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1 Bifurcation analysis of smooth and non-convex optimization

In this section, we discuss some examples of non-convex optimization in one dimension performed
with gradient descent (GD). We illustrate that, with increasing learning rate, the asymptotic behavior
of orbits may alter from being periodic to quasiperiodic to chaotic. These qualitative changes are
brought about through period-doubling bifurcations, which are observed in many physical systems
(e.g., [Quail et al., 2015, Aron and Schwartz, 1984, Zhao et al., 2004]). We consider smooth and
non-convex objective functions of the form ℓs = gs ◦ gs ◦ gs, with gs being the canonical quadratic
map gs(w) := 1− sw(1− w) of the unit interval [0, 1]. Since gs is smooth, the compositions of gs
with itself are smooth. The first bifurcation point appears just above η = 2/∥d2ℓs/dw2∥, which is
the stability threshold for convex optimization [Nesterov, 2003].

In Figure 1, the left, center and right columns correspond to s = 1, 3 and 4 respectively. In the
first row, we plot the loss functions ℓs, which are non-convex (with multiple global minima) at
s = 3 and s = 4. The second row shows the sharpness – absolute value of the second derivative,
a(w) = |d2ℓs(w)/dw|. The third row of Figure 1 is a bifurcation diagram, which shows the attractor
on the y-axis as a function of the learning rate. The attractor is approximated by the asymptotic
orbits of the dynamics at multiple (100) different initial conditions chosen uniformly on the unit
interval. Note that at small values of η < 2/∥a∥ with ∥a∥ := supw∈[0,1] a(w) orbits from different
initial conditions converge to fixed points corresponding to the local/global minima at each value of s.
Periodic orbits emerge at η > 2/∥a∥, that are ultimately shown to become chaotic for larger learning
rates. This can be noted from the last row of Figure 1, where Lyapunov exponents (see e.g., [Katok
and Hasselblatt, 1997, Wilkinson, 2017]) computed at different initial conditions are plotted. Given
the gradient descent dynamics,

ϕs(w) = w − ηℓ′s(w), (1)

where f ′(w) = (df/dw)(w), the Lyapunov exponent, λs : [0, 1] → R is defined as,

λs(w) = lim
T→∞

1

T

T−1∑
t=0

log |ϕ′s(ϕtsw)|.

Roughly speaking, this function λs(w) measures the asymptotic stability of infinitesimal linear
perturbations along the orbit of w. Here, we use the exponential notation, ϕtsw = ϕs ◦ ϕt−1

s w
to denote compositions of ϕs. A positive Lyapunov exponent indicates dynamical instability, e.g.,
chaotic orbits. We see from the bottom row of Figure 1 that in the range of learning rates considered,
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chaos is observed (positive Lyapunov exponents starting from uniformly random initial conditions)
in the case of sharper minima, for larger learning rates. In ergodic systems, λs(w) is independent of
w. Indeed, for larger learning rates, we see that λs appears to be independent of the initial conditions
(the bottom row of Figure 1 shows λs(w) for 100 different w). On the other hand, smaller learning
rates where convergence to fixed points or periodic behavior is observed, the Lyapunov exponent
converges to different negative values depending on the initial condition. This example supports
the heuristic explanation for the primary assumption made in the main text about the asymptotic
dynamics of learning algorithms. The assumption of lack of ergodicity ensures that the analysis is
applicable to a range of learning rates, even those smaller than 2/∥a∥.

Figure 1: Bifurcation diagram of the toy model in section 1. The left column corresponds to the
dynamics ϕs ((1)) at s = 1, the center column at s = 3 and the right column at s = 4. First row:
The loss function ℓs. Second row: Sharpness defined in section 1. Third row: attractors starting
from multiple different initial conditions, which turn out to be fixed points at small learning rates
and periodic, quasiperiodic and chaotic orbits at larger learning rates (≫ 2/ sharpness). Fourth row:
Lyapunov exponent computed along different orbits showing chaos at large learning rates.

Remark 1. Increasing the learning rate may induce ergodicity. Assumption 1 may hold for all
continuous functions for sufficiently large constant learning rates, as long as orbits do not diverge.
Intuitively, large learning rates can cause more frequent transitions from the basin of attraction of one
local minimum to another. On the other hand, for small learning rates, we may be able to detect the
presence of multiple attractors, since different initial conditions lead to different long-time averages,
as illustrated in the above toy example.
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Figure 2: Absolute difference in time-averaged test loss due to stochastic perturbation computed with
a ResNet18 architecture. The mean over 45 pairs of stochastic perturbations along with the standard
error in mean are shown.

