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Abstract

This work characterizes the effect of depth on the optimization landscape of linear
regression, showing that, despite their nonconvexity, deeper models have more
desirable optimization landscape. We consider a robust and over-parameterized
setting, where a subset of measurements are grossly corrupted with noise, and the
true linear model is captured via an N -layer diagonal linear neural network. On the
negative side, we show that this problem does not have a benign landscape: given
any N � 1, with constant probability, there exists a solution corresponding to the
ground truth that is neither local nor global minimum. However, on the positive
side, we prove that, for any N -layer model with N � 2, a simple sub-gradient
method becomes oblivious to such “problematic” solutions; instead, it converges
to a balanced solution that is not only close to the ground truth but also enjoys
a flat local landscape, thereby eschewing the need for “early stopping”. Lastly,
we empirically verify that the desirable optimization landscape of deeper models
extends to other robust learning tasks, including deep matrix recovery and deep
ReLU networks with `1-loss.

1 Introduction

Supported by the empirical success of deep models in contemporary learning tasks, it is by now a
conventional wisdom that “deeper models generalize better” [21, 31, 7]. Indeed, the flurry of recent
attempts towards demystifying this phenomenon is a testament to the amount of research it has
spawned: from simple linear regression to more complex and nonlinear models, it is shown that
deeper models benefit from a range of desirable statistical properties, such as depth separation [33,
15, 34, 35], implicit bias [19, 2, 10], and hierarchical learning [1], to name a few.

Despite the great promise of deeper models—both theoretically and empirically—the effect of depth
on their optimization landscape has remained elusive to this day. A recent body of work attempts to
characterize the effect of depth on the loss function through the notion of benign landscape. Roughly
speaking, an optimization problem has a benign landscape if it is devoid of spurious local minima,
and its true solutions—i.e., solutions corresponding to the ground truth—coincide with global minima.
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Figure 1: First row. Local landscape around the balanced true solution w? = ( N
p
✓?, . . . , N

p
✓?) for 1-, 2-,

and 3-layer models. x and y axis correspond to the points of the form w? + ↵d + �h, for different values
of ↵ and �, where d and h are respectively the most descent sub-gradient direction and the most negatively
curved direction of the Hessian after smoothing. Second row. Generalization error and the empirical loss of the
solutions found by SubGM for 1-, 2-, and 3-layer models.

It has been shown that 2-layer [5] and multi-layer [23] linear neural networks with nearly-noiseless
data have benign landscape. However, the notion of benign landscape is significantly stronger than
what is needed in practice. For instance, the existence of spurious local minima may not pose any
issue if an optimization algorithm can avoid them efficiently. Another line of research focuses on
characterizing the solution trajectory of different local-search algorithms, showing that they enjoy an
implicit bias that steers them away from undesirable solutions [25, 38, 10, 19, 2, 18]. However, such
guarantees only apply to specific trajectories of an algorithm, thereby falling short of any meaningful
characterization of the optimization landscape around those trajectories.

1.1 Our Contributions

To shed light on the effect of depth on the optimization landscape of deep models, we consider a
prototypical problem in machine learning, namely robust linear regression, where the goal is to
recover a linear model from a limited number of grossly corrupted measurements. Given samples of
the form yi = h✓?, xii+ "i, we study the optimization landscape of `1-loss under an N -layer model
defined as y = fw(x) := hw1 � w2 � · · ·� wN , xi. Our results are summarized as follows:

- We prove that, for any N � 1, there exists at least one true solution that is neither local nor
global minimum of `1-loss, provided that at least a fraction p > 0 of the measurements are
corrupted with noise.

- Despite the ubiquity of such “hidden” true solutions, we show that, for any N -layer model
with N � 2, a simple sub-gradient method (SubGM) with small initialization converges
to a small neighborhood of a balanced true solution. The radius of this neighborhood
shrinks with the depth of the model, resulting in more accurate solutions. Moreover, the
balancedness of the solution implies that each layer of the model inherits a similar sparsity
pattern to the ground truth.

- We prove that deeper models take longer to train, but once trained, the algorithm will stay
close to the ground truth for a longer time. This implies that early stopping of the algorithm
becomes less crucial for deeper models.

- Finally, we prove that depth flattens the optimization landscape around the solution obtained
by SubGM. In particular, we show that, within an �-neighborhood of the true solution,
the steepest descent direction can reduce the loss by at most O

�
�
N
�
, which decreases

exponentially with N .
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Motivating Example. To showcase our results, we consider an instance of robust linear regression
in the over-parameterized setting, where the dimension of ✓? is 500 and the number of available
samples is 300. Moreover, we assume that 10% of the measurements are corrupted with large noise.
The first row of Figure 1 shows the landscape around the balanced ground truth w

?
1 = N

p
✓?, w?

