t = g

(
ū
(n)
t

)
− g

(
ū
(n)
tn

)
−
∫ t

tn

Lg
(
ū(n)
s

)
ds

+

∫ tn

0

(
Lg
(
ū(n)
sn

)
− Lg

(
ū(n)
s

))
ds+

N(n,t,η)−1∑
k=n

Rg
k

(49)

From the definition of ū(n)
t (6), we can get

ū
(n)
t − ū

(n)
tn(η)

= (t− tn(η))bN(n,t,η) +
√

t− tn(η)ξN(n,t,η) (50)

32

Which satisfies

E
∥∥∥ū(n)

t − ū
(n)
tn(η)

∥∥∥ ≤ (t− tn(η))E∥bN(n,t,η)∥+
√

t− tn(η)E∥ξN(n,t,η)∥

≾
√
ηN(n,t,η)

(51)

Plug the above bound into the residual R(n,g)
t , and note the Lipschitz continuity and boundedness of

g, ∇g and ∇2g,

E
∣∣∣g(ū(n)

t)− g(ū
(n)
tn(η)

)
∣∣∣ ≾ E

∥∥∥ū(n)
t − ū

(n)
tn(η)

∥∥∥ = o(1)

E

∣∣∣∣∣
∫ t

tn(η)

Lg(ū(n)
s)ds

∣∣∣∣∣ ≾
∫ t

tn(η)

C ≾ ηN(n,t,η) = o(1)

E

∣∣∣∣∣
∫ tn(η)

0

Lg(ū(n)
sn(η)

)− Lg(ū(n)
s)ds

∣∣∣∣∣ ≾ E
∫ tn(η)

0

∥∥∥ū(n)
sn(η)

− ū(n)
s

∥∥∥ ds
≾
∫ tn(η)

0

√
ηN(n,s,η)ds ≤

√
ηn = o(1)

(52)

Further, attributed to Lemma 8,

E

∣∣∣∣∣∣
N(n,t,η)−1∑

k=n

Rg
k

∣∣∣∣∣∣ ≤
N(n,t,η)∑

k=n

ηkE
∣∣∣∣Rg

k

ηk

∣∣∣∣
≤ sup

k≥n
E
∣∣∣∣Rg

k

ηk

∣∣∣∣N(n,t,η)∑
k=n

ηk ≾ o(1)t = o(1)

(53)

So far we can say that E|R(n,g)
t | → 0, n → ∞.

Step 2 Now we suppose that there exists a weakly convergent subsequence {ǔnk
}∞k=1 with limit

distribution π̃. We should introduce some new notations. For n ∈ N and t ≥ 0, we define

M(n, t, η) = min

{
m ≥ 0;

n−1∑
i=m

ηi ≤ t

}
and t̃n(η) = Γn − ΓM(n,t,η). For the properties of step

size sequence ηn, we can affirm t− t̃n(η) → 0 when n → ∞.

By leveraging the Prokhorov’s theorem, for any T > 0, we know that
{
ū
(M(nk,T,η))
t

}
has a

weakly convergent subsequence. Without loss of generality, we can assume that the subsequence{
ū
(M(nk,T,η))
t

}
itself converges weakly to a solution ūν̃(T)

t of the SDE (7) with initial distribution

ν̃(T). Owing to the tightness of the whole sequence {ūn}, for any given ϵ > 0, there is a compact set
Kϵ ⊂ Rd only depends on ϵ such that sup

n
P(ǔn ∈ Kc

ϵ) ≤ ϵ. This makes us find the following holds:

ν̃(T)(Kϵ) ≥ 1− ϵ for any T > 0.

By the geometrical ergodicity of the dynamics (7), we can choose Tϵ such that

sup
x∈Kϵ

sup
g∈C

∣∣PTϵg(x)− ⟨π⋆, g⟩
∣∣ ≤ ϵ (54)

Where P represents the Markov semigroup induced by the SDE (7). In virtue of the approximation of
(̃Tϵ)n(η) to Tϵ and the tightness of the sequence ū(n), we are able to deduce that ǔnk

(= ū
M(nk,Tϵ,η)

(̃Tϵ)n(η)
)

converges weakly to the limit random variable of the sequence ū
M(nk,Tϵ,η)
Tϵ

i.e., ūν̃(Tϵ)

Tϵ
. On the other

hand, by assumption, ǔnk
converges weakly to π̃. Thus ūν̃(Tϵ)

Tϵ
∼ π̃.

33

Given any g ∈ C, it is not difficult to derive the following bounds

|⟨π̃, g⟩ − ⟨π⋆, g⟩| =
∣∣∣Eg (ū(Tϵ)

Tϵ

)
− Eπ⋆g

∣∣∣ = ∣∣∣∣∫ (PTϵg(x)− Eπ⋆g
)
dν̃(Tϵ)(x)

∣∣∣∣
≤
∫ ∣∣PTϵg(x)− Eπ⋆g

∣∣ dν̃(Tϵ)(x)

=

∫
Kϵ

∣∣PTϵg(x)− Eπ⋆g
∣∣ dν̃(Tϵ)(x) +

∫
Kc

ϵ

∣∣PTϵg(x)− Eπ⋆g
∣∣ dν̃(x)

≤
∫
Kϵ

∣∣PTϵg(x)− Eπ⋆g
∣∣ dν̃(Tϵ)(x) + 2∥g∥∞ν̃(Tϵ)(Kc

ϵ)

(a)

≤ ϵ+ 2∥g∥∞ϵ

(55)

Where (a) holds for sake of ν̃(Tϵ)(Kϵ) ≥ 1− ϵ and (54). We obtain π̃ = π⋆ by taking ϵ → 0. Finally,
owing to the Prokhorov’s theorem, we have proved that ǔn converges weakly to π⋆. Further, the
sequence of random process ū(n)

t converges weakly to the dynamics (7) with stationary distribution
π⋆ as initialization.

C.2 Proof of Case 2

We first complete the formulation of the recurrence relation for vn that was omitted from the main
text

v̌(n+1)− = ηβ−1
n PA(xn − ηn∇f(xn) + ηnξn)

=

(
ηn

ηn−1

)β−1

v̌n − ηβnPA∇f(xn) + ηβnPAξn

=

(
ηn

ηn−1

)β−1

v̌n − ηβn∇f(x⋆)− ηβnPA (∇f(xn)−∇f(un))

− ηβnPA(∇f(un)−∇f(x⋆)) + ηβnPAξn

= v̌n − ηβn∇f(x⋆)− S(1)
n − S(2)

n − S(3)
n + ηβnξ

(2)
n

=: v̌n − ηβndn + ηβnξ
(2)
n

(56)

Where dn = ∇f(x⋆) + 1

ηβ
n
S(1)
n + 1

ηβ
n
S(2)
n + 1

ηβ
n
S(3)
n with higher order terms

S(1)
n =

(
1− ηβn

ηβn−1

)
v̌n

S(2)
n = ηβnPA(∇f(xn)−∇f(un))

S(3)
n = ηβnPA(∇f(un)−∇f(x⋆))

(57)

We can see from the Theorem 3.1 that both S(2)
n

ηβ
n

and S(3)
n

ηβ
n

are of order o(η1−β
n) in L1. Moreover,

owing to the slow diminishing property of step size {ηn}, the following bound holds

1− ηβn

ηβn−1

= 1−
(
1 +

ηn − ηn−1

ηn−1

)β

= 1− (1 +O(ηn))
β
= 1− (1 + βO(ηn)) = O(ηn).

(58)

So
1

ηβn
E
∣∣∣S(1)

n

∣∣∣ ≾ O(ηn)

ηβn
= O(η1−β

n). (59)

As in the derivation process of the first case, we first need to focus our attention on the discussion of
tightness of the sequence of random process {v̄(n)

t }∞n=1. While the discontinuity of these processes
constructed by (9) prevents the property 6 from being used to verify the tightness of {v̄(n)

t }. Hence,
we will leverage the following more general criterion for tightness proposed in [19].

