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Abstract

Joint visual and language modeling on large-scale datasets has recently shown
good progress in multi-modal tasks when compared to single modal learning.
However, robustness of these approaches against real-world perturbations has not
been studied. In this work, we perform the first extensive robustness study of
video-language models against various real-world perturbations. We focus on text-
to-video retrieval and propose two large-scale benchmark datasets, MSRVTT-P and
YouCook2-P, which utilize 90 different visual and 35 different text perturbations.
The study reveals some interesting initial findings from the studied models: 1)
models are more robust when text is perturbed versus when video is perturbed,
2) models that are pre-trained are more robust than those trained from scratch,
3) models attend more to scene and objects rather than motion and action. We
hope this study will serve as a benchmark and guide future research in robust
video-language learning. The benchmark introduced in this study along with the
code and datasets is available at https://bit.ly/3CNOly4.

1 Introduction

Human beings learn different skills sequentially and in a continual manner. Sequential data like
video and language are natural forms of input to any intelligent vision system operating in the real
world. Robustness of these intelligent systems against real-world distribution shifts is crucial for
various applications including autonomous driving [36, 26, 17, 43], medicine [4, 2, 31, 54], robotics
[31, 65, 32, 6] and others. In a multimodal setting where both language and video are used, these
distribution shifts can occur for a variety of reasons. In video, these can include lighting, camera
movement, digital compression, etc. In text, these can include spelling errors, incorrect synonym
swapping, bias, etc. These distribution shifts can cause deep learning models to fail when deployed
in a real world setting [28, 12, 17].

It is crucial that these models are robust against such distribution shifts for successful deployment.
Robustness has been an active topic of research in deep learning. However, most of the effort is
directed towards robustness against adversarial attacks [9, 3, 20]. There are some recent efforts
on robustness against real-world distribution shifts, but they focus on non-sequential image data
[28, 8, 27] and natural language [59] independently. Because video and text are vital sequential
inputs for real-world intelligent systems, studying robustness in a multimodal setting is an important
step towards developing reliable systems and has never been studied before.
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Figure 1: A conceptual diagram of video and text in a joint latent space where the original text (circles) are
closer to their paired video compared to text that is perturbed via typos (cross) and the removal of all words
except nouns and verbs (triangle). Models are considered robust when the perturbed text is still closest to its
respective video. The same should be true if video is perturbed or both are perturbed.

In this work, we perform a large-scale analysis on the robustness of existing multimodal deep learning
models for text-to-video retrieval. Text-to-video retrieval provides an important test scenario for a
multimodal setting as it evaluates the similarity between video and text embeddings and how their
joint-embedding space may vary based on distribution shifts on one or both modalities. There are
several questions about existing methods which are unanswered. Are these approaches robust to
real-world corruptions in one modality and even both? Do we really need a heavy pre-training
strategy for robustness or is training on the target dataset enough? Are the recently introduced
transformer-based models better for robustness? Do these approaches utilize temporal modeling?
Are these models biased? This study aims to be the first to answer some of these critical questions for
video-language deep learning models.

Towards this goal, we present two benchmark datasets to conduct robustness analysis on text-to-video
retrieval. We utilize two widely used retrieval datasets MSRVTT [55] and YouCook2 [69] and
propose corresponding benchmark datasets, MSRVTT-P and YouCook2-P. In order to create these
benchmarks, we introduce 90 different visual perturbations and 35 textual perturbations.

This study reveals several interesting observations about robustness of video-language models: 1)
The studied models are more robust when only text is perturbed as opposed to when only video is
perturbed. 2) Model pre-training improves both robustness and performance. 3) Models attend more
to object and scene rather than motion and action. We make the following contributions in this study,

• We focus on robustness of video-language approaches against distribution shifts due to
spatial/spatio-temporal visual and text perturbations; this problem has not been studied
before to the best of our knowledge.

• We provide two large-scale benchmark datasets (MSRVTT-P and YouCook2-P) to conduct
robustness analysis on text-to-video retrieval.

• We present an empirical analysis of video-language approaches to study the effect of various
perturbations on their performance.

