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Appendices

A Method Details

A.1 Derivation of NCE Objectives

Given a prefix x[0,T ], we have the true continuation x(0)(T,T ′] and N noise samples x(1)(T,T ′], . . . , x
(N)
(T,T ′].

By concatenating the prefix and each (true or noise) continuation, we obtain N + 1 completed
sequences x(0)[0,T ′], x

(1)
[0,T ′], . . . , x

(N)
[0,T ′].

Binary-NCE Objective. For each completed sequence x(n)[0,T ′], we learn to classify whether it is real
data or noise data. The unnormalized probability for each case is:

p̃ (it is real data) = pHYPRO

(
x
(n)
(T,T ′] | x[0,T ]

)
= pauto

(
x
(n)
(T,T ′] | x[0,T ]

) exp
(
−Eθ(x(n)

[0,T ′])
)

Zθ(x[0,T ])
(7)

p̃ (it is noise data) = pauto

(
x
(n)
(T,T ′] | x[0,T ]

)
(8)

Then the normalized probabilities are:

p (it is real data) = p̃(it is real data)
p̃(it is real data)+p̃(it is noise data) =

exp
(
−Eθ(x(n)

[0,T ′])
)

Zθ(x[0,T ])+exp
(
−Eθ(x(n)

[0,T ′])
) (9)

p (it is noise data) = p̃(it is noise data)
p̃(it is real data)+p̃(it is noise data) =

Zθ(x[0,T ])
Zθ(x[0,T ])+exp

(
−Eθ(x(n)

[0,T ′])
) (10)

Following previous work (Mnih & Teh, 2012), we assume that the model is self-normalized, i.e.,
Zθ
(
x[0,T ]

)
= 1. Then the normalized probabilities become

p (it is real data) =
exp
(
−Eθ(x(n)

[0,T ′])
)

1+exp
(
−Eθ(x(n)

[0,T ′])
) = σ

(
−Eθ(x(n)[0,T ′])

)
(11)

p (it is noise data) = 1

1+exp
(
−Eθ(x(n)

[0,T ′])
) = σ

(
Eθ(x

(n)
[0,T ′]))

)
(12)

where σ is the sigmoid function.

For the true completed sequence x(0)[0,T ′], we maximize the log probability that it is real data, i.e.,

log p (it is real data); for each noise sequence x(n)[0,T ′], we maximize the log probability that it is noise
data, i.e., log p (it is noise data). The Binary-NCE objective turns out to be equation (3), i.e.,

Jbinary = log σ
(
−Eθ(x(0)[0,T ′])

)
+

N∑
n=1

log σ
(
Eθ(x

(n)
[0,T ′]))

)
Multi-NCE Objective. For these N + 1 sequences, we learn to discriminate the true sequence
against the noise sequences. For each of them x

(n)
[0,T ′], the following is the unnormalized probability

that it is real data but all others are noise:

p̃
(
x
(n)
[0,T ′] is real, others are noise

)
= pHYPRO

(
x
(n)
(T,T ′] | x[0,T ]

) ∏
n′ 6=n

pauto

(
x
(n′)
(T,T ′] | x[0,T ]

)
(13)

where can be rearranged to be

p̃
(
x
(n)
[0,T ′] is real, others are noise

)
=

exp
(
−Eθ(x(n)

[0,T ′])
)

Zθ(x[0,T ])

N∏
n=0

pauto

(
x
(n)
(T,T ′] | x[0,T ]

)
(14)

Note that 1
Z

∏N
n=0 pauto is constant with respect to n. So we can ignore that term and obtain

p̃
(
x
(n)
[0,T ′] is real, others are noise

)
∝ exp

(
−Eθ(x(n)[0,T ′])

)
(15)

Therefore, we can obtain the normalized probability that x(0)[0,T ′] is real data as below

p
(
x
(0)
[0,T ′] is real data

)
=

exp
(
−Eθ(x(0)

[0,T ′]))
)

∑N
n=0 exp

(
−Eθ(x(n)

[0,T ′]))
) (16)
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Algorithm 3 Thinning Algorithm.

Input: an event sequence x[0,T ] over the given interval [0, T ] and an interval (T, T ′] of interest;
trained autoregressive model pauto

Output: a sampled continuation x(T,T ′]

1: procedure THINNING(x[0,T ], T
′, pauto)

2: initialize x(T,T ′] as empty
3: . use the thinning algorithm to draw each noise sequences from the autoregressive model pauto

4: t0 ← T ; i← 1;H ← x[0,T ]

5: while t0 < T ′ : . draw next event if we haven’t exceeded the time boundary T ′ yet
6: . upper bound λ∗ can be found for NHP and AttNHP.
7: . technical details can be found in Mei & Eisner (2017) and Yang et al. (2022).
8: find upper bound λ∗ ≥

∑K
k=1 λk(t | H) for all t ∈ (t0,∞) . compute sampling intensity

9: repeat
10: draw ∆ ∼ Exp(λ∗); t0 += ∆ . time of next proposed noise event
11: u ∼ Unif(0, 1)

12: until uλ∗ ≤
∑K
k=1 λk(t0 | H) . accept proposed next noise event with prob

∑K
k=1 λk/λ

∗

13: if t0 > T ′ : break
14: draw k ∈ {1, . . . ,K} where probability of k is ∝ λk(t0 | H)
15: append (t0, k) to bothH and x(T,T ′]

16: return x(T,T ′]

Note that the normalizing constant Z doesn’t show up in the normalized probability since it has been
cancelled out as a part of the 1

Z

∏N
n=0 pauto constant. That is, unlike the Binary-NCE case, we do not

need to assume self-normalization in this Multi-NCE case.