34

Proposition 7. Let {xn(t)} be a sequence of Rd-valued processes whose sample paths are càdlàg.
Let

ω(xn, δ, T) = inf
{ti}

max
i

sup
ti−1≤s<t<ti

∥xt − xs∥. (60)

Where {ti} ranges over all finite partitions of the form 0 = t0 ≤ t1 < t2 < · · · < tr−1 < T ≤ tr
with min

1≤i≤r
(ti − ti−1) ≥ δ. Then the sequence of processes {xn(t)} is tight if and only if,

1. for every T > 0 and η > 0, there is a compact set K such that

lim inf
n→∞

P(xn(t) ∈ K; ∀t ∈ [0, T]) > 1− η; (61)

2. for every ϵ, η > 0, and T > 0, there is a δ > 0 such that

lim sup
n→∞

P(ω(xn, δ, T) ≥ ϵ) < η. (62)

Denote In(T) =
{
N(n, t, ηβ) : t ∈ [0, T]

}
⊂ N and Ln(T) = {Γn+k − Γn : k ∈ In(T)}. From

the update rule of parametric sequence {xn} and the construction of the rescaling process {v̄(n)
t }, an

intuitive fact is that the discontinuous points of v̄(n)
t in the interval [0, T] belong to Ln(T). And we

have the following lemma to support the proof of tightness.

Lemma 9. For the sequence of càdlàg processes {v̄(n)}, consider the time point set Jn(T) such that

Jn(T) =
{
N(n, t, ηβ) : t ∈ [0, T] and v̄

(n)

tn(η
β)

̸= v̄
(n)

tn(η
β)−

}
(63)

and let
∆(Jn(T)) = min

{
|Γn+k(η

β)− Γn+l(η
β)| : k, l ∈ Jn(T) and k ̸= l

}
(64)

Then there is a universal constant C and an n0 ∈ N subject to for any δ > 0

P(∆(Jn(T)) < δ) ≤ Cδ ∀n ≥ n0. (65)

Proof. (Proof of Lemma 9)

By the sub-additivity of probability and the jump scheme proposed in the Algorithm 1, we have

P(∆(Jn(T)) < δ)

≤
∑

k∈In(T)

P
{
∃ (k ≤) l ∈ Jn(T) s.t. |Γn+l(η

β)− Γn+k(η
β)| < δ; k ∈ Jn(T)

}
≤

∑
k∈In(T)

∑
0<Γn+l(ηβ)−Γn+k(ηβ)<δ

P {l ∈ Jn(T); k ∈ Jn(T)}

≤
∑

k∈In(T)

pn+k

 ∑
0<Γn+l(ηβ)−Γn+k(ηβ)<δ

pn+l


≤γ2

∑
k∈In(T)

ηβn+k

 ∑
0<Γn+l(ηβ)−Γn+k(ηβ)<δ

ηβn+l


(a)

≤γ2(δ + ηβn)
∑

k∈In(T)

ηβn+k ≤ 2γ2Tδ.

(66)

Where (a) holds when we let ηβn0
≤ δ. We conclude the proof by letting C = 2γ2T .

Lemma 10. Suppose that Assumptions 1, 2 and 4 holds. Then the sequence of random processes
{v̄(n)} is tight under the Skorokhod topology in finite interval.

Proof. (Proof of Lemma 10) What we need to do now is to verify the conditions in the Property 7
one by one.

35

For a given path v̄(n), denote t′n = max{s ∈ Ln(T)∩ [0, t]}∪{0}. Then v̄
(n)
t′n

= 0 whenever t′n > 0.
Let R > 0, we have the following inequalities

P

(
sup

t∈[0,T]

∥∥∥v̄(n)
t

∥∥∥ ≥ R

)

≤P

(
sup

t∈[0,T]

{∥∥∥v̄(n)
t − v̄

(n)

tn(η
β)

∥∥∥+ ∥∥∥v̄(n)

tn(η
β)

− v̄
(n)
t′n

∥∥∥+ ∥∥∥v̄(n)
t′n

∥∥∥} ≥ R

)

≤ 2

R
E sup

t∈[0,T]

{(
t− tn(η

β)
) ∥∥∥dtn(η

β) − ξ
(2)

tn(η
β)

∥∥∥+ ∥∥∥v̄(n)

tn(η
β)

− v̄
(n)
t′n

∥∥∥}+
2

R
E
∥∥∥v̄(n)

0

∥∥∥
≤ 2

R
E sup

t∈Ln(T)

∥∥∥v̄(n)
t− − v̄

(n)
(t−)′n

∥∥∥+ 2

R
E ∥v̌n∥

≤ 2

R
E sup

k∈In(T)

n+k−1∑
i=n

ηβi

∥∥∥di + ξ
(2)
i

∥∥∥+ 2

R
E∥v̌n∥

=
2

R

n+sup In(T)−1∑
i=n

ηβi E
∥∥∥di + ξ

(2)
i

∥∥∥+ 2

R
E∥v̌n∥

≤ 2

R
(T + ηn) sup

n∈N
E
∥∥∥di + ξ

(2)
i

∥∥∥+ 2

R
E∥v̌n∥

(a)

≤ C(1 + T)

R
≤ η.

(67)

Where (a) holds for the uniform boundedness of E∥dn + ξ
(2)
n ∥+ E∥v̌n∥. And the final inequality

holds when we take R > C(1+T)
η . Thus, the first condition of the Proposition 7 holds for v̄(n).

As for the second condition, what we should do is to construct an appropriate partition that makes
ω(v̄(n), δ, T) defined as (60) as small as possible.

For a given ϵ, η pair, let δ < η
2C , then from the Lemma 9 it can be seen P(∆(Jn(T)) < δ) < η

2 . Now
given the event E = {∆(Jn(T)) ≥ δ}, we choose the partition points {τk} ∈ [0, T] recursively from
the set Ln(T) such that the partition satisfies the following properties:

1. min
k

{τk − τk−1} ∈ [δ, 3δ)

2. Jn(T) ⊂ {τk}

Let τ0 = 0 and suppose we have constructed the partition points τ0, · · · , τk ∈ [0, T] with inductive
assumptions:

1. min
i≤k−1

{τi+1 − τi} ∈ [δ, 3δ),

2. Jn(τk) ⊂ {τ0, τ1, · · · , τk},

3. there is no discontinuous point in (τk, τk + δ), i.e. Jn(T) ∩ (τk, τk + δ) = ∅.

We will use these results to find the next partition point τk+1. Define τ̃k+1 = min{t : t− τk ≥ δ, t ∈
Ln(T)}, we use the following scheme:

τk+1 =

{
s ∃ s ∈ (τ̃k+1, τ̃k+1 + δ) ∩ Jn(T)

τ̃k+1 Otherwise (68)

From the property of the event E we know there is at most one discontinuous point in (τ̃k+1, τ̃k+1+δ),
which means the τk+1 is always well-defined. Then we have δ ≤ τk+1− τk ≤ τk+1− τ̃k+1+ τ̃k+1−
τk ≤ δ + ηn + δ ≤ 3δ. Where the last inequality holds when we choose n0 such that ηn0

< δ. Thus
τk+1 satisfies the first inductive assumption.

36

By the third inductive assumption of τk, we know there is no discontinuous point in (τk, τ̃k+1). On
the other hand, if τk+1 ∈ Jn(T), then (τk+1 − δ, τk+1) ∩ Jn(T) = ∅, and especially we have
[τ̃k+1, τk+1) ∩ Jn(T) = ∅. Hence, the second inductive assumption of τk+1 has been proved.

Finally, if τk+1 = τ̃k+1, then from the recursive construction scheme (68) we know (τk+1, τk+1 +
δ) ∩ Jn(T) = (τ̃k+1, τ̃k+1 + δ) ∩ Jn(T) = ∅. Else, τk+1 must belong to Jn(T). Combining the
definition of E we can make sure (τk+1, τk+1 + δ) ∩ Jn(T) = ∅. At this point, the proofs of the
three inductive assumptions on τk+1 are all complete.