2 Proof of Theorem 1

In this section, we prove Theorem 1 from the main text. This result says that the statistical stability of
an algorithm implies generalization. Recall that the population risk is defined as

RS = Ez∼D⟨ℓz⟩S ,
and the empirical risk is

R̂S =
1

n

n∑
i=1

⟨ℓzi⟩S ,

where the sample set S = {zi : 1 ≤ i ≤ n} . We closely follow the proof strategy of Bousquet and
Elisseeff [2002] (see also [Bousquet et al., 2020]). Define a function ΦS := RS − R̂S , whose
expected value is

ES∼Dn [ΦS ] = ES∼Dn [RS ]− ES∼Dn [R̂S ]

= ES∼DnEz∼D⟨ℓz⟩S − 1

n

n∑
i=1

ES∼Dn⟨ℓzi⟩S (2)

Examining the second term, since zi’s are chosen i.i.d. according to D, ES∼Dn⟨ℓzi⟩S is constant
across i and equal to ES∼Dn⟨ℓz1⟩S , where z1 ∈ S. As in the main text, let S′ denote any set that
has at most one element different from S, i.e., a stochastic perturbation of S. Using the stochastic
perturbation S′, we can rewrite ES∼Dn⟨ℓz1⟩S as ES∼DnEz∈D⟨ℓz⟩S′ . Substituting this equivalent
expression in (2), and using the fact that ϕS is SAS with stability coefficient β:

|ES∼Dn [ΦS ]| ≤ ES∼DnEz∼D |⟨ℓz⟩S − ⟨ℓz⟩S′ |
≤ ES∼Dn sup

z∈Rd×R
|⟨ℓz⟩S − ⟨ℓz⟩S′ | ≤ β. (3)

The proof is based on applying Mcdiarmid’s inequality (see e.g., Bousquet et al. [2020]) to ΦS , which
gives a high-probability upper bound on ΦS − E(ΦS) in terms of the deviation of ΦS from a ΦS′ . In
order to obtain an upper bound for the latter quantity, note that

|ΦS − ΦS′ | ≤ |RS −RS′ |+ |R̂S − R̂S′ |. (4)
Considering the difference of the population risks,

|RS −RS′ | ≤ Ez∼D |⟨ℓz⟩S − ⟨ℓz⟩S′ | ≤ β. (5)
Next considering the difference of empirical risks,

|R̂S − R̂S′ | ≤ 1

n

( ∑
zi∈S∩S′

|⟨ℓzi⟩S − ⟨ℓzi⟩S′ |+ |⟨ℓzk⟩S |+ |⟨ℓz′
k
⟩S′ |

)
≤ 1

n
((n− 1)β + 2L) , (6)
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where, recall that L := supz∈Rd×R supw∈W |ℓ(z, ·)|. Putting (5) together with (6) into (4), we obtain

|ΦS − ΦS′ | ≤ 2β +
1

n
(2L− β) .

Lemma 1. (Mcdiarmid’s inequality) Let Z1, · · · , Zn be random variables taking values in Z. A
function f : Zn → R is said to satisfy the bounded differences property if there exists a constant
c > 0 such that

sup
(z1,··· ,zi,z′

i,zi+1,··· ,zn)
|f(z1, · · · , zn)− f(z1, · · · , zi−1z

′
i, zi+1, · · · , zn)| < c,

for all single coordinate changes. For an f that satisfies the bounded differences with a constant
c > 0, given a δ > 0, with probability at least 1− δ,

|f(Z1, · · · , Zn)− E[f(Z1, · · · , Zn)]| ≤ c

√
n

2
log(2/δ)

Applying Mcdiarmid’s inequality to ΦS , and recalling (3), we obtain the generalization bound stated
in Theorem 1 of the main text. That is, with probability ≥ 1− δ,

|ΦS − E[ΦS ]| = |RS − R̂S − E[ΦS ]| ≤ (2β +
1

n
(2L− β))

√
n

2
log(2/δ). (7)

The above proof may also be repeated using the concentration inequality obtained in Theorem 4 of
Bousquet et al. [2020]. This leads to a tighter bound analogous to Corollary 8 of Bousquet et al.
[2020].