2 Related Works

2.1 Robustness

Visual Most recent works on robustness in the visual domain have focused on real-world distri-
bution shifts as opposed to targeted attacks in the image domain [28, 8, 27, 50, 56]. In [28, 46],
authors analyze different image classification models on naturally occurring distribution shifts using
ImageNet. While the benchmark study analyzing naturally occurring shifts in [56] demonstrated
that data augmentation is not sufficient for robustness, several studies have found that certain data
augmentations do improve the robustness of deep learning image models [24, 29, 66]. These data
augmentations are often noise related [37, 49, 34] but other transformations such as color or texture
have been analyzed as well [24, 68, 13, 29]. These studies have not yet been extended to the video
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domain where temporal aspects are also present. Different from these works, this study will provide
a benchmark on robustness of models against real-world perturbations in multi-modal settings.

Text Research on robustness in the natural-language processing (NLP) field is far more extensive as
compared to video. Some works in natural distribution shifts focus on semantic changing of a phrase
[23, 51]. In [23], the phrase is altered in small, meaningful ways that change the overall label in order
to understand the decision boundaries of models. Similarly, [51] alter text in ways that change the
semantic meaning but keep the original text’s lexical surface form. Other works inspired by [30]
focus on distribution shift based on changes of grammar errors, dialects, speakers, and language
[16], different domains [42] and bias [15, 45]. The image robustness research space has inspired
many of these studies, but there are vast differences to NLP and vision that make these transfers
difficult, such as the discrete vs. continuous search space as explained in [60]. Data augmentation
has also been looked at as a method to improve robustness and has shown substantial improvements
[22, 19, 11, 29, 10]. These studies have not yet been extended to the multimodal domain where vision
is also incorporated. Different from these works, this work will provide a large-scale benchmark on
robustness for multimodal models against real-world perturbations.

Multimodal Evaluating robustness in multimodal models is more difficult because there are more
vectors of attack possible. It is possible to attack the entire model while perturbing only one of the
modalities used or a varying amount of the modalities used. Focus on single-modality attacks in
[64] investigated the robustness of multimodal neural networks against worst-case (i.e., adversarial)
perturbations on a single modality. Looking at multimodal attacks, [58] evaluated audio-visual models
by running adversarial attacks on audio, visual, and both modalities. A more general benchmark was
proposed in [33] for a variety of modalities. Different to this benchmark, we focus on robustness
analysis of the video and text embedding space in great detail. Such studies have not been performed
on naturally occurring distribution shifts and have not looked at video-language models specifically,
two modalities that are drastically different.

2.2 Video-Language Modelling

Multimodal modeling with text and vision has improved since the emergence of both the HowTo100M
dataset [39] and transformer architecture [18]. The highest performing models [35, 63, 62, 48, 1, 44]
pre-train on the [39] and most use pre-extracted visual features from the original multimodal model
from [38] which uses an S3D-G backbone [61]. For learning a joint visual-text space, these models
often use a contrastive learning objective between visual and text embeddings [38, 63, 1, 48] while
some use an alignment-based objective [35, 62] using masked modeling. Many of the contrastive
approaches [63, 38, 48], use a two-branch encoder approach where video has one encoder and text a
separate encoder and the objective is to move the two enoder outputs closer to each other in latent
space. Some approaches [35, 62, 1] will additionally utilize a cross-encoder before comparing output.
This work will provide a greater understanding of these video-language models and their robustness.

3 Distribution Shift

Existing research in multimodal learning is mostly focused on training and testing the proposed
methods on a benchmark dataset with little to no distribution shift from training to testing samples.
While models often use a video encoder that is pre-trained on a very large, noisy dataset, e.g.
HowTo100M [39], there is no understanding of how, in a multimodal setting, a distribution shift
will affect the joint-embedding space of video and text. To study the effect of distribution shift, we
introduce five categories of visual perturbations and seven categories of text perturbations. More
details about these perturbations are provided in the Appendix.