2 =
N
p
✓?, . . . , w?

N = N
p
✓?.1 In particular, x and y axis show the most descent sub-gradient direction

and the most negatively curved direction of the Hessian after smoothing.2 Evidently, there is a sharp
transition in the landscape of N -layer models: for the 1-layer model, the true solution has strictly
negative directions along both sub-gradient and negative curvature. However, these descent directions
almost disappear in 2- and 3-layer models. The second row of Figure 1 shows the performance of
SubGM on these models. It can be observed that a 1-layer model easily overfits to noise, leading to a
vacuous generalization error. On the contrary, a 3-layer model can find a solution that generalizes
progressively better than 1- and 2-layer models, demonstrating the algorithmic benefit of the depth.

Notations: For two vectors x, y 2 Rd, their inner product is defined as hx, yi = x
>
y, and their

Hadamard product is defined as x�y = [x1y1 · · · xdyd]>. For simplicity of notation, we use
Q

j wj

to denote the Hadamard product of w1, w2, . . . , wN 2 Rd. For a vector x, kxk , kxk
1

, and kxk0
refer to 2-norm,1-norm, and the number of nonzero elements, respectively. The symbols at . bt

and at = O(bt) are used to denote at  Cbt, for a universal constant C. The notation at = ⇥(bt)
is used to denote at = O(bt) and bt = ⌦(at). The Sign(·) function is defined as Sign(x) = x/|x|

if x 6= 0, and Sign(0) = [�1, 1]. We denote [n] := {1, 2, · · · , n}. For a vector x 2 Rd, we define
x
a = [xa

1 x
a
2 . . . x

a
d]

>, for any a > 0. In all of our probabilistic arguments, the randomness is only
over the input data and noise.

2 Problem Formulation

We study the problem of robust and sparse linear regression, where the goal is to estimate a k-sparse
vector ✓? 2 Rd (k ⌧ d) from a limited number of data points {(xi, yi)}mi=1, where yi = h✓?, xii+"i,
xi is i.i.d. standard Gaussian vector, and "i is noise. Moreover, for simplicity of our subsequent
analysis, we assume that ✓? is a non-negative vector. We believe that this assumption can be relaxed
without a significant change in our results.
Assumption 1 (Noise Model). Given a corruption probability p, the noise vector " = ["1 · · · "m]> 2
Rm is generated as follows: first, a subset S ⇢ [m] with cardinality pm is chosen uniformly at
random3. Then, for each entry i 2 S , the value of "i is drawn independently from a distribution Po,
and all the remaining entries are set to zero. Moreover, a random variable ⇣ under the distribution
Po satisfies EPo [⇣] = 0 and P(|⇣| � t0) � p0, for some strictly positive constants t0 and p0.

Our considered noise model does not impose any assumption on the magnitude of the noise or the
specific form of its distribution, which makes it particularly suitable for modeling outliers. Note
that the assumption P(|"| � t0) � p0 is very mild and satisfied for almost all common distributions.
Roughly speaking, it implies that the noise takes a nonzero value with a nonzero probability.

To capture the input-output relationship, we consider a class of N -layer diagonal linear neural
networks of the form fw(x) = hw1 � · · ·� wN , xi, where w := (w1, · · · , wN ) collects the weights
of the layers w1, · · · , wN 2 Rd. Due to the sparse-and-large nature of the noise, it is natural to
minimize the so-called empirical risk with `1-loss:

min
w

L(w) :=
1

m

mX

i=1

|fw(xi)� yi| =
1

m

mX

i=1

|hw1 � · · ·� wN , xii � yi| . (1)

Other variants of empirical risk minimization for linear regression have been studied in the literature.
For instance, [10] study the solution trajectory of gradient flow on `2-loss, showing that it converges
to a solution with the smallest `1-norm. Similar analysis has also appeared in more general deep
linear neural networks [13, 14]. However, it is well-known that `2-loss is highly sensitive to outliers,
and `1-loss is a better alternative to identify and reject large-and-sparse noise.

1Later, we will show that a simple sub-gradient method converges to this balanced solution.
2To smoothen |x|, we replace it with

p
x2 + ✏, for ✏ = 10�7.