We maximize the log probability that x(0)[0,T ′] is real data, i.e., log p
(
x
(0)
[0,T ′] is real data

)
; the

Multi-NCE objective turns out to be equation (4), i.e.,

Jmulti = −Eθ(x(0)[0,T ′])− log

N∑
n=0

exp
(
−Eθ(x(n)[0,T ′]))

)
A.2 Sampling Algorithm Details

In section 3.2, we described a sampling method to approximately draw x(T,T ′] from pHYPRO. It calls
the thinning algorithm, which we describe in Algorithm 3.

B Experimental Details

B.1 Dataset Details

Taobao (Alibaba, 2018). This dataset contains time-stamped user click behaviors on Taobao shopping
pages from November 25 to December 03, 2017. Each user has a sequence of item click events with
each event containing the timestamp and the category of the item. The categories of all items are first
ranked by frequencies and the top 16 are kept while the rests are merged into one category, with each
category corresponding to an event type. We work on a subset of 2000 most active users with average
sequence length 58 and then end up with K = 17 event types. We randomly sampled disjoint train,
dev and test sets with 1300, 200 and 500 sequences from the dataset. Given the average inter-arrival
time 0.06 (time unit is 3 hours), we choose the prediction horizon as 1.5 that approximately has 20
event tokens per sequence.

Taxi (Whong, 2014). This dataset contains time-stamped taxi pickup and drop off events with zone
location ids in New York city in 2013 . Following the processing recipe of previous work (Mei
et al., 2019), each event type is defined as a tuple of (location, action). The location is one of the
5 boroughs {Manhattan, Brooklyn, Queens, The Bronx, Staten Island}. The action can be either
pick-up or drop-off. Thus, there are K = 5× 2 = 10 event types in total. We work on a subset of
2000 sequences of taxi pickup events with average length 39 and then end up with K = 10 event
types. We randomly sampled disjoint train, dev and test sets with 1400, 200 and 400 sequences from
the dataset. Given the average inter-arrival time 0.22 (time unit is 1 hour), we choose the prediction
horizon as 4.5 that approximately has 20 event tokens per sequence.
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DATASET K # OF EVENT TOKENS SEQUENCE LENGTH

TRAIN DEV TEST MIN MEAN MAX

TAOBAO 17 75000 12000 30000 58 59 59
TAXI 10 56000 10000 16000 38 39 39
STACKOVERFLOW 22 91000 26000 27000 41 65 101

Table 1: Statistics of each dataset.

StackOverflow (Leskovec & Krevl, 2014). This dataset has two years of user awards on a question-
answering website: each user received a sequence of badges and there are K = 22 different kinds
of badges in total. We randomly sampled disjoint train, dev and test sets with 1400, 400 and 400
sequences from the dataset. The time unit is 11 days; the average inter-arrival time is 0.95 and we set
the prediction horizon to be 20 that approximately covers 20 event tokens.

Table 1 shows statistics about each dataset mentioned above.

B.2 Implementation Details

All models are implemented using the PyTorch framework (Paszke et al., 2017).

For the implementation of NHP, AttNHP, and thinning algorithm, we used the code from the public
Github repository at https://github.com/yangalan123/anhp-andtt (Yang et al., 2022) with
MIT License.

For DualTPP, we used the code from the public Github repository at https://github.com/
pratham16cse/DualTPP (Deshpande et al., 2021) with no license specified.

For the optimal transport distance, we used the code from the public Github repository at https:
//github.com/hongyuanmei/neural-hawkes-particle-smoothing (Mei et al., 2019) with
BSD 3-Clause License.

Our code can be found at https://github.com/alipay/hypro_tpp and https://github.
com/iLampard/hypro_tpp.

B.3 Training and Testing Details

Training Generators. For AttNHP, the main hyperparameters to tune are the hidden dimension D
of the neural network and the number of layers L of the attention structure. In practice, the optimal
D for a model was usually 32 or 64; the optimal L was usually 1, 2, 3, 4. In the experiment, we set
D = 32, L = 2 for AttNHP and D = 32, L = 4 for AttNHP-LG. To train the parameters for a given
generator, we performed early stopping based on log-likelihood on the held-out dev set.

Training Energy Function. The energy function is built on NHP or AttNHP with 3 MLP layers
to project the hidden states into a scalar energy value. AttNHP is set to have the same structure as
the base generator ’Att’. NHP is set to have D = 36 so that the joint model have the comparable
number of parameters with other competitors. During training, each pair of training sample contains
1 positive sample and 5 negative samples (N = 5 in equation 3 and 4), generated from generators.
Regarding the regularization term in equation 5, we choose β = 1.0.