3.1 Visual Perturbations

First, we extend image-based perturbations from [28] to videos. Next, we add temporal perturbations
to address the time dimension and video compression to address video-specific distribution shifts
as well as spatio-temporal. The total set of visual perturbations fall into 5 categories: Noise, Blur,
Temporal, Camera and Digital. Each visual perturbation has a severity range from 1 to 5 where
the greater the severity, the more challenging and perturbed the video is. Blur, Noise, and Camera
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Table 1: Details of self-supervised video-language models used in this study.
Model Params Text Input Text Encoder Video Input Video Encoder
HowTo100M MIL [38] 31.2M Raw Word2Vec [41] Raw S3Dg [61]
VideoClip [63] 177.4M Raw BERT [18] S3D [38] MLP+Transformer
UniVL [35] 153.7M Raw BERT [18] S3D [38] Transformer
COOT [25] 7.6M BERT [18] Transformer S3D [38] Transformer
FIT [5] 180.9M Raw BERT [18] Raw ViT [21, 7]

perturbations are all applied frame-by-frame. Noise includes Impulse, Gaussian, Shot, and Speckle,
Blur includes Zoom, Defocus and Motion and Camera includes StaticRotate, Rotation and Translation.

The Digital and Temporal perturbations are added in order to include distribution shifts specific to
video while also perturbing spatially and temporally. Digital perturbations are related to compression
and video-streaming quality. We evaluted models on JPEG, MPEG1 and MPEG2. JPEG is a lossy
image compression, MPEG1 compresses video without excessive quality loss and MPEG2 is a lossy
compression for video that is similar to MPEG1. Temporal perturbations focus on the time dimension
in a video and include Sampling, Reverse Sampling, Jumbling, Box Jumbling and Freeze and will
help in understanding how these models are utilizing temporal information. Sampling rate slows the
playback speed by sampling frames uniformly at a varying level of rates and reverse samping does so
in the reverse order of the original sequence. Jumbling splits a video into segments and randomly
shuffles the frames in that segment while Box jumbling randomly shuffles the segments. Freezing
simulates when live streaming buffers, freezing on random frames for random durations.

3.2 Text Perturbations

We group text perturbations into three different types, natural, machine-based, and synthetic. Here
machine-based perturbations use a model to alter the text while natural-based imitates real-world
mistakes when generating text. Synthetic are not natural but are used to gain a greater understanding
of the models. The text perturbations are further grouped into seven different categories ChangeChar,
AddText, Bias, Positional, DropText, SwapText and TextStyle with a total of 35 different perturbations.
ChangeChar refers to any perturbation that changes a character in word(s). SwapText is a machine-
learning based perturbation that swaps word(s) from the original phrase. AddText includes appending
irrelevant phrases to text or inserting adverbs. TextStyle are perturbations that change the original
text’s style, e.g. making it passive [14]. Bias perturbations include switching the gender of word(s)
in a phrase [47]. We additionally include changing all male references to female, the reverse, and
convert all gender-specific references to gender neutral.

DropText perturbations are synthetic and drop words based on their part-of-speech (POS) tag. These
perturbations are included to gain a better understanding of word level attention, more specifically, to
understand if models attend more to objects, actions or context. DropNN, DropVB, and DropVBNN are
different variations of dropping words based on whether the POS tags are Noun and/or Verb. Because
there are often more nouns in a sentence, we have an additional perturbation RandNN where only one
noun is dropped randomly as opposed to all. For example, “a little girl does gymnastics” becomes “ a
little [UNK] does gymnastics”. In order to evaluate attention to contextual words, OnlyNN, OnlyVB,
and OnlyNNVB drops all words but those with POS NN and/or VB. Positional perturbations are
machine-based and alter the phrase based off their location. This is used to evaluate the models based
on the position of words in a phrase. These include DropFirst, DropLast, DropFirstandLast, and
ShuffleOrder. Drop-related perturbations will replace a word at that position with an [UNK] tag. The
ShuffleOrder perturbation shuffles the words in a phrase randomly. More details on the generated text
perturbation are provided in the Appendix.

4 Robustness Benchmarks and Evaluation

4.1 Model Variants

We perform our experiments on five different self-supervised video-language models which are based
on CNN and Transformer architectures. The goal is to benchmark multiple pre-training approaches
while simultaneously study the behavior of CNN and transformer based models for robustness in

4



text-to-video retrieval. Models were chosen based on whether they provided 1) a usable code base, 2)
model weights, 3) and used text and video as their modalities.