3Here, for simplicity we assume pm is an integer.
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A solution w̄ is called global if it corresponds to a global minimizer of L(w). Moreover, a local
solution w̄ corresponds to the minimum of L(w) within an open ball centered at w̄. Finally, a true
solution w̄ satisfies w̄1 � · · ·� w̄N = ✓

?.

3 Main Results

3.1 Absence of Benign Landscape

We show that for any arbitrary corruption probability 0 < p < 1/2 and any number of layers N � 1,
there exists at least one true solution with a strictly negative descent direction, provided that the
problem is over-parameterized, i.e., m . d.
Theorem 1 (unidentifiable true solutions). Define W = {w : w1 � · · ·� wN = ✓

?
} as the set of all

true solutions of an N -layer model. For any N � 1 and 0 < p < 1/2, the following statements hold:

- (Over-parameterized regime) If m  0.1d, with probability of at least 1/16, we have

inf
w?2W

inf
w:kw�w?k1�

{L(w)� L(w?)} . �p0p�, (2)

for any � . t0.

- (Under-parameterized regime) If m & d
(1�2p)2 , with probability of at least 1� e

�⌦(d), we have

inf
w?2W

inf
w

{L(w)� L(w?)} � 0. (3)

The above proposition unravels a sharp transition in the landscape of robust linear regression with
an N -layer model: when m . d, some of the true solutions are likely to be non-critical points, and
hence, cannot be recovered via any first-order algorithm. As soon as m & d, all true solutions become
global. This is in stark contrast with the recent results on the benign landscape of robust low-rank
matrix recovery with `1-loss, which show that, under the so-called restricted isometry property (RIP),
all the true solutions are global and vice versa [26, 12, 16]. The vector version of RIP is known to
hold with m = ⌦̃(k) samples (see e.g. [3] for a simple proof). Theorem 1 shows that, unlike the
low-rank matrix recovery, RIP is not enough to guarantee the equivalence between the true and global
solutions in deep linear models.

The detailed proof of this theorem can be found in Appendix C.1. Here, we provide a proof sketch
for N = 1 and N = 2 to elucidate the key ideas.

Proof sketch of Theorem 1. For 1-layer model, the set of true solutions W reduces to a singleton
{✓

?
}. Upon choosing w = ✓

?, we prove the existence of a perturbation k�✓k  � that satisfies
L(✓?)� L(✓? +�✓) < 0. The perturbed loss takes the following form

L (✓?+�✓)=
1

m

X

i2S̄

|h�✓, xii|+
1

m

X

i2S

|h�✓, xii�"i| ,

Consider the following feasibility problem:

find ↵ s.t. h↵, xii = 0, 8i 2 S̄, h↵, xii = "i, 8i 2 S.

Since m  d and {xi}
m
i=1 are i.i.d. standard Gaussian vectors, they are linearly independent almost

surely. Moreover, with high probability, at least one of "i’s will be nonzero. Therefore, with high
probability, the above system of linear equations has at least one nonzero feasible solution. Suppose
that ↵̄ 6= 0 is one such solution. Define �✓ = �↵̄/ k↵̄k for some 0 < � < k↵̄k. One can write

L (✓? +�✓) =
1

m

✓
1�

�

k↵̄k

◆X

i2S

|"i| < L (✓?) ,

implying that �✓ is indeed a descent direction. Now, consider a 2-layer model. It is easy to verify
the existence of a true solution w = (w1, w2) such that w1 � w2 = ✓

? and kw1k0 = d. Consider a
perturbation of the form �w = (0,�w2). One can write

L (w+�w) =
1

m

X

i2S̄

|hw1 ��w2, xii|+
1

m

X

i2S

|hw1 ��w2, xii�"i| .
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Since w1 is devoid of zero elements, there exists a nonzero �w2 such that w1��w2 = �↵̄/ k↵̄k for
� < k↵̄k. Arguments analogous to 1-layer model can then be invoked to show that the constructed
perturbation is indeed a descent direction. A similar idea can be naturally extended to N � 3. ⇤
Theorem 1 implies that, despite their convexity, 1-layer models are not suitable for the robust linear
regression since the set of true solutions (which is a singleton W = {✓

?
}) is unidentifiable. However,

despite the existence of unidentifiable true solutions in N -layer models with N � 2, we will show
that a simple SubGM converges to a balanced true solution, even if an arbitrarily large fraction of
the measurements are corrupted with arbitrarily large noise values. This further sheds light on the
desirable landscape of deeper models in the context of linear regression.