P(ω(v̄(n), δ, T) ≥ ϵ) ≤ P(ω(v̄(n), δ, T) ≥ ϵ; E) + P(Ec)

≤ P

(
max

k
sup

τk≤t<s<τk+1

∥∥∥v̄(n)
t − v̄(n)

s

∥∥∥ ≥ ϵ; E

)
+

η

2

≤ 2P

(
sup

t∈[0,T]

∥∥∥v̄(n)
t − v̄

(n)

tn(η
β)

∥∥∥ ≥ ϵ

2

)
+

η

2

+ P

(
max

k
sup

τk≤t<s<τk+1

∥∥∥v̄(n)

tn(η
β)

− v̄
(n)

sn(η
β)

∥∥∥ ≥ ϵ

2
; E

)
(69)

We will give the bound of two probabilities respectively. First,

P

(
sup

t∈[0,T]

∥∥∥v̄(n)
t − v̄

(n)

tn(η
β)

∥∥∥ ≥ ϵ

2

)
= P

(
sup

k∈In(T)

∥∥∥v̄(n)
(Γk+1−Γn)− − v̄

(n)
Γk−Γn

∥∥∥ ≥ ϵ

2

)

≤
∑

k∈In(T)

P
(∥∥v̌(n+k+1)− − v̌n+k

∥∥ ≥ ϵ

2

)
≤

∑
k∈In(T)

4

ϵ2
E
∥∥v̌(n+k+1)− − v̌n+k

∥∥2

≤ 4

ϵ2

∑
k∈In(T)

η2βn+kE∥dn+k + ξ
(2)
n+k∥

2 ≤
4ηβn sup

i
E∥di + ξ

(2)
i ∥2

ϵ2

∑
k∈In(T)

ηβn+k

≤ C(T + ηβn)

ϵ2
ηβn <

2CT
ϵ

ηβn <
η

8
.

(70)

Where the last inequality holds when we take ηβn0
< ϵη

16CT .

It is easy to see that we can use a bijection to link the elements in In(T) and that in Ln(T). Because
the partition points {τk} are in Ln(T), we assume that every τk corresponds to an index ςk ∈ In(T).
Then we have ςk+1 > ςk. Denote Sk = In(T) ∩ [ςk, ςk+1). So far we are ready to bound the last

37

term in (69).

P

(
max

k
sup

τk≤t<s<τk+1

∥∥∥v̄(n)

tn(η
β)

− v̄
(n)

sn(η
β)

∥∥∥ ≥ ϵ

2
; E

)

≤
∑
k

P

(
sup

l,h∈Sk

∥v̌n+l − v̌n+h∥ ≥ ϵ

2
; E

)

≤
∑
k

P

(
sup

l,h∈Sk

h−1∑
i=l

∥v̌n+i+1 − v̌n+i∥ ≥ ϵ

2
; E

)
=
∑
k

P

(
ςk+1−1∑
i=ςk

∥v̌n+i+1 − v̌n+i∥ ≥ ϵ

2
; E

)

(a)

≤
∑
k

P

(
ςk+1−1∑
i=ςk

ηβn+i

∥∥∥dn+i + ξ
(2)
n+i

∥∥∥ ≥ ϵ

2

)
≤
∑
k

4

ϵ2
E

(
ςk+1−1∑
i=ςk

ηβn+i

∥∥∥dn+i + ξ
(2)
n+i

∥∥∥)2

≤ 4

ϵ2

∑
k

{(
ςk+1−1∑
i=ςk

ηβn+i

)(
ςk+1−1∑
i=ςk

ηβn+iE
∥∥∥dn+i + ξ

(2)
n+i

∥∥∥2)}

≤
4 sup

i
E∥di + ξ

(2)
i ∥2

ϵ2

∑
k

(
ςk+1−1∑
i=ςk

ηβn+i

)2

≤ C
ϵ2

∑
k

(τk+1 − τk)
2

(b)

≤ 3Cδ
ϵ2

∑
k

(τk+1 − τk) ≤
3CTδ
ϵ2

<
η

4
.

(71)
Where (a) follows from the combination of the fact that the path v̄(n) is continuous in any interval
[τk+1, τk) when E holds and the update formula (9). And (b) is true by the property of the partition
{τk} listed above. The last inequality holds when we take δ < ηϵ2

12CT .

Bring (70) and (71) into (69), we have,

P(ω(v̄(n), δ, T) ≥ ϵ) ≥ 2 · η
8
+

η

2
+

η

4
= η. (72)

At this point, we have checked the two sufficient conditions in the Property 7. Hence, the tightness of
{v̄(n)} has been proved.

Lemma 11. Suppose Assumptions 1, 1 and 4 holds, and assume that there exists a positive number
p > 2 such that sup

n≥0
E∥ξn∥p < ∞. When pn = γηβn with γ > 0,

then for any C2 function g : Rd → R, compactly supported with Lipschitz continuous second
derivatives, we have

E[g(v̌n+1)− g(v̌n)|Fn] = ηβnJ g(v̌n) + T g
n (73)

Where 1

ηβ
n
T g
n → 0 in L1 and J is the infinitesimal generator defined by

∀ϕ ∈ C2 (Rp) J ϕ(x) = ⟨−∇f(x⋆),∇ϕ(x)⟩+ γ(ϕ(0)− ϕ(x)) (74)

Proof. (Proof of Lemma 11) We would like to say that the overall proof framework is similar to the
proof of the Lemma 8. However, since v̌n+1 may suddenly jump to 0, we cannot directly use Taylor
expansion to get the desired result. First, by the scheme on v̌n+1 jumping to zero, we have

E[g(v̌n+1)− g(v̌n)|Fn] = pn(g(0)− g(v̌n)) + (1− pt)E[g(v̌(n+1)−)− g(v̌n)|Fn] (75)

38

Then we make use of the Taylor expansion between v̌(n+1)− and v̌n.

g(v̌(n+1)−)− g(v̌n) = ⟨∇g(v̌n), v̌(n+1)− − v̌n⟩

+
1

2
(v̌(n+1)− − v̌n)

⊤∇2g(ϱn)(v̌(n+1)− − v̌n)

= ηβ⟨∇g(v̌n),∇f(x⋆) + ξ(2)n ⟩+ ηβn

〈
∇g(v̌n),

1

ηβn

3∑
i=1

S(i)
n

〉

+
η2βn
2

(dn + ξ(2)n)⊤∇2g(ϱn)(dn + ξ(2)n)

(76)

Substitute this equation into the second term of the right hand of the equation (75). It follows that

E[g(v̌n+1)− g(v̌n)|Fn] = ηβn (γ(g(0)− g(v̌n)) + ⟨∇g(v̌n),−∇f(x⋆)⟩)

+ ηβnE

[〈
∇g(v̌n,

1

ηβn

3∑
i=1

S(i)
n)

〉∣∣∣∣∣Fn

]
+

η2βn
2

E
[
(dn + ξ(2)n)⊤∇2g(ϱn)(dn + ξ(2)n)

∣∣∣Fn

]
− γη2βn E

[
⟨∇g(v̌n,dn + ξ(2)n ⟩+ ηβn

2
(dn + ξ(2)n)⊤∇g(ϱn)(dn + ξ(2)n)

∣∣∣∣Fn

]
=: ηβn{γ(g(0)− g(v̌n))− ⟨∇g(v̌n),∇f(x⋆)⟩}+ T (1)

n + T (2)
n + T (3)

n︸ ︷︷ ︸
T g
n

(77)

From the Theorem 3.1 and the equation (59), we have E|T (1)
n | = o(ηβn). And E|T (2)

n | = O(η2βn) by
leveraging that ∥∇2g(x)∥ is bounded for all x ∈ Rd and that E∥dn + ξ

(2)
n ∥2 is bounded. Similar

approaches can be used to show that E|T (3)
n | = O(η2βn). At this point, the result has been proved.

From the Itô’s formula for the semimartingales, we know that the infinitesimal generator J defined
in the Lemma 11 corresponds to the following stochastic differential equation driven by the Poisson
process with intensity γ.

dYt = −∇f(x⋆)dt−Yt ·Nγ(dt) (78)
Lemma 12. There exists a unique invariant measure u⋆ for the Lévy process (78). Further, for any
initial distribution ν0, we have W2(Gtν0, ν

⋆) → 0; t → ∞. Where W2 represents the Wasserstain-2
distance and {Gt} is the Markovian semigroup generated by the infinitesimal generator J .