All models are optimized using Adam (Kingma & Ba, 2015).

Testing. During testing, for efficiency, we generates 20 samples (M = 20 in Algorithm 2) per test
prefix and select the one with the highest weight as the prediction. Increasing M could possibly
improves the prediction performance.

Computation Cost. All the experiments were conducted on a server with 256G RAM, a 64 logical
cores CPU (Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz) and one NVIDIA Tesla P100 GPU
for acceleration. On all the datasets, the training time of HYPRO-A and HYPRO-N is 0.005 seconds
per positive sequence.

For training, our batch size is 32. For Taobao and Taxi dataset, training the baseline NHP, NHP-lg,
AttNHP, AttNHP-lg approximately takes 1 hour, 1.3 hour, 2 hours, and 3 hours, respectively (12,
16, 25, 38 milliseconds per sequence), training the continuous-time LSTM energy function and
continuous-time Transformer energy function takes 20 minutes and 35 minutes (4 and 7 milliseconds
per sequence pair) respectively.
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MODEL DESCRIPTION VALUE USED

TAOBAO TAXI STACKOVERFLOW

DUALTPP RNN HIDDEN SIZE 76 76 76
TEMPORAL EMBEDDING SIZE 32 32 32

NHP RNN HIDDEN SIZE 36 36 36
NHP-LG RNN HIDDEN SIZE 52 52 52
ATTNHP TEMPORAL EMBEDDING SIZE 64 64 64

ENCODER/DECODER HIDDEN SIZE 32 32 32
LAYERS NUMBER 2 2 2

ATTNHP-LG TEMPORAL EMBEDDING SIZE 64 64 64
ENCODER/DECODER HIDDEN SIZE 32 32 32

LAYERS NUMBER 4 4 4
HYPRO-N-B RNN HIDDEN SIZE IN NHP 32 32 32
HYPRO-N-M RNN HIDDEN SIZE IN NHP 32 32 32
HYPRO-A-B ENERGY FUNCTION IS A CLONE OF ATTNHP NA NA NA
HYPRO-A-M ENERGY FUNCTION IS A CLONE OF ATTNHP NA NA NA

Table 2: Descriptions and values of hyperparameters used for models trained on the two datasets.

MODEL # OF PARAMETERS

TAOBAO TAXI STACKOVERFLOW

DUALTPP 40.0K 40.1K 40.3K
NHP 19.6K 19.3K 20.0K
NHP-LG 40.0K 39.3K 40.6K
ATTNHP 19.7K 19.3K 20.1K
ATTNHP-LG 38.3K 37.9K 38.7K
HYPRO-A-B 40.0K 40.5K 41.0K
HYPRO-A-M 40.0K 40.5K 41.0K

Table 3: Total number of parameters for models trained on the three datasets.

For inference, inference with energy functions takes roughly 2 to 4 milliseconds. It takes 0.2 seconds
to draw a sequence from the autoregressive base model. Our implementation can draw multiple
sequences at a time in parallel: it takes only about 0.4 seconds to draw 20 sequences—only twice as
drawing a single sequence. We have released this implementation.

B.4 More OTD Results

The optimal transport distance (OTD) depends on the hyperparameter Cdel, which is the cost of
deleting or adding an event token of any type. In our experiments, we used a range of values of
Cdel ∈ {0.05, 0.5, 1, 1.5, 2, 3, 4}, and report the averaged OTD in Figure 1.

In this section, we show the OTD for each specific Cdel in Figure 7. As we can see, for all the values
of Cdel, our HYPRO method consistently outperforms the other methods.

B.5 Analysis Details: Baseline That Ranks Sequences by the Base Model

To further verify the usefulness of the energy function in our model, we developed an extra baseline
method that ranks the completed sequences based on their probabilities under the base model, from
which the continuations were drawn. This baseline is similar to our proposed HYPRO framework but
its scorer is the base model itself.

We evaluated this baseline on the Taobao dataset. The results are in Figure 8. As we can see, this new
baseline method is no better than our method in terms of the OTD metric but much worse than all the
other methods in terms of the RMSE metric.

B.6 Analysis Details: Statistical Significance

We performed the paired permutation test to validate the significance of our proposed regularization
technique. Particularly, for each model variant (hypro-a-b or hypro-a-m), we split the test data
into ten folds and collected the paired test results with and without the regularization technique for
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Figure 7: OTD for each specific deletion/addition cost Cdel.

each fold. Then we performed the test and computed the p-value following the recipe at https:
//axon.cs.byu.edu/Dan/478/assignments/permutation_test.php.

The results are in Figure 9. It turns out that the performance differences are strongly significant for
hypro-a-b (p-value < 0.05 ) but not significant for hypro-a-m (p-value ≈ 0.1 ). This is consistent
with the findings in Figure 2.
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Figure 8: Evaluation of new baseline on Taobao dataset. The base model is AttNHP. The performances of the
other methods are copied from Figure 1a.
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(a) Taobao dataset.
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Figure 9: Statistical significance of our regularization on the Taobao and Taxi datasets.
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