Algorithm 1 Sub-gradient Method

Input: Data points {(xi, yi)}mi=1, number of iterations T , the initial point w0, and the step-size
{⌘

(t)
}
T
t=0;

Output: Solution w(T ) to (1);
for t  T do

Select a direction d(t) from the sub-differential @L(w(t)) defined as:

@wiL(w)=
1

m

mX

j=1

Sign

 
yj�

*
Y

k

wk, xj

+!
xj�

Y

k 6=i

wk; (4)

Set w(t+1)
 w(t)

� ⌘
(t)d(t);

end for

3.2 Convergence of Sub-gradient Method

At every iteration t, SubGM selects a direction d(t) from the sub-differential of the `1-loss (defined
as (4)), and updates the solution as w(t+1) = w(t)

� ⌘
(t)d(t); see Algorithm 1 for details. Our next

two theorems characterize the performance of SubGM with small initialization on N -layer models.
We consider the cases N = 2 and N � 3 separately, as SubGM behaves differently on these models.
We define  = ✓

?
max/✓

?
min as the condition number, where ✓

?
max and ✓

?
min are the maximum and

minimum nonzero elements of ✓?, respectively.
Theorem 2 (2-layer model). Consider the iterations of SubGM {w(t)

}
T
t=0 applied to L(w) with

N = 2 and step-size ⌘ . 1. Suppose that the initial point satisfies w(0)
j = ⇥(

p
↵1), j = 1, 2, where

0 < ↵ . d
2
m/k. Moreover, suppose that m & k22 log2(m) log(d) log(k✓?

k/↵)
(1�p)2 . Then, the following

statements hold with probability of 1� Ce
�⌦̃(k):

• Convergence guarantee: After 1
⌘ log

�
1
↵

�
. T̄ . k3/2

⌘ log
�
1
↵

�
iterations, we have

���w(T̄ )
1 � w

(T̄ )
2 � ✓

?
��� . ⌘✓

?
max _

p

d2m↵
1�⇥̃

✓
k2

p
(1�p)2m

◆

.

• Balanced property: For every 0  t  T̄ , we have
���w(t)

1 � w
(t)
2

���
1

. ↵
0.5�⇥̃

✓
k2

p
(1�p)2m

◆

.

• Long escape time: For every T̄  t 

q
m(1�p)2

k T̄ , we have

���w(t)
1 �w

(t)
2 �✓

?
���.⌘✓

?
max _

p

d2m↵
0.5�⇥̃

✓
k2

p
(1�p)2m

◆

.

Furthermore, if m & d log(m)/(1� p)2, with probability of 1� Ce
�⌦̃(k) and for every t � T̄ , we

have
���w(t)

1 � w
(t)
2 �✓

?
��� . ⌘✓

?
max_

p

d2m↵
1�⇥̃

✓
k2

p
m(1�p)2

◆⇣
1�⌦

⇣
⌘/

p

d

⌘⌘t�T̄
.
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We provide the main idea behind the proof of Theorem 2 in Section 4. The formal proof can be found
in the appendix. A few observations are in order based on Theorem 2. First, for any " > 0, SubGM
is guaranteed to satisfy

���w(t)
1 �w

(t)
2 �✓

?
��� . " after O((1/") log (d/")) iterations, provided that

⌘ = ⇥(") and ↵ = "
2
/(d2m). Based on our numerical results (provided in the appendix), we believe

that it is possible to establish a linear convergence for SubGM with a geometric step-size; a rigorous
verification of this conjecture is considered future work. Second, although SubGM converges to a
vicinity of a true solution quickly, it will stay there for a significantly longer time—in particular,p

m(1� p)2/k times longer than its initial convergence time. Such behavior is also exemplified
in our simulations (see Figure 1e). After this escape time, the algorithm may slowly converge to
an overfitted solution with a better training loss. Moreover, if m & d, SubGM will continuously
converge to a true solution at an exponential rate, and it will never diverge. Finally, Theorem 2 shows
that SubGM implicitly favors balanced solutions, i.e. solutions whose factors have similar magnitudes.
Combined with the convergence result of SubGM, we immediately conclude that SubGM converges
to a particular solution of the form (

p
✓?,
p
✓?). Therefore, the solution found by SubGM will enjoy

the same (approximate) sparsity pattern as ✓?.
Theorem 3 (N -layer models). Consider the iterations of SubGM {w(t)

}
T
t=0 applied to L(w) with

N � 3 and step-size ⌘ . N
�1


�

N�2
N . Suppose that the initial point satisfies w(0)

j = ⇥(↵1/N1),

where 0 < ↵ . d
2
m/k. Moreover, suppose that m & k24 log2(m) log(d) log(k✓?

k/↵)
(1�p)2 . Then, the

following statements hold with probability of 1� Ce
�⌦̃(k):

• Convergence guarantee: After 1
N⌘↵

�
N�2
N . T̄ . k3/2

N⌘ ↵
�

N�2
N iterations, we have

���
Y

w
(T̄ )
i �✓

?
��� . N⌘✓

?
max _

p

d2m↵.