Proof. (Proof of Lemma 12)

Consider the set of probability density functions
{
h(x) = p(t)1{

x=
∇f(x⋆)
∥f(x⋆)∥ t

} : p(t) is a p.d.f on R
}

and denote it as M. Then the distribution of any Yt only has mass on the line
{

∇f(x⋆)
∥f(x⋆)∥ t : t ∈ R

}
if we choose the initial distribution in M. In this case, we can suppose Yt = − ∇f(x⋆)

∥∇f(x⋆)∥υt.
Consequently, υt satisfies the following one dimensional stochastic differential equation,

dυt = ∥∇f(x⋆)∥dt− υtNγ(dt). (79)

Let φt(λ) = Ep⋆eiλυt be the characteristic function of υt with stationary initialization p⋆. Then we
have φt(λ) = φs(λ); ∀t ̸= s. On the other hand, consider the martingale problem corresponding
to (79). It says that eiλυt − eiλυ0 −

∫ t

0

(
iλ∥∇f(x⋆)∥eiλυs + γ(1− eiλυs)

)
ds is a martingale with

respect to the natural filtration generated by υt. Take expectation we have

0 = φt(λ)− φ0(λ)−
∫ t

0

{iλ∥∇f(x⋆)∥φs(λ) + γ(1− φs(λ))}ds

= −
∫ t

0

{iλ∥∇f(x⋆)∥φs(λ) + γ(1− φs(λ))}ds
(80)

Which means that
iλ∥∇f(x⋆)∥φs(λ) + γ(1− φs(λ)) = 0; ∀s > 0 (81)

39

i.e. φs(λ) = 1

1− i∥∇f(x⋆)∥
γ λ

. So the invariant distribution of υt is E
(

∥∇f(x⋆)∥
γ

)
. As a result, the

invariant distribution of Yt is ∇f(x⋆)
∥∇f(x⋆)∥ · E

(
∥∇f(x⋆)∥

γ

)
.

To show the mixing result, it is enough to prove the following fact,

1

∥y0 − y1∥
W2(Gtδy0

,Gtδy1
) −→ 0; t → ∞ ∀y0 ̸= y1. (82)

Where δy represents the Dirac measure at the point y. Let Y0
t and Y1

t be the stochastic process gen-
erated by (78) with initial distribution δy0

and δy1
respectively. To give a bound for the Wasserstain-2

distance between Y0
t and Y1

t , we compute the L2 norm under the identical coupling, i.e., the two
dynamics share all randomness in the Poisson process Nγ(s), s ∈ [0, t]. Owing to the property of
the corresponding martingale problem of (78), we have

0 = E∥Y0
t −Y1

t ∥2 − ∥y0 − y1∥2

−
∫ t

0

E
{
−
(
∇f(x⋆)⊤,∇f(x⋆)⊤

) [I −I
−I I

] [
Y0

s

Y1
s

]
− γ∥Y0

s −Y1
s ∥2
}
ds

= E∥Y0
t −Y0

t ∥2 − ∥y0 − y1∥2 + γ

∫ 1

0

E∥Y0
s −Y1

s∥2ds

(83)

Solving above integral equation we finally get E∥Y0
t −Y1

t ∥2 = ∥y0−y1∥2e−γt. Hence, the equation
(82) has been proved.

Proof. (Proof of Theorem 3.4)

This proof is basically modeled after the proof of Theorem 3.3. Therefore, for the sake of narrative
simplicity, we will omit some details that overlap with the previous proofs. All symbols follow the
meaning in the proof of Theorem 3.3 without special specification. Analogously, two steps are split
to complete to proof.

Step 1 Let g belongs to C and let D(n)
t denote the natural filtration of v̄(n)

t . We aim to find the
following martingale decomposition,

∀t > 0, g(v̄
(n)
t)− g(v̄

(n)
0)−

∫ t

0

J g
(
v̄(n)
s

)
ds = N (n,g)

t + T (n,g)
t . (84)

Where N (n,g)
t is a D(n)

t -martingale and T (n,g)
t converges to zero in L1. In fact, let

N (n,g)
t =

N(n,t,ηβ)∑
k=n+1

{g(v̌k+1)− g(v̌k)− E[g(v̌k+1)− g(v̌k)|Dk]}

T (n,g)
t = g(v̄

(n)
t)− g(v̄

(n)

tn(η
β)
)−

∫ t

tn(η
β)

J g(v̄(n)
s)ds

+

∫ tn(η
β)

0

(
J g
(
v̄
(n)

sn(η
β)

)
− J g

(
v̄(n)
s

))
ds+

N(n,t,ηβ)−1∑
k=n

T g
k .

(85)

Using the definition formula of v̄(n)
t (9) when t /∈ Ln(T),

E
∥∥∥v̄(n)

t − v̄tn(η
β)

∥∥∥2 = (t− tn(η
β))2E∥dN(n,t,ηβ) − ξ

(2)

N(n,t,ηβ)
∥2

≤ Cη2βn .
(86)

40

This inequality combined with the Lipschitz continuity of g and its derivatives implies that the first
three terms in the definition of T (n,g)

t tend to 0 when n → ∞. Further, by Lemma 11,

E

∣∣∣∣∣∣
N(n,t,ηβ)−1∑

k=n

T g
k

∣∣∣∣∣∣ ≤
N(n,t,ηβ)−1∑

k=n

ηβkE

∣∣∣∣∣T g
k

ηβk

∣∣∣∣∣
≤ sup

k≥n
E

∣∣∣∣∣T g
k

ηβk

∣∣∣∣∣ (t+ ηβn)
n→∞−−−−→ 0.

(87)

Step 2 Suppose that there is a weakly convergent subsequence {v̌nk
}∞k=1 with limit distribution ν̃.

The definition of M(n, t, ηβ) and t̃n(η
β) can be extended intuitively from the first paragraph in the

second step of the Theorem 3.3’s proof.

Owing to the Prokhorov’s theorem and Lemma 10, for any T > 0, there is a weakly convergent
subsequence in

{
v̄
M(nk,T,ηβ)
t

}
. By the Theorem 1 in [20], we know that the weak limit of this

sequence is a solution of the stochastic differential equation (78).And WLOG, we assume the sequence
itself converges weakly to a solution v̄π̃(T)

t of (78) with initial distribution π̃(T) (the notations of ν̃ and
π̃ are independent with one in proof of Theorem 3.3). By Lemma 10, for any given ϵ > 0, a compact
set Kϵ can be found such that sup

n
P(v̌n ∈ Kc

ϵ) ≤ ϵ. Therefore, for all T > 0, π̃(T)(Kϵ) ≥ 1− ϵ.

Due to Lemma 12, a Tϵ can be found such that

sup
i∈Kϵ

sup
g∈C

∣∣GTϵg(x)− ⟨ν⋆, g⟩
∣∣ ≤ ϵ. (88)

Where G is the Markov semigroup induced by the SDE (78). Because (̃Tϵ)n(η
β) converges to Tϵ

when n → ∞, we have v̌nk

(
= v̄

M(nk,Tϵ,η
β)

(̃Tϵ)n(η
β)

)
converges weakly to the limit random variable of

the sequence v̄
M(nk,Tϵ,η

β)
Tϵ

,i.e., v̄π̃(Tϵ)

Tϵ
. On the other hand, by assumption, v̌nk

converges weakly to

ν̃. Thus v̄π̃(Tϵ)

Tϵ
∼ ν̃. Combining all result we have obtained, the inequality corresponded to (55) can

be derived. Consequently, we obtain ν̃ = ν⋆. Finally, by the Prokhorov’s theorem, v̌n convergence
weakly to ν⋆. Further, {v̄(n)

t } converges weakly to the dynamics (78) with stationary distribution ν⋆

as initialization.

Before we start proving the Corollary 1, we need to use the following lemma.

Lemma 13. Let {rt} be the sequence defined in Lemma 1. If a positive sequence {xt} satisfies:

xt+1 ≤ (1− rt)xt + o(rt), (89)

then lim
t→∞

xt −→ 0.

Proof. (Proof of Lemma 13) By the recursive inequality (89), for any given ϵ > 0 there is a t0 such
that ∀t > t0, o(rt) < ϵrt. Iterate the relation (89) and combine Lemma 1. Consequently, we have,

xt ≤
t∏

k=t0

(1− rk)xt0 +

t∑
k=t0+1

ϵrk

t∏
s=k+1

(1− rs) −→ 0 + ϵ; t → ∞. (90)

Because ϵ can be chosen arbitrarily, the final limit of xt is zero.