We evaluate the most popular video-language approach MIL-NCE [38] which uses a CNN backbone
and Word2Vec word embeddings with an MIL-NCE contrastive loss between text-video pairs. We
further evaluate models and approaches that utilize visual features from [38] with further training and
different self-supervised approaches. The more recent method VideoClip [63] is a transformer-based
approach relying instead on BERT [18] for both text and video encodings with a similar but improved
contrastive loss. COOT [25] similarly uses transformer-based encoders taking BERT text features and
S3D visual features as input and includes cross-attention between the text and video features. Rather
than a contrastive loss with negative pairing, COOT focuses on alignment between text and video
alone. UniVL [35], is another transformer-based approach that uses a cross-encoding transformer in
addition to separate encoders as their self-supervised objective. The final approach evaluated, FIT [5],
combines image-based research with video. It uses only a small set of frames for a given clip which
is encoded using a Visual Transformer (ViT) [21, 7]. They also pre-train with a different dataset that
comprises of both images from CC3M [52] and video from their own proposed dataset, Web2Vid
[5]. FIT uses a contrastive loss for video-text pairs and for text-video pairs with temporal curriculum
learning. More details on these approaches are shown in Table 1.

4.2 Datasets

We use two video-language datasets for our experiments: MSRVTT [55] and YouCook2 [69].
MSRVTT is a video captioning dataset which consists of 10,000 clips with an average length of 10
seconds each. These videos show a variety of activities that can be organized into 20 categories. We
follow JSFusion [67, 38, 63] which randomly samples 1K clip-text pairs as test data for evaluation.
YouCook2 is a task-oriented cooking dataset with 2000 long untrimmed videos from 89 cooking
recipes. Each video is annotated with captions with provided temporal boundaries, allowing each
video to be split into a set of clips. There are 3,305 test clip-text pairs from 457 videos for evaluation.

Captions in the MSRVTT and YouCook2 dataset are quite different. YouCook2 has no indication of
gender with phrases comprising 2x more nouns compared to MSRVTT while MSRVTT has a more
uniform distribution of words with an increased vocab size of 568 more unique words. Videos in
MSRVTT and YouCook2 are also different where YouCook2 are long, complex activities split into
clips with temporally bounded annotations. The test dataset will have multiple clips from the same
video while all test clips in MSRVTT are from different videos. This means the distributions between
the two datasets are different and may result in different observations.

We apply 90 visual perturbation to the test videos, 31 or 35 text perturbations to the captions, and
66 visual and text combined perturbations for creating robustness benchmarks YouCook2-P and
MSRVTT-P. YouCook2-P does not have gender-related perturbations because of no reference to
gender in their captioning, therefore only 31 text perturbations are used. MSRVTT-P consists of
90,000 videos and 35,000 captions resulting in 2,766,000 video-text pairs. YouCook2-P consists of
41,130 videos split into 301,500 clips and 103,850 captions, resulting in 9,266,100 clip-text pairs.

4.3 Tasks and Evaluation Metrics

We evaluate the performance of models on text-to-video retrieval using a retrieval rate R@K metric
[38]. To measure robustness, we use two metrics; one for absolute retrieval drop and the other
for relative retrieval drop [28, 53, 57, 33]. Given a trained classifier model f , we first compute
retrieval Rf

c on the clean test set. Next, we test this classifier on a perturbation p and obtain
retrieval Rf

p for perturbation p. The absolute robustness γa is computed for each perturbation p

as γa
p = 1 − (Rf

c − Rf
p)/100. For visual perturbations, the aggregated performance of a model

can be obtained by averaging all severity levels to get γa
p and over all perturbations to get γa ± σ.

For text perturbations, the aggregated performance of a model can be obtained by averaging across
sub-types rather than severity. To take into account differing model performance on the clean dataset,
we compute relative performance drop to measure models robustness. The relative robustness γr is
computed for each perturbation p as γr

p = 1− (Rf
c −Rf

p)/R
f
c which is the difference normalized to

the accuracy of the model on the test set without a perturbation. The robustness score will usually
range from 0 to 1, where 0 indicates a model is not robust and 1 is where the model is entirely robust.
A score greater than 1 indicates that the model’s performance is better with the perturbation.
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Video Text Video+Text

Figure 2: A comparison of models under different training protocols (zs: zero-shot learning, ft:
finetuning on target dataset, and scratch: no pretraining) on thr YouCook3 dataset. The y-axis is the
drop in performance when data is perturbed measured by the relative robustness γr score, the x-axis
is R@5 for text-to-video retrieval, and the size of marker represents number of model parameters.
The three plots (left to right) corresponds to visual, text, and visual+text perturbations respectively.