• Balanced property: For every 0  t  T̄ , we have
���w(t)

i,l � w
(t)
j,l

��� = O

⇣
↵
1/N
⌘
, for 1  i < j  N, l : ✓?l = 0,

���w(t)
i,l � w

(t)
j,l

��� = Õ

⇣
N
p

✓?l

p
k3/m

⌘
, for 1  i < j  N, l : ✓?l 6= 0.

• Long escape time: For every T̄  t 

q
m(1�p)2

k T̄ , we have
���
Y

w
(t)
i � ✓

?
��� . N⌘✓

?
max _

p

d2m↵,

Furthermore, if m & d
2N�2

N log(m)/(1� p)2, with probability of at least 1�Ce
�⌦̃(k) and for every

t > T̄ , we have

���
Y

w
(t)
i �✓

?
���.N⌘✓

?
max _

 p
d2m↵

p
d2m↵N⌘d�

N�1
N (t�T̄ )+1

! N
N�2

.

The proof of this theorem can be found in the appendix. Theorem 3 sheds light on an important
benefit of N -layer models with N � 3 compared to 2-layer models: for sufficiently small step-

size, deeper models improve the generalization error by a factor of (1/↵)⇥̃
⇣
k2/
p

((1�p)2m)
⌘

. This
improvement is particularly significant when both ↵ and m are small. However, such improvement
comes at the expense of a slower convergence rate. In particular, after setting ⌘ = ⇥("/N), and
↵ = "/

p
d2m, SubGM needs O

⇣
(1/")1+

N�2
N

⌘
iterations to obtain an ✏-accurate solution. Evidently,

the convergence rate deteriorates with N , ultimately approaching O
�
1/"2

�
for infinitely deep

models. This can be observed in practice: Figures 1e and 1f show that 3-layer model enjoys a better
generalization error compared to 2-layer model, but suffers from a slower convergence rate. This
slower convergence rate also manifests itself in a more stable behavior of the algorithm: for deeper
models, SubGM stays close to the ground truth for a longer time. Finally, the balanced property of
the solution obtained via SubGM extends to N -layer models. In particular, SubGM converges to a
particular solution of the form ( N

p
✓?, . . . ,

N
p
✓?), thereby inheriting the same sparsity pattern as ✓?.
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3.3 Local Landscape Around Balanced Solution

In the previous section, we showed that SubGM converges to a balanced solution. In this section,
we characterize the local landscape around this balanced solution, proving that it becomes flatter for
deeper models.
Theorem 4 (flatness around balanced solution). Suppose that k log(d)/(1� 2p)2 . m  0.1d and
p < 1/2. Let w? = ( N

p
✓?, . . . ,

N
p
✓?). Then, for any N � 2 and �  t0/

p
d ^ 1, the following

statements hold:

• With probability at least 1� e
�⌦(k), we have

inf
w:kw�w?k1�

{L(w?)� L (w)} & � d
p
m
�
N
.

• With probability at least 1/16, we have

inf
w:kw�w?k1�

{L(w?)� L (w)} . �pp0p
d
p
m
�
N
.

Theorem 4 shows that, within a �-neighborhood of w?, the most descent direction from w? can
reduce the loss by at most O

�
d/
p
m · �

N
�
, which decreases exponentially with N . Moreover, in the

noisy setting, the above theorem implies that w? is likely to be neither local nor global minimum
since it has a descent direction. However, the flatness of the landscape around w? enables SubGM to
stay close to the balanced solution for a long time.
Remark 1. Note that the choice of `1-ball for the perturbation set is to ensure that the size of
the possible perturbations per layer remains independent of the depth of the model. This is indeed
crucial to ensure a fair comparison between models with different depths: alternative choices of the
perturbation set, such as `q-ball with 1  q <1 (e.g. `2-ball) would shrink the size of the feasible
per-layer perturbations with N , thereby leading to an unfair advantage to deeper models.