Proof. (Proof of Corollary 1)

We prove the target conclusion in two steps. First we show that the mean of ûn converges to a constant
non-zero vector. Next, we will see that the asymptotic variance of {ûn} is zero for β ∈

(
1
2 , 1
)
.

41

Step 1 The first thing we need to do is to derive the recurrence relation for ûn,

ûn+1 = PA⊥
x(n+1)− − x⋆

η1−β
n

=
PA⊥(xn − x⋆ − ηn∇f(xn) + ηnξn)

η1−β
n

=

(
ηn−1

ηn

)1−β

ûn − ηβnPA⊥∇f(xn) + ηβnξ
(1)
n

= ûn − ηβnPA⊥
{
∇2f(x⋆)(xn − un) + [∇2f(ϑv

n)−∇2f(x⋆)](xn − un)
}

+

((
ηn−1

ηn

)1−β

− 1

)
ûn + ηβnξ

(1)
n

− ηβnPA⊥
{
∇2f(x⋆)(un − x⋆) + [∇2f(ϑu

n)−∇2f(x⋆)](un − x⋆)
}

=
(
I− ηnPA⊥∇2f(x⋆)PA⊥

)
ûn − ηnPA⊥∇2f(x⋆)v̌n + ηβnξ

(1)
n

+ (ηn − ηβnη
1−β
n−1)PA⊥∇2f(x⋆)ûn + (ηn − ηβnη

1−β
n−1)PA⊥∇2f(x⋆)v̌n

−
{
ηβnPA⊥

(
∇2f(ϑv

n)−∇2f(x⋆)
)
(xn − un)

}
−
{
ηβnPA⊥ [∇2f(ϑu

n)−∇2f(x⋆)](un − x⋆)
}

+

((
ηn−1

ηn

)1−β

− 1

)
ûn

=:

(
I− ηnPA⊥

(
∇2f(x⋆)− 1− β

η0
1{α=1}Id

)
PA⊥

)
ûn

− ηnPA⊥∇2f(x⋆)v̌n + ηβnξ
(1)
n + ηnRu

n

(91)

Where ϑu
n and ϑv

n are two entrywise interpolation point between un and xn ; un and x⋆ respectively.
And,

Ru
n =

(
1−

(
ηn−1

ηn

)1−β
)
PA⊥∇2f(x⋆)(ûn + v̌n) +

1

ηn

((
ηn−1

ηn

)1−β

− 1− 1− β

n
1{α=1}

)
ûn

−
(
ηn−1

ηn

)1−β

PA⊥
{
(∇2f(ϑv

n)−∇2f(x⋆))v̌n + (∇2f(ϑu
n)−∇2f(x⋆))ûn

}
(92)

The properties of the step size sequence {ηn} tell us that, when α < 1,

1−
(
ηn−1

ηn

)1−β

= 1−
(
1 +

ηn−1 − ηn
ηn

)1−β

= 1− (1 + o(ηn))
1−β = (1− β)o(ηn) = o(1)ηn.

(93)

And when α = 1,

1 +
1− β

n
−
(

n

n− 1

)1−β

= 1 +
1− β

n
−
(
1 +

1− β

n
+O(n−2)

)
= o(ηn)

The result can be used to guarantee the first line of (92) being o(1) in L2. By the assumption 3 and
1, ∇2f(·) is Lipschitz continuous and uniformly bounded. Then for any δ ∈ (0, 1), ∇2f(·) is δ-
Höder continuous.Similar to the proof of the Lemmas 4 and 5, by leveraging the Taylor expansion for
∥ · ∥p, 3 > p > 2, we can deduce the following analogous bounds,

E∥un − x⋆∥p ≾ ηp(1−β)
n ;

E ∥vn∥p ≾ ηp(1−β)
n

(94)

42

when β ∈ [12 , 1). Based on these preparations, take δ = p/2− 1 and use the Young’s inequality,

E
∥∥(∇2f(ϑv

n)−∇2f(x⋆))v̌n

∥∥2 ≾ E ∥ϑu
n − x⋆∥2δ ∥v̌n∥2

≾ E
(
∥vn∥2δ + ∥un − x⋆∥2δ

)
∥v̌n∥2

=
1

η
2(1−β)
n−1

E ∥vn∥p +
1

η
2(1−β)
n−1

E ∥un − x⋆∥2δ ∥vn∥2

≾
1

η
2(1−β)
n−1

(E ∥vn∥p + E ∥un − x⋆∥p) ≾ η(p−2)(1−β)
n .

(95)

The same bound can be derived for (∇2f(ϑu
n) − ∇2f(x⋆))ǔn. These two results enable the

second line of (92) to be o(1) in L2. To simplify our writing, we denote ν = − 1
γ∇f(x⋆) and

µ = 1
γ

(
PA⊥

(
∇2f(x⋆)− 1−β

η0
1{α=1}Id

)
PA⊥

)†
PA⊥∇2f(x⋆)∇f(x⋆). Taking the expectation

on both sides of (91) yields

Eûn+1 =

(
I− ηn

(
PA⊥∇2f(x⋆)− 1− β

η0
1{α=1}Id

)
PA⊥

)
Eûn

− ηnPA⊥∇2f(x⋆)Ev̌n + ηnERu
n

(96)

Subtract PA⊥∇2f(x⋆)ν from both sides of (96) and we have,

Eûn+1 − µ =

(
I− ηnPA⊥

(
∇2f(x⋆)− 1− β

η0
1{α=1}Id

)
PA⊥

)
(Eûn − µ)

− ηn
(
PA⊥∇2f(x⋆)(E(v̌n − ν) + ERu

n

) (97)

According to Theorem 3.4 we know ∥Ev̌n − ν∥ = o(1). As a result of this and ∥ERu
n∥ ≤ E ∥Ru

n∥ =
o(1), the last term in the right hand of (97) is o(ηn). Therefore, using Lemma 13, it holds that
∥Eûn − µ∥ = o(1), which means Eûn

n→∞−−−−→ µ.

Step 2 Before we calculate the asymptotic variance of ûn, consider the inner product∣∣E 〈ûn − Eûn,∇2f(x⋆)(v̌n − Ev̌n)
〉∣∣,∣∣E 〈ûn+1 − Eûn+1,∇2f(x⋆)(v̌n+1 − Ev̌n+1)

〉∣∣
=(1− γηβn)

∣∣E 〈ûn+1 − Eûn+1,∇2f(x⋆)(v̌(n+1)− − Ev̌n+1)
〉∣∣+ γηβn

∣∣E 〈ûn+1 − Eûn+1,∇2f(x⋆)Ev̌n+1

〉∣∣
=(1− γηβn)

∣∣E 〈ûn+1 − Eûn+1,∇2f(x⋆)(v̌(n+1)− − Ev̌n+1)
〉∣∣

=(1− γηβn)

∣∣∣∣E〈(I− ηnPA⊥

(
∇2f(x⋆)− 1− β

η0
1{α=1}Id

)
PA⊥

)
(ûn − Eûn)− ηnPA⊥∇2f(x⋆)(v̌n − Ev̌n)

+ηβnξ
(1)
n + ηn(Ru

n − ERu
n),∇2f(x⋆)

{
(v̌n − Ev̌n) + ηβnξ

(2)
n + ηβn(Rv

n − ERv
n)
}〉∣∣∣

≤(1− γηβn)
∣∣E 〈ûn − Eûn,∇2f(x⋆)(v̌n − Ev̌n)

〉∣∣+ ηβn
∣∣E 〈ûn − Eǔn,∇2f(x⋆)(Rv

n − ERv
n)
〉∣∣+O(ηn)

(98)
From the fact E∥Rv

n∥2 = o(1), we have∣∣E 〈ûn+1 − Eûn+1,∇2f(x⋆)(v̌n+1 − Ev̌n+1

〉
)
∣∣ ≤ (1− γηβn)

∣∣E 〈ûn − Eûn,∇2f(x⋆)(v̌n − Ev̌n

〉
)
∣∣+ o(ηβn)

(99)
We can obtain from Lemma 13 that

∣∣E 〈ûn − Eûn,∇2f(x⋆)(v̌n − Ev̌n)
〉∣∣ n→∞−−−−→ 0.