Table 2: The drop in performance when data is perturbed measured by the Relative robustness γr for
each category of video perturbations on MSRVTT-P with SD ±σ. The ViT based approach FIT is
noticeably more robust on spatial noise as compared to the other approaches evaluated.

Method Blur Camera Digital Noise Temporal
FIT (scratch) 0.67±0.13 0.90±0.12 0.84±0.07 0.73±0.24 1.00±0.01
VideoClip (scratch) 0.54±0.23 0.80±0.17 0.53±0.21 0.24±0.20 0.96±0.05
FIT (zs) 0.79±0.13 0.97±0.10 0.88±0.07 0.81±0.21 1.03±0.02
MIL NCE (zs) 0.59±0.17 0.78±0.11 0.42±0.20 0.24±0.19 0.88±0.06
UniVL (zs) 0.61±0.21 0.85±0.12 0.61±0.16 0.27±0.20 0.96±0.04
VideoClip (zs) 0.61±0.22 0.84±0.13 0.62±0.18 0.22±0.17 0.95±0.02
FIT (ft) 0.74±0.11 0.92±0.11 0.83±0.07 0.77±0.20 1.00±0.01
UniVL (ft) 0.60±0.19 0.85±0.12 0.58±0.19 0.27±0.22 0.90±0.09
VideoClip (ft) 0.59±0.23 0.84±0.13 0.62±0.19 0.26±0.21 0.95±0.04

4.4 Implementation Details

To ensure fairness to the original models, we use the official model implementations that were
available with pre-trained weights with the same experimental setup as described in these works.
These protocols vary between models and datasets. HowTo100M-MIL [38] take video as input and
split the temporal boundary of the passed video into a clip of 4 with 32 frames for YouCook2 and
16 frames for MSRVTT. They take text as input and embed each word using Word2Vec. VideoClip
[63] and COOT [25] use pre-extracted features from the pre-trained S3D-G [61] model provided by
[38] while UniVL [35] uses pre-extracted features from the same model but before the final layer
resulting in a smaller embedding size. VideoClip and UniVL take text as raw input while COOT
[25] uses pre-extracted text features from BERT [18]. FIT [5] splits a clip into 4 segments and
randomly selects 1 frame from each. These details are summarized in Table 1. We also analyze some
models on whether they are fine-tuned, pre-trained or trained from scratch based on the availability
of code. In the original implementations, VideoClip, Howto100-MIL and UniVL are pre-trained on
HowTo100M [40], COOT was trained from scratch on MSRVTT, and FIT is pre-trained on CC3M
[52] and Web2Vid [5]. Evaluating models using only pre-trained weights are considered zero-shot
(ZS). FIT, VideoClip and UniVL were additionally fine-tuned (FT). Models that are trained on the
evaluation datasets without pre-training are considered scratch.

5 Experiments

We perform our experiments with the studied models on YouCook2-P and MSRVTT-P benchmarks.
A summarized overview of the robustness analysis of models against different perturbations on
YouCook2-P is shown in Figure 2. Table 4 shows robustness scores aggregated across visual or
real-world text perturbations for YouCook2-P and MSRVTT-P respectively. Table 2 show relative ro-
bustness scores aggregated across visual categories for MSRVTT-P. Table 3 shows relative robustness
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Table 3: Relative robustness scores γr with standard deviations ±σ for each category of distribution
shifts for text perturbations.

MSRVTTγr AddText Bias ChangeChar DropText Positional SwapText TextStyle
FIT (scratch) 0.92±0.03 0.84±0.07 0.78±0.11 0.47±0.34 0.77±0.16 0.80±0.16 0.98±0.02
VideoClip (scratch) 0.90±0.06 0.88±0.05 0.78±0.09 0.46±0.32 0.73±0.13 0.81±0.18 0.96±0.02
FIT (zs) 1.00±0.00 0.96±0.04 0.79±0.14 0.53±0.36 0.84±0.13 0.87±0.18 1.01±0.02
MIL NCE (zs) 0.78±0.00 0.90±0.03 0.77±0.10 0.57±0.32 0.78±0.15 0.75±0.12 0.91±0.02
UniVL (zs) 0.92±0.10 0.97±0.04 0.71±0.11 0.33±0.27 0.64±0.15 0.84±0.15 0.90±0.07
VideoClip (zs) 0.89±0.07 0.94±0.05 0.71±0.11 0.39±0.27 0.62±0.17 0.81±0.13 0.97±0.03
FIT (ft) 0.94±0.04 0.88±0.05 0.79±0.11 0.49±0.34 0.80±0.14 0.82±0.17 0.97±0.02
UniVL (ft) 0.92±0.05 0.88±0.05 0.80±0.09 0.49±0.31 0.78±0.13 0.81±0.14 0.96±0.01
VideoClip (ft) 0.94±0.04 0.91±0.05 0.81±0.09 0.53±0.32 0.87±0.08 0.83±0.15 0.97±0.02