4 Proof Techniques

At the crux of our proof technique for Theorems 2 and 3 lies the following decomposition of the
sub-differential:

@L(w) = ⇠ · @L̄(w)| {z }
expected subdiff.

+
�
@L(w)� ⇠ · @L̄(w)

�
| {z }

subdiff. deviation

, for some strictly positive ⇠.

In the above decomposition, L̄(w) is called expected loss, and is defined as L̄(w) =
kw1 � · · ·� wN � ✓

?
k. As will be shown later, L̄(w) captures the expected behavior of the empir-

ical loss L(w). To analyze the behavior of SubGM on L(w), we first consider the ideal scenario,
where L(w) coincides with its expectation. Then, we extend our analysis to the general case by
controlling the sub-differential deviation. In particular, we show that the desirable convergence
properties of SubGM extends to L(w), provided that its sub-differentials are “direction-preserving”,
i.e., d ⇡ ⇠d̄, for every d 2 @L(w), d̄ 2 @L̄(w) and some ⇠ > 0. To formalize this idea, we first
provide a more concise characterization of @L(w):

@wiL(w) =

8
<

:q �

Y

k 6=i

wk : q 2 Q

 
✓
?
�

Y

k

wk

!9=

; , where Q(z) =
1

m

mX

i=1

Sign (hxi, zi+ "i)xi.

Definition 1 (approximately sparse vectors). We say a vector v 2 Rd is (k,#)-approximately sparse
if there exists a vector u, such that kuk0  k and ku� vk  #.

Proposition 1 (direction-preserving property). Suppose that m & k log2(m) log(d) log(R/#)
(1�p)2�2 for some

R,#, � > 0. Then, with probability of at least 1� Ce
�⌦(m�2), the following inequality holds for any

q 2 Q(z) and any (k,#)-approximately sparse vector z that satisfies
p
dm/k# log (1/#) . kzk 

R: �����q �
r

2

⇡

⇣
1� p+ pE

h
e
�"2/(2kzk)

i⌘
z

kzk

�����
1

 �. (5)

Moreover, if m & d log(m)
(1�p)2�2 , with probability of 1� Ce

�⌦(m�2), (5) holds for every z 2 Rd.
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Proposition 1 is analogous to Sign-RIP condition introduced in [29, 28] for the robust low-rank matrix
recovery, and is at the heart of our proofs for Theorems 2 and 3. Suppose that ✓? �

Q
k wk is a

(k,#)-approximately sparse and satisfies (5). Then, we have
��d� d̄

��
1


⇣
maxi

nQ
k 6=i wk

o⌘
�,

which in turn provides an upper bound on the sub-differential deviation.

4.1 Proof Sketch of Theorem 2

To streamline the presentation, here we only provide simplified versions of our key ideas, which
inevitably lead to looser guarantees. To streamline the proof, we assume that ✓?1 � · · · � ✓

?
k >

✓
?
k+1 = · · · = ✓

?
d = 0. Moreover, for simplicity of notation, we denote u = w1 and v = w2.

Consider the following decomposition:

u� v = [u1v1 . . . ukvk| {z }
S

uk+1vk+1 . . . udvd| {z }
E

]>. (6)

The vectors S and E are called signal and residual terms, respectively. Evidently, we have u�v = ✓
?

if and only if S = [✓?1 , . . . , ✓
?
k]

> and E = 0. Based on this observation, our goal is to show that
the signal term converges to [✓?1 , . . . , ✓

?
k]

> exponentially fast, while the error term remains small
throughout the solution trajectory.
Lemma 1 (signal dynamic; informal). Suppose that (5) holds for z = ✓

?
� u

(t)
� v

(t), and��✓? � u
(t)
� v

(t)
�� & ⌘ k✓

?
k. Then, we have

u
(t+1)
i v

(t+1)
i �

 
1+2⌘

 
✓
?
i � u

(t)
i v

(t)
i��u(t) � v(t) � ✓?