Back to the main result’s proof, we can write down the recursive rule for the variance of ûn,

E ∥ûn+1 − Eûn+1∥2

=E
∥∥∥∥(I− ηnPA⊥

(
∇2f(x⋆)− 1− β

η0
1{α=1}Id

)
PA⊥

)
(ûn − Eûn)

−ηnPA⊥∇2f(x⋆)(v̌n − Ev̌n) + ηβnξ
(1)
n + ηn(Ru

n − ERu
n)
∥∥∥2

≤(1− µηn)E ∥ûn − Eûn∥2 − ηnE
〈
ûn − Eûn,∇2f(x⋆)(v̌n − Ev̌n)

〉
+ η2βn E

〈
ξ(1)n , ξ(2)n

〉
+ o(ηn)

≤(1− µηn)E ∥ûn − Eûn∥2 + o(ηn).
(100)

43

Where the last equation follows from the diminish correlation we derived just now and the pre-
condition β > 1

2 . Finally, the Lemma is completed from Lemma 13 and the fact E ∥ûn − µ∥2 =

E ∥ûn − Eûn∥2 + ∥Eûn − µ∥2 → 0.

D Experimental Details

In this section, we present the experimental details and the complete results on three different datasets.

D.1 Datasets

We have introduced two datasets in Section 4 in the FL setting. We will restate them and add a new
dataset for the general linearly constrained problem.

IID There are K clients and the sample (xk, zk) on the k-th client is modeled as xk ∼ N (νk,Λ)
and zk = argmax(softmax(Wkxk + bk)) where Λ ∈ Rd×d is diagonal with the entry (j, j) equal
to j−1.2, all the clients share the same Wk ∈ RC×d and bk ∈ RC and their entries are modeled as
N (0, 1). We set K = 100, d = 60 and C = 10. For this dataset, there is no heterogeneity between
the optimal local parameters. The heterogeneity is all from the diversity of the distributions of xk.
For each client, the sample size is around 100.

Synthetic (a, b) There are K clients and the sample (xk, zk) on the k-th client is modeled as
xk ∼ N (νk,Λ) and zk = argmax(softmax(Wkxk + bk)) where Λ ∈ Rd×d is diagonal with the
entry (j, j) equal to j−1.2, each entry of Wk and bk is modeled as N (µk, 1) with µk ∼ N (0, a) and
νk ∼ N (ζk, I) with ζk ∼ N (0, bId). We set K = 20, d = 10 and C = 5. a controls how many
local models differ from each other and b controls how much the local data for each client differs
from that of other clients. They are the two sources of heterogeneity. For each client, the sample size
is around 50. In this paper, we let a = b = 1.

The last dataset aims to solve the general linearly constrained problem (1).

Lincons The data are generated by the same way in IID. Since in IID, all the clients share
the same Wk and bk, we can combine all the samples and obtain the dataset Lincons. Then we
generate the matrix A ∈ R610×400 whose entries are independent and modeled as N (0, 1).

For all the three datasets, the loss function is defined as the sum of cross entropy loss and ℓ22
regularization.

D.2 Parameters

For all the datasets, the mini-batch size is 4. As for the probability pn, we reparameterize it as p0n−αβ

with p0 < 1. The value of α is from {1, 0.8, 0.6} and the value of β is from {0, 0.2, 0.4, 0.6, 0.8}.
For β = 0, we set p0 = 0.2; for β > 0, we set p0 = 0.5. And we run gradient descent 1000 steps to
obtain the value of x⋆.

IID The parameter of ℓ22 regularization is 0.005. For α = 1, we set η0 = 200; for α = 0.8, we
set η0 = 40 in Appendices D.3 and D.4 and set η0 = 200 in Appendices D.5 and D.6; for α = 0.6,
we set η0 = 20.

Synthetic (1, 1) The parameter of ℓ22 regularization is 0.5. For α = 1, we set η0 = 1; for
α = 0.8, we set η0 = 0.3; for α = 0.6, we set η0 = 0.1.

Lincons The parameter of ℓ22 regularization is 0.05. For α = 1, we set η0 = 8; for α = 0.8, we
set η0 = 2; for α = 0.6, we set η0 = 0.8.

D.3 Convergence Rates

We plot the log-log scale graphs of averaged MSEs over 5 repetitions on IID vs iterations in Figure
1 and the log-log scale graphs of averaged MSEs over 10 repetitions on IID and Lincons vs

44

100 101 102 103

Iterations

10 4

10 3

10 2

10 1

100

M
SE

= 1.0

= 0.0
= 0.2
= 0.4
= 0.6
= 0.8

100 101 102 103

Iterations

10 4

10 3

10 2

10 1

100

M
SE

= 0.8

= 0.0
= 0.2
= 0.4
= 0.6
= 0.8

100 101 102 103

Iterations

10 4

10 3

10 2

10 1

100

M
SE

= 0.6

= 0.0
= 0.2
= 0.4
= 0.6
= 0.8

Figure 4: The log-log scale graphs of averaged MSE on Synthetic (1, 1) over 10 repetitions vs
iterations.

100 101 102 103 104

Iterations

10 3

10 2

10 1

100

M
SE

= 1.0

= 0.0
= 0.2
= 0.4
= 0.6
= 0.8

100 101 102 103 104
Iterations

10 3

10 2

10 1

100

M
SE

= 0.8
= 0.0
= 0.2
= 0.4
= 0.6
= 0.8

100 101 102 103 104
Iterations

10 3

10 2

10 1

100

M
SE

= 0.6
= 0.0
= 0.2
= 0.4
= 0.6
= 0.8

Figure 5: The log-log scale graphs of averaged MSE on Lincons over 10 repetitions vs iterations.

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

= 1.0, = 0.0

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04
= 1.0, = 0.2

0.05 0.00 0.05 0.10

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100
= 0.8, = 0.0

0.075 0.050 0.0250.000 0.025 0.050 0.075

0.075

0.050

0.025

0.000

0.025

0.050

0.075

= 0.8, = 0.2

Figure 6: The heatmaps of ǔn across two orthogonal directions over 100 repetition on IID.

iterations in Figures 4 and 5. When β < 1/2, the value of β hardly affects the convergence rate;
when β > 1/2, both larger β and smaller α lead to a slower convergence rate. This is consistent to
the result of Theorem 3.1.

D.4 Heatmaps

We plot the heatmaps for α = 1, 0.8 and β = 0, 0.2. The results for the three datasets are shown in
Figures 6, 7 and 8. For IID, we run 2000 steps of LPSA over 100 repetitions and pick up the last
200 iterates. For Synthetic (1, 1), we run 3000 steps of LPSA over 100 repetitions for α = 1 and
4000 steps for α = 0.8. Then we pick up the last 800 iterates to plot the heatmap. For Lincons, we
run 2000 steps of LPSA over 100 repetitions and pick up the last 800 iterates. All the heatmaps show
that the cells near the origin have lighter colors, which agrees with Theorem 3.3.

D.5 Trajectories

For α = 1, 0.8 and β = 0.6, 0.8, we plot the trajectories of v̌n along two random directions e1 and e2
vs accumulation of ηn in Figures 9, 10 and 11. Note that the directions vectors e1 and e2 are distinct

45

0.15 0.10 0.05 0.00 0.05 0.10
0.15

0.10

0.05

0.00

0.05

0.10

= 1.0, = 0.0

0.15 0.10 0.05 0.00 0.05 0.10 0.15

0.15

0.10

0.05

0.00

0.05

0.10

0.15

= 1.0, = 0.2

0.10 0.05 0.00 0.05 0.10
0.10

0.05

0.00

0.05

0.10

= 0.8, = 0.0

0.10 0.05 0.00 0.05 0.10

0.10

0.05

0.00

0.05

0.10

= 0.8, = 0.2

Figure 7: The heatmaps of ǔn across two orthogonal directions over 100 repetition on Synthetic
(1, 1).