YouCook2γr AddText Bias ChangeChar DropText Positional SwapText TextStyle

COOT (scratch) 0.88±0.12 — 0.18±0.29 0.41±0.37 0.76±0.12 0.51±0.43 0.57±0.51
VideoClip (scratch) 0.85±0.12 — 0.62±0.13 0.37±0.33 0.69±0.11 0.72±0.18 0.92±0.05
MIL NCE (zs) 0.92±0.03 — 0.74±0.14 0.57±0.39 0.83±0.15 0.75±0.18 0.98±0.01
UniVL (zs) 1.14±0.03 — 0.75±0.10 0.43±0.41 0.80±0.24 0.75±0.17 0.94±0.09
VideoClip (zs) 0.95±0.04 — 0.77±0.10 0.47±0.33 0.70±0.13 0.77±0.14 0.94±0.04
UniVL (ft) 0.91±0.08 — 0.74±0.09 0.45±0.33 0.76±0.07 0.78±0.15 0.95±0.02
VideoClip (ft) 0.95±0.03 — 0.84±0.10 0.50±0.35 0.82±0.09 0.81±0.18 0.99±0.07

Table 4: The aggregated performance measured by Relative Robustness γr and Absolute robustness
scores γa across model and training procedure with standard deviations ±σ. For text, we aggregated
only natural distribution shifts, excluding Positional and DropText perturbations.

Method
MSRVTT-P YouCook2-P

Video Text Video Text
γa γr γa γr γa γr γa γr

COOT (scratch) — — — — 0.79±0.16 0.52±0.36 0.75±0.19 0.44±0.44
FIT (scratch) 0.93±0.08 0.84±0.18 0.94±0.05 0.87±0.11 — — — —
VideoClip (scratch) 0.83±0.15 0.63±0.32 0.94±0.04 0.87±0.10 0.86±0.11 0.53±0.35 0.95±0.05 0.83±0.18
FIT (zs) 0.96±0.06 0.91±0.15 0.97±0.05 0.92±0.13 — — — —
MIL NCE (zs) 0.89±0.08 0.60±0.29 0.96±0.02 0.85±0.09 0.84±0.13 0.53±0.37 0.95±0.05 0.86±0.15
UniVL (zs) 0.94±0.05 0.67±0.30 0.97±0.02 0.85±0.14 0.91±0.07 0.50±0.36 0.98±0.03 0.88±0.17
VideoClip (zs) 0.92±0.07 0.66±0.32 0.97±0.03 0.86±0.14 0.74±0.19 0.50±0.37 0.93±0.06 0.86±0.11
FIT (ft) 0.92±0.09 0.86±0.15 0.93±0.06 0.88±0.10 — — — —
UniVL (ft) 0.82±0.15 0.65±0.29 0.94±0.05 0.88±0.09 0.80±0.16 0.55±0.36 0.93±0.05 0.85±0.12
VideoClip (ft) 0.82±0.16 0.66±0.30 0.94±0.05 0.89±0.09 0.72±0.23 0.55±0.37 0.95±0.06 0.91±0.10

N
oi

se
 

(S
ho

t)

Severity 1 Severity 5
Original “a man is giving a review on a vehicle”
OCR “a man is giving a review on a vehic1e”
SpellingErr “a man is givin a review on a vehicul”
Typos “a man is giving a review on a vehiclfe”
Keyboard “a man is givinH a review on a vehicle”

Figure 3: Examples of perturbations that humans are able to perceive but models struggle with.

scores across different text categories for both datasets. More detailed results, including a breakdown
of each perturbation category, are provided in the Supplementary. Next, we provide more insights
and analysis on different interesting observations in this study.