�� + �i

!!
u
(t)
i v

(t)
i , (7)

for some |�i|  � and every i = 1, . . . , k.
Lemma 2 (residual dynamic; informal). Suppose that (5) holds for z = ✓

?
� u

(t)
� v

(t), and��✓? � u
(t)
� v

(t)
�� & ⌘ k✓

?
k. Then, we have

⇣
u
(t+1)
i

⌘2
+
⇣
v
(t+1)
i

⌘2
(1+O(⌘�))

✓⇣
u
(t)
i

⌘2
+
⇣
v
(t)
i

⌘2◆
, (8)

for every i = k + 1, . . . , d.
Lemma 3 (difference dynamic; informal). Suppose that (5) holds for z = ✓

?
� u

(t)
� v

(t), and��✓? � u
(t)
� v

(t)
�� & ⌘ k✓

?
k. Then, we have

u
(t+1)
i � v

(t+1)
i =

⇣
u
(t)
i � v

(t)
i

⌘ 
1� ⌘

✓
?
i � u

(t)
i v

(t)
i��u(t) � v(t) � ✓?

�� + ⌘�i

!
, (9)

for some |�i|  � and every i = 1, . . . , d.

Convergence guarantee. For any fixed i = 1, . . . , k, we show that u(t)
i v

(t)
i = ✓

?
i ± O(�) k✓?k

after O(k✓?k/(⌘✓?i ) log(1/↵)) iterations. To see this, suppose that Ti is the largest iteration such that
u
(t)
i v

(t)
i  ✓

?
i for every t  Ti. Moreover, suppose that

��u(t)
� v

(t)
��  C k✓

?
k, for sufficiently large

C (this is proven in the appendix). Under these assumptions, (7) reduces to

u
(t+1)
i v

(t+1)
i �

✓
1 + ⌦(1)

⌘✓
?
i

k✓?k

◆
u
(t)
i v

(t)
i . (10)

which implies that Ti . k✓?k/(⌘✓?i ) log(1/↵). For any t > Ti, define y(t)i = ✓
?
i � u

(t)
i v

(t)
i . One can

write
y
(t+1)
i 

✓
1� ⌦(1)

⌘✓
?
i

k✓?k

◆
y
(t)
i + ⌘�✓

?
i . (11)

Hence, with additional O (k✓?k /(⌘✓?1)) iterations, we have u(t)
i v

(t)
i = ✓

?
i ±O(�) k✓?k. On the other

hand, Lemma 2 implies that, for any i = k + 1, . . . , d and t . k✓?k/(⌘✓?k) log(1/↵), we have

⇣
u
(t)
i

⌘2
+
⇣
v
(t)
i

⌘2
. ↵ (1+O(⌘�))

O

✓
k✓?k

⌘✓?
k

log( 1
↵ )

◆

. ↵
1�O(

p
k�)

,
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(a) 2-layer matrix recovery (b) 3-layer matrix recovery (c) 4-layer matrix recovery

(d) 2-layer ReLU network (e) 3-layer ReLU network (f) 4-layer ReLU network
Figure 2: Deep matrix recovery (first row). The ground truth X? 2 R20⇥20 with rank(X?) = 3 is chosen
randomly. The elements of the measurement matrices are selected from N (0, 1), and the sample size is set to
m = 180. The corruption probability is set to p = 0.05 with distribution N (0, 100). We use SubGM with
step-size ⌘ = 0.001 and Gaussian initialization with an initialization scale ↵ = 1 ⇥ 10�3. ReLU models
(second row). The samples are chosen from yi = sin(✓?>xi) + "i where ✓? 2 R50 is randomly generated with
k✓?k0 = 2, xi ⇠ N (0, I50), and "i ⇠ N (0, 25) with corruption probability p = 0.05. The sample size is set
to be m = 1500. We use SubGM with step-size ⌘ = 0.001 and Gaussian initialization N (0,↵2/N/d).

where  = ✓
?
1/✓

?
k is the condition number of ✓?. Combining the above dynamics, we have���u(t)

�v
(t)
�✓

?
���.⌘ k✓

?
k_

p

k k✓
?
k �_

p

d↵
1�O(

p
k�)

.

In the appendix, we provide a more refined analysis that relaxes the dependency of the final error on
� and .

Long escape time. We show in the appendix that after the first stage, the residual becomes
the dominant term in the final error. This together with Lemma 2 implies that, for every t .
k✓?

k

⌘✓?
k

p
�
log(1/↵), we have kEk .

p
d↵

1�
p
k

p
� .

Balanced property. We have u
(t)
i v

(t)
i  ✓

?
i for every i 2 [k], and |u

(t)
i v

(t)
i | . ↵

1�O(
p
k�)

for every i = k + 1, . . . , d. Therefore, Lemma 3 can be invoked to verify
���u(t+1)

i � v
(t+1)
i

��� 

(1 +O(⌘�))
���u(t)

i � v
(t)
i

���. This in turn leads to

���u(t)
i � v

(t)
i

��� .
p
↵ (1 +O(⌘�))

O

✓
k✓?k

⌘✓?
k

log( 1
↵ )

◆

. ↵
0.5�O(

p
k�)

.