0.15 0.10 0.05 0.00 0.05 0.10 0.15

0.15

0.10

0.05

0.00

0.05

0.10

0.15

= 1.0, = 0.0

0.15 0.10 0.05 0.00 0.05 0.10 0.15

0.15

0.10

0.05

0.00

0.05

0.10

0.15

= 1.0, = 0.2

0.2 0.1 0.0 0.1

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

= 0.8, = 0.0

0.2 0.1 0.0 0.1

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

= 0.8, = 0.2

Figure 8: The heatmaps of ǔn across two orthogonal directions over 100 repetition on Lincons.

for different datasets. The value of the horizontal coordinate is
∑n

i=s η
β
i , where s is the start point

of the trajectory that aims to eliminate the irregular behavior in the early stage of the optimization
process. In Figure 9, we run 20000 steps of LPSA and set s = 2000; in Figure 10, we run 50000
steps of LPSA and set s = 1000; in Figure 11, we run 5000 steps of LPSA and set s = 2000.

We take Figure 10 as an example. Observe that the trajectories in Figure 10 come in a jagged
manner and the peak value does not vanish or explode. This is because we have chosen a suitable
rescaled version v̌n of vn and such a behavior can be captured by Theorem 3.4. The same discussion
also applies for Figure 11. As for Figure 9, where the dimension of vn is 61000, the rate of the
weak convergence mentioned in Theorem 3.4 is much slower than the low-dimensional counterparts
depicted in Figures 10 and 11, where the dimension of vn is of hundreds or around 1000. When the
number of iterations is not so large, the influence of gradient noise can not be ignored. As a result,
the trajectories in Figure 9 keep fluctuating a lot and are not so smooth as those in Figures 10 and 11.

D.6 Bias

For α = 1, 0.8 and β = 0.6, 0.8, we plot the trajectories of ûn along two random directions e1 and
e2 (or e3) for three datasets in Figures 12, 13 and 14 to show the asymptotic biased of ûn. Note
that the directions vectors e1 and e2 are distinct for different datasets. The scale of coordinate axis
in Figure 13 is different from that in Figure 3. This is due to that we omit the influence of η0 in
Figure 3, whose value does not affect the shape of the trajectories. Moreover, we choose a different
direction e3 in Figure 13 instead of e2 in Figure 3 for a better illustration. We observe that although
some trajectories have not converged yet, they stay away from the blue horizontal dashed line, which
denotes the value 0. This verifies the result of Corollary 1.

D.7 Convergence Rates in terms of the Number of Projections

Recall that in Section 3.1 and Appendix D.3, we establish the convergence rates in terms of the number
of iterations and provide the log-log scale graphs of averages MSEs vs. the number of iterations. To
better capture the influence of projections, in this subsection, we consider the convergence rates in
terms of the number of projections and plot the the log-log scale graphs of averages MSEs vs. the
number of projections.

46

0 10000 20000 30000 40000 50000 60000 70000
Accumulation of n

10

5

0

5

10

15

20

u n
,e

1

= 0.8, = 0.6, Direction e1

0 10000 20000 30000 40000 50000 60000 70000
Accumulation of n

5

0

5

10

15

20

u n
,e

2

= 0.8, = 0.6, Direction e2

0 50000 100000 150000 200000 250000 300000 350000 400000
Accumulation of n

5

0

5

10

15

20

25

30

u n
,e

1

= 0.8, = 0.8, Direction e1

0 50000 100000 150000 200000 250000 300000 350000 400000
Accumulation of n

0

10

20

30

40

u n
,e

2

= 0.8, = 0.8, Direction e2

0 10000 20000 30000 40000 50000
Accumulation of n

0

2

4

6

8

10

12

14

u n
,e

1

= 1.0, = 0.6, Direction e1

0 10000 20000 30000 40000 50000
Accumulation of n

0

5

10

15

20

u n
,e

2

= 1.0, = 0.6, Direction e2

0 50000 100000 150000 200000 250000 300000
Accumulation of n

0

5

10

15

20

u n
,e

1

= 1.0, = 0.8, Direction e1

0 50000 100000 150000 200000 250000 300000
Accumulation of n

0

5

10

15

20

25

30

u n
,e

2

= 1.0, = 0.8, Direction e2

Figure 9: Trajectories of v̌n along two random directions vs accumulation of ηn on IID.

In our method, at the n-th iteration, the projection probability is pn = min{ηβn, 1} = Θ(n−αβ). As
a result, after n steps of iterations, the number of projections m should be of the order Θ(n1−αβ).
Suppose that after m steps of projections, we obtain the variable xm and um = PA⊥(xm). By

Theorem 3.1, we have E ∥um − x⋆∥2 = O
(
m−αmin{1,2−2β}

1−αβ

)
. For 0 ≤ β < 0.5, the rate is of the

order O
(
m− α

1−αβ

)
and a larger β leads to a faster rate. For 0.5 ≤ β < 1, the rate is of the order

O
(
m− 2α(1−β)

1−αβ

)
= O

(
m−2(1− 1−α

1−αβ).
)

and a larger β leads to a slower rate.

To conclude, if we only focus on the complexity of projection steps and ignore the cost of gradient
computation, β = 0.5 is the best choice.

Then we plot the log-log scale graphs of averages MSEs vs. the number of projections on two datasets
IID and Lincons over 5 repetitions in Figures 15 and 16.

For IID, the value of α is from {1.0, 0.8, 0.6} and the value of β is from {0, 0.2, 0.4, 0.5, 0.6}. When
β = 0, 0.2, we run 10000 steps pf LPSA; when (α, β) = (0.6, 0.4), we run 20000 steps pf LPSA;

47

0 500 1000 1500 2000 2500 3000 3500
Accumulation of n

0

1

2

3

4

5

6

u n
,e

1

= 0.8, = 0.6, Direction e1

0 500 1000 1500 2000 2500 3000 3500
Accumulation of n

3.0

2.5

2.0

1.5

1.0

0.5

0.0

u n
,e

2

= 0.8, = 0.6, Direction e2

0 1000 2000 3000 4000 5000
Accumulation of n

0

1

2

3

4

u n
,e

1

= 0.8, = 0.8, Direction e1

0 1000 2000 3000 4000 5000
Accumulation of n

2.0

1.5

1.0

0.5

0.0

u n
,e

2

= 0.8, = 0.8, Direction e2

0 1000 2000 3000 4000
Accumulation of n

0

2

4

6

8

u n
,e

1

= 1.0, = 0.6, Direction e1

0 1000 2000 3000 4000
Accumulation of n

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
u n

,e
2

= 1.0, = 0.6, Direction e2

0 2000 4000 6000 8000 10000
Accumulation of n

0

1

2

3

4

u n
,e

1

= 1.0, = 0.8, Direction e1

0 2000 4000 6000 8000 10000
Accumulation of n

2.0

1.5

1.0

0.5

0.0

u n
,e

2

= 1.0, = 0.8, Direction e2

Figure 10: Trajectories of v̌n along two random directions vs accumulation of ηn on Synthetic
(1, 1).

when (α, β) = (0.8, 0.4), we run 30000 steps pf LPSA; when β = 0.5, 0.6 or (α, β) = (1.0, 0.4),
we run 50000 steps pf LPSA.

For Lincons, the value of α is from {1.0, 0.8, 0.6} and the value of β is from {0, 0.2, 0.4, 0.6, 0.8}.
When β = 0, 0.2, we run 10000 steps pf LPSA; when β = 0.4 or (α, β) = (0.6, 0.6), we run
50000 steps pf LPSA; when (α, β) = (1.0, 0.6), (0.8, 0.6), we run 100000 steps pf LPSA; when
(α, β) = (0.6, 0.8), we run 500000 steps pf LPSA; when (α, β) = (1.0, 0.8), (1.0, 0.6), we run
1000000 steps pf LPSA.

We find that in both Figures 15 and 16, when β is closer to 0.5, the lines of convergence rates are
steeper. This is consistent with our analysis above. It is worth noting that for a fixed number of
iterations, a larger β implies a smaller number of projections. As a result, for β larger than 0.5, the
interval between two adjacent projections is pretty large and to get a target number of projections
(e.g., 1000), the number of iterations can be undesirable. To reduce the computational cost, we take a
predetermined number of iterations, so the lines corresponding the larger β can be shorter than others.