Training Strategy Table 4 split models by their training strategy. These results indicate that for
MSRVTT-P, models that are zero-shot are typically higher in absolute and relative robustness. For
long, complex activities in YouCook2-P, fine-tuned models are typically more relatively robust.
Pre-training data choice may also play a factor. FIT pre-trains on both images and video as opposed
to the majority of the other approaches that pre-train or use features pre-trained on the HowTo100M
dataset [39]. While FIT performs well on MSRVTT, when zero-shot evaluating FIT on YouCook2
without perturbations, the results are an R@5 of 7.5%, indicating this may only be the case for
short activity videos like in MSRVTT. In summary, pre-training models typically improves both
performance and robustness against real-world and synthetic distribution shifts.
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Videoclip (ZS) UniVL Align (ZS)HowTo100M MIL (ZS) FIT (ZS)

Figure 4: The drop from R@5 performance on clean to when perturbed by combinations of text and
visual perturbations measured by Relative Robustness γr. The x-axis shows text perturbation and
the y-axis shows visual perturbation. The first row/column show scores for the respective text/video
perturbation when not combined. An example of compounding effect is circled in green. Gender
perturbations are boxed in blue.

Human Perceivable Perturbations Noise and Blur are pixel-based visual perturbations which
humans can easily filter (Fig. 3). These perturbations are also ones models are least robust as shown
for MSRVTT-P in Table 2. While the models pre-trained on HowTo100M using a CNN backbone
feature extractor perform poorly on spatial noise in MSRVTT-P, the ViT based approach FIT is more
relatively robust to noise. On text perturbations for both datasets shown in Table 3, between the
semantic preserving text perturbations, models are least robust to ChangeChar, indicating that
text models are still unable to recognize small changes that humans will perceive in text (Fig. 3). This
indicates that visual-language models are not typically robust to real-world distribution shifts that
are human perceivable such as character changes in word(s) and additive noise.

Architecture There are typically two architecture types for video-language models, a two-branch
or cross-attention encoder. Two-branch encoders keep the visual and text encoders separate with the
only interaction being the propagated loss. Cross-attention utilizes a form of cross-attention between
a visual and language encoder before calculating loss. Most models use a two-branch encoder
approach as they find it performs better [63]. However, of the models we studied and evaluated on
YouCook2-P, COOT [25] and UniVL [35] use cross-attention while VideoClip [63] and MIL NCE
[40] use two-branch. Looking at Table 4, UniVL typically has higher absolute robustness scores
compared to the two-branch encoder based approaches. Based on the models studied, this indicates
the cross-attention may improve performance on long, complex activities with little cost to robustness.

The visual encoder architecture also varies for the different approaches. The majority of the models
studied here use a 3D CNN for video feature extraction that is input into a transformer. However,
the FIT [5] model uses a small set of frames input to a ViT. When looking at Table 2, there is a
noticeable relative robustness difference between FIT and the other approaches. This indicates that
ViT transformers may be more relatively robust than CNN based approaches. However, the FIT
zero-shot model does not perform well on YouCook2, with a baseline R@5 of 7.5%, indicating that
using a ViT may be highly robust against short activities but not necessarily long, complex activities.

Text encoders also vary across models. However, almost all approaches utilize a BERT [18] trans-
former while only MIL NCE [40] use a Word2Vec [41]. When text is perturbed on DropText,
Positional and ChangeChar, Word2Vec is more robust than BERT on zero-shot evaluation (see Figure
5). Based on the models studied, these results may indicate that when using keywords as opposed to
sentence descriptions, Word2Vec may be a more robust approach compared to BERT. Additionally,
as shown in Figure 2, COOT’s relative robustness is noticeably worse when text is perturbed. Because
COOT uses pre-extracted text features without any training, this may indicate that using pre-extracted
text features is not a robust method due to learning pulling the video feature space towards the existing
text space rather than pulling both video and text closer together in a new, joint space.