5 Numerical Experiments: Beyond Linear Regression

In this section, we empirically verify that the benefits of depth extend to the robust variants of deep
matrix recovery and ReLU networks with `1-loss.

Deep Matrix Recovery. In low-rank matrix recovery, the goal is to recover a low-rank matrix
X

?
2 Rd⇥d, from a limited number of noisy measurements of the form yi = hAi, X

?
i + "i. To

recover X?, we consider a deep factorized model of the form W1W2 . . .WN , where Wi 2 Rd⇥d for
i = 1, . . . , N , and minimize the `1-loss (1/m)

Pm
i=1 |yi � hAi,W1W2 · · ·WN i| via SubGM. When

N = 2, the above model reduces to the famous Burer-Monteiro approach [8]. We assume that 5% of
the measurements are grossly corrupted with noise. The first row of Figure 2 shows the performance
of SubGM on 2-, 3-, and 4-layer models. It can be seen that the 4-layer model outperforms shallower
models, achieving a generalization error that is proportional to the step-size.
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Deep ReLU Network on Synthetic Dataset. As another experiment, we analyze the effect of
depth on the performance of SubGM with ReLU networks and `1-loss. Given an input x 2 Rd,
the output of an N -layer ReLU network is defined as fW(x) = WN� (WN�1 · · ·� (W1x) · · · ),
where W1 2 Rm⇥d

,W2, · · · ,WN�1 2 Rm⇥m, and WN 2 R1⇥m. Moreover, �(x) = max{0, x}
is the ReLU activation function. Given the true function f

?(x) = sin(✓?>x), our goal is to train
a ReLU model to approximate f

? as accurately as possible. To this goal, we minimize the `1-loss
(1/m)

Pm
i=1 |yi � fW(xi)|. The second row of Figure 2 illustrates the performance of SubGM. It

is worth noting that, unlike robust linear regression and deep matrix recovery, there always exists a
non-diminishing model-mismatch error between the true and considered ReLU model (shown as a
dashed line). Nonetheless, SubGM can achieve this model-mismatch error on a 4-layer ReLU model
with only 1500 samples, even if 5% of the measurements are corrupted with large noise.

Deep ReLU Network on CIFAR Dataset. We verify that the desirable performance of SubGM
with `1-loss can be extended to its stochastic variant with mini-batches on CIFAR-10 and CIFAR-100
[24], outperforming cross-entropy (CE) loss, which is considered as one of the most suitable loss
functions for CIFAR datasets. To show this, we use standard ResNet architectures [21] with `1-loss
and compare it with the cross-entropy loss on noisy CIFAR datasets, where we randomize the labels
of 10% of the training dataset. For CIFAR-100 experiment, we use the “loss scaling” trick introduced
in [22]. The training details are deferred to Section B.3. The best test accuracy for both CIFAR-10
and CIFAR-100 is reported in Table 1. One can see that `1-loss outperforms cross-entropy loss
significantly, demonstrating that our framework may be extended to more realistic settings. Moreover,
we do observe that the deeper model performs better on CIFAR-100, which aligns with our theoretical
result. Based on our simulations, an interesting and important future direction would be to study the
optimization landscape of `1-loss with more general neural network architectures.

CIFAR-10 CIFAR-100

ResNet-18 ResNet-34 ResNet-50 ResNet-18 ResNet-34 ResNet-50

CE loss 91.52% 91.53% 90.87% 70.17% 71.22% 71.30%
`1-loss 94.16% 93.13% 92.68% 73.14% 74.86% 76.46%

Table 1: Test accuracy for ResNets on CIFAR-10 and CIFAR-100 datasets with 10% label noise.

6 Conclusion

Modern problems in machine learning are naturally nonconvex but can be solved reasonably well in
practice. To explain this, a recent body of work has postulated that many optimization problems in
machine learning are “convex-like”, i.e., they are devoid of spurious local minima. Our work shows
that such global property is too restrictive to hold even in the context of linear regression, and instead
propose a more refined trajectory analysis to better capture the landscape of the problem around the
solution trajectory. We show that convex models may be fundamentally ill-suited for linear models,
and deeper models–despite their nonconvexity–have provably better optimization landscape around
the solution trajectory. Empirically, we show that our analysis may extend beyond linear regression;
formal verification of this conjecture is considered an enticing challenge for future research.
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