48

0 2000 4000 6000 8000 10000
Accumulation of n

0.5

0.4

0.3

0.2

0.1

0.0

u n
,e

1

= 0.8, = 0.6, Direction e1

0 2000 4000 6000 8000 10000
Accumulation of n

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

u n
,e

2

= 0.8, = 0.6, Direction e2

0 5000 10000 15000 20000
Accumulation of n

0.4

0.3

0.2

0.1

0.0

u n
,e

1

= 0.8, = 0.8, Direction e1

0 5000 10000 15000 20000
Accumulation of n

2.5

2.0

1.5

1.0

0.5

0.0

u n
,e

2

= 0.8, = 0.8, Direction e2

0 2000 4000 6000 8000 10000 12000 14000 16000
Accumulation of n

0.5

0.4

0.3

0.2

0.1

0.0

u n
,e

1

= 1.0, = 0.6, Direction e1

0 2000 4000 6000 8000 10000 12000 14000 16000
Accumulation of n

2.5

2.0

1.5

1.0

0.5

0.0

u n
,e

2

= 1.0, = 0.6, Direction e2

0 10000 20000 30000 40000 50000
Accumulation of n

0.5

0.4

0.3

0.2

0.1

0.0

u n
,e

1

= 1.0, = 0.8, Direction e1

0 10000 20000 30000 40000 50000
Accumulation of n

2.5

2.0

1.5

1.0

0.5

0.0

u n
,e

2

= 1.0, = 0.8, Direction e2

Figure 11: Trajectories of v̌n along two random directions vs accumulation of ηn on Lincons.

49

0 2500 5000 7500 1000012500150001750020000
Iterations

0.10

0.05

0.00

0.05

0.10

0.15

0.20

u n
,e

1

= 0.8, = 0.6, Direction e1

0 2500 5000 7500 1000012500150001750020000
Iterations

0.10

0.05

0.00

0.05

0.10

0.15

0.20

u n
,e

2

= 0.8, = 0.6, Direction e2

0 2500 5000 7500 1000012500150001750020000
Iterations

0.05

0.00

0.05

0.10

u n
,e

1

= 0.8, = 0.8, Direction e1

0 2500 5000 7500 1000012500150001750020000
Iterations

0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

u n
,e

2

= 0.8, = 0.8, Direction e2

0 2500 5000 7500 1000012500150001750020000
Iterations

0.10

0.05

0.00

0.05

0.10

u n
,e

1

= 1.0, = 0.6, Direction e1

0 2500 5000 7500 1000012500150001750020000
Iterations

0.10

0.05

0.00

0.05

0.10

0.15

0.20

u n
,e

2

= 1.0, = 0.6, Direction e2

0 2500 5000 7500 1000012500150001750020000
Iterations

0.04

0.02

0.00

0.02

0.04

0.06

u n
,e

1

= 1.0, = 0.8, Direction e1

0 2500 5000 7500 1000012500150001750020000
Iterations

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

u n
,e

2

= 1.0, = 0.8, Direction e2

Figure 12: Trajectories of ûn along two random directions over 5 repetitions on IID.

0 10000 20000 30000 40000 50000
Iterations

2

1

0

1

2

3

u n
,e

1

= 0.8, = 0.6, Direction e1

0 10000 20000 30000 40000 50000
Iterations

4

3

2

1

0

1

2

u n
,e

3

= 0.8, = 0.6, Direction e3

0 10000 20000 30000 40000 50000
Iterations

1

0

1

2

3
u n

,e
1

= 0.8, = 0.8, Direction e1

0 10000 20000 30000 40000 50000
Iterations

3

2

1

0

1

2

u n
,e

3

= 0.8, = 0.8, Direction e3

0 10000 20000 30000 40000 50000
Iterations

1.5

1.0

0.5

0.0

0.5

u n
,e

1

= 1.0, = 0.6, Direction e1

0 10000 20000 30000 40000 50000
Iterations

1.5

1.0

0.5

0.0

0.5

1.0

1.5

u n
,e

3

= 1.0, = 0.6, Direction e3

0 10000 20000 30000 40000 50000
Iterations

1.5

1.0

0.5

0.0

0.5

u n
,e

1

= 1.0, = 0.8, Direction e1

0 10000 20000 30000 40000 50000
Iterations

0.5

0.0

0.5

1.0

1.5

u n
,e

3

= 1.0, = 0.8, Direction e3

Figure 13: Trajectories of ûn along two random directions over 5 repetitions on Synthetic (1, 1).

0 10000 20000 30000 40000 50000
Iterations

1

0

1

2

3

u n
,e

1

= 0.8, = 0.6, Direction e1

0 10000 20000 30000 40000 50000
Iterations

3

2

1

0

1

2

3

u n
,e

2

= 0.8, = 0.6, Direction e2

0
2
4
5
9

0 10000 20000 30000 40000 50000
Iterations

0.5

0.0

0.5

1.0

1.5

u n
,e

1

= 0.8, = 0.8, Direction e1

0 10000 20000 30000 40000 50000
Iterations

2

1

0

1

2

u n
,e

2

= 0.8, = 0.8, Direction e2

0
2
4
5
9

0 10000 20000 30000 40000 50000
Iterations

0.25

0.00

0.25

0.50

0.75

1.00

1.25

u n
,e

1

= 1.0, = 0.6, Direction e1

0 10000 20000 30000 40000 50000
Iterations

1.0

0.5

0.0

0.5

u n
,e

2

= 1.0, = 0.6, Direction e2

0
2
4
5
9

0 10000 20000 30000 40000 50000
Iterations

0.2

0.0

0.2

0.4

0.6

u n
,e

1

= 1.0, = 0.8, Direction e1

0 10000 20000 30000 40000 50000
Iterations

0.6

0.4

0.2

0.0

0.2

0.4

u n
,e

2

= 1.0, = 0.8, Direction e2

0
2
4
5
9

Figure 14: Trajectories of ûn along two random directions over 5 repetitions on Lincons.

50

100 101 102 103

Number of projections

10 3

10 2

10 1

100

101

102

M
SE

= 1.0
= 0.0
= 0.2
= 0.4
= 0.5
= 0.6

100 101 102 103

Number of projections

10 3

10 2

10 1

100

101

102

M
SE

= 0.8
= 0.0
= 0.2
= 0.4
= 0.5
= 0.6

100 101 102 103

Number of projections

10 3

10 2

10 1

100

101

102

M
SE

= 0.6
= 0.0
= 0.2
= 0.4
= 0.5
= 0.6

Figure 15: The log-log scale graphs of averaged MSE over 5 repetitions on IID vs. the number of
projections.

100 101 102 103

Number of projections

10 3

10 2

10 1

100

M
SE

= 1.0
= 0.0
= 0.2
= 0.4
= 0.6
= 0.8

100 101 102 103

Number of projections

10 3

10 2

10 1

100

M
SE

= 0.8
= 0.0
= 0.2
= 0.4
= 0.6
= 0.8

100 101 102 103

Number of projections

10 3

10 2

10 1

100

M
SE

= 0.6
= 0.0
= 0.2
= 0.4
= 0.6
= 0.8

Figure 16: The log-log scale graphs of averaged MSE over 5 repetitions on Lincons vs. the number
of projections.

51

	Introduction
	Contribution

	Problem Formulation
	Loopless Projected Stochastic Approximation
	Assumptions
	Jump Diffusion

	Main Results
	Non-asymptotic Analysis
	Asymptotic Behavior of the Rescaled Trajectory
	Case 1: Frequent Projection where [0, 1/2)
	Case 2: Occasional Projection where (1/2, 1)
	Summary and Discussion

	Experiments
	Concluding Remarks
	Special Condition: Federated Learning
	The Problem and Reduction
	Restatement of Theoretical Results
	Revision of the Lower Bound

	Related Work

	Proof of Section 3.1
	Useful Propositions and Lemmas
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Lemmas 1, 2 and 3
	Proof of Lemmas 4 and 5

	Proof of Section 3.2
	Proof of Case 1
	Proof of Case 2

	Experimental Details
	Datasets
	Parameters
	Convergence Rates
	Heatmaps
	Trajectories
	Bias
	Convergence Rates in terms of the Number of Projections