MultiModal Perturbations To understand the compounding effects of shifting distributions in
both the visual and text domain, we select a subset from each perturbation with at least one from each
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Figure 5: Performance for DropText perturbations on YouCook2-P. Dashes are R@5 on clean and
bars are R@5 on perturbed. Examples of these perturbations are provided: red is where models
struggle the most and orange indicates models are surprisingly robust.
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Figure 6: Similarity matrices where the x-axis are video representations and the y-axis are text
representations sampled from VideoClip on the YouCook2 dataset. The darker the color, the more
similar. When both video and text are perturbed, a compounding effect is shown by the increase in
similarity for samples that do not match.
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Original “a man and a woman are singing on the beach”
AllFemale “a woman and a woman are singing on the beach”
AllMale “a man and a man are singing on the beach”
GenderNetural “a person and a person are singing on the beach”
GenderSwap “a woman and a man are singing on the beach”

Figure 7: Performance on Bias perturbations on MSRVTT. Dashes are R@5 on clean and bars are
R@5 on perturbed. Models are less robust when gender is swapped or male/female terms are changed.

higher-level category. For visual perturbations, we use a severity of 3. Figure 4 shows a summary of
these results on the MSRVTT dataset. There are certain combinations of perturbations that are more
challenging for models as compared to others. For example with FIT (ZS), the model has a relative
robustness score γr = 1 for AppendIrr and γr = 0.98 for JPEG compression, but when combined,
the score is γr = 0.89 (see Figure 6).

Meanwhile, some perturbation combinations will be close to the lowest γr between the two, e.g. no
nouns and no verbs and shot noise. Even when a model is equally robust to perturbations in isolation
(e.g. Jumble and GenderMale on HowTo100m MIL), there is a decrease in overall robustness when
combined. In summary, when both text and video are perturbed, models are less robust than when
the same perturbations are applied in isolation, with some combinations worse than others.
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Bias To evaluate bias in models, we evaluate the robustness to gender-specific changes to text
on the MSRVTT dataset. In the MSRVTT dataset, the most common part-of-speech (POS) tagged
nouns were “man” and “woman” with “man” references 2x that of “woman”. When the original
text was perturbed, 33.8% of male references were converted to female, 24.3% of female references
were converted to male, 53.2% of phrases swapped gender and finally 52.8% of gender references
were made neutral. Figure 7 visualizes these results where the dotted, horizontal line is the original
text-to-video retrieval score and the bar are the new scores with the perturbed version of text. The
results indicate that models are less robust when the gender is all female and when the gender is
swapped from male-to-female and vice versa.

Temporal Temporal perturbations are used to evaluate whether models use temporal information
or not. Figure 8 visualizes the results of these experiments. Models show strong robustness to the
video-specific temporal perturbations Jumble, Sampling, and Freeze (a breakdown of robustness
scores is provided in the Supplementary). This indicates that fine-grained temporal elements are not
necessarily important to these video-language models. This also indicates that the activities do not
necessarily change when in reverse.

On YouCook2-P, which consists of untrimmed, minutes-long videos, none of the models are robust
to BoxJumble. This indicates that the models require alignment between the visual ques and the
respective text, but temporal order within the aligned segment is not utilized. While this shows poor
robustness for this perturbation, it shows good model behavior. These results indicate that both visual
and textual cues are used during learning however the models are attending more to objects and
scene rather than motion and activity. This is similar to how humans may describe different videos
where nouns and descriptors are more differentiating as opposed to activities which could describe a
group of videos.
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VideoClip (ft) VideoClip (scratch) COOT (scratch)

Figure 8: Temporal perturbations for text (left) and video (right). On text, dashes are R@5 on clean
and bars are R@5 on perturbed. Models appear to be typically robust, especially MIL NCE for
ShuffleOrder. For video, the x-axis is the severity where a severity of 0 is performance on clean
and y-axis is R@5. Models show little change in performance, indicating that temporal order is not
utilized in these approaches.

6 Conclusion

In this work we propose a robustness benchmark for video-language models and provide initial
insights of several multimodal approaches. In order to perform this study, we create two benchmark
datasets, MSRVTT-P and YouCook2-P. Our empirical study provides several interesting insights into
the behavior of some of the existing models on the proposed benchmarks. Some key observations are
1) models are generally more robust when only text is perturbed as opposed to when only video is
perturbed, 2) models that are pre-trained are typically more robust with improved performance on
zero-shot evaluation 3) models attend more to scene and objects rather than to motion and action.
The findings and the benchmark in this work can potentially open up interesting future research on
robustness of video-language learning.
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ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Supplementary material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] See Supplementary material.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] See Supplementary material.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] See Supplementary material.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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