3 Predicting generalization with loss timeseries

In this section, we substantiate the connection drawn in section 4 of the main text between the rate
of decay of correlations in the loss function and SAS. The study of dynamics lifted to the space
of observables [Koopman, 1931] has a substantial precedent in dynamical systems theory (e.g.,
[Crimmins and Froyland, 2020, Keller and Liverani, 1999, Dellnitz et al., 2000]) and computational
methods Arbabi and Mezic [2017], Budišić et al. [2012], Williams et al. [2014], Korda and Mezić
[2018]. In particular, the idea of relating the correlation decay rate or the convergence rate of
Fokker-Planck/Frobenius Perron operators with some notion of global sensitivity has also extensively
appeared both in the statistical learning theory and SDE literature (see e.g. [Bartlett et al., 2021,
Sirignano and Spiliopoulos, 2022]) and in the dynamical systems literature (e.g., [Kato, 2013,
Chekroun et al., 2014]). In this work, inspired by the existence of such relationships in various
contexts, we are able to show that the autocorrelations in the loss function can serve as predictors for
the generalization gap.

This section provides the complete setting for the results in section 4 of the main text and completes
the proof of Theorem 2. First we define the transition operator for probability distributions on the
weight space W and analogous operator on the loss space.

Markov operator for weight space. Recall that Ξt is a batch of m indices chosen uniformly from
the set [n] := {1, · · · , n} . For GD, Ξt is deterministic and equal to the set [n]. Let (Ω,Σ,P) be a
probability space. Let KS : W× B(W) → R+ be the Markov kernel associated with the update ϕS ,
i.e., for a Borel subset A ∈ B(W) and a point w ∈ W,

KS(w,A) = EΞtP(ϕS(w) ∈ A|Ξt), (8)

where P(ϕS(w) ∈ A|Ξt) is the probability of the event that ϕS(w) ∈ A when the m indices Ξt are
chosen. Correspondingly, we may define the Markov operator PS , also called the Frobenius-Perron
operator Lasota and Mackey [1998], on the space of probability measures on W,

PSµ(A) = Ew∼µ[KS(w,A)]. (9)

From the above definition, it is clear that any ϕS-invariant probability measure µ is an eigendistri-
bution of PS with eigenvalue 1. In our setting (see section 2 of the main text), there are potentially
multiple eigendistributions corresponding to eigenvalue 1. Each invariant measure µS also defines
different transition probabilities on the weight space W:

PµS
(A,B) =

EµS
[1AKS(·, B)]

µS(A)
. (10)
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Markov operator for the loss. Now, instead of the phase space W, for each z, consider the image,
Iz ≡ ℓ(z,W) ⊆ [0, L] of W under ℓ(z, ·), with L as defined in Theorem 1. Let B(Iz) denote the
Borel sigma algebra on Iz. Analogous to the kernel (8), we may now define a kernel Kz

µS
, for a

(ξ, E) ∈ Iz × B(Iz), as

Kz
µS

(ξ, E) = PµS
(ℓ(z, ·)−1(ξ), ℓ(z, ·)−1(E)). (11)

This, in turn, gives rise to a Markov operator analogous to the Frobenius-Perron operator (9) on the
full-dimensional weight space:

Pz
µS
ν(E) = Eξ∼ν [Kz

µS
(ξ, E)]. (12)

Note that this operator is well-defined when the level sets of ℓz are µS-measurable. One sufficient
condition for this is when the foliation of W by these level sets is subordinate to a measurable
partition. We may then consider disintegrations of µS on this measurable partition and define the
kernel (11) using conditional measures supported on elements of the partition. Further, it is clear that
Pz
µS

satisfies the properties of a Markov operator (positive unity preserving contraction).

Thus, in order to prove Lemma 1, it remains to show that the operator defined by (12) is mixing. For
this, we make an additional assumption. We assume that the Frobenius-Perron operator PS mixes to
the measure µS starting from any measure of the form µ = ℓ(z, ·)−1ν, for an absolutely continuous
probability measure ν on [0, L]. That is,

∥Pt
SµS − Pt

Sµ∥TV = O(ζt∥µS − µ∥TV), (13)
where ∥ · − ∗ ∥TV indicates the total variation distance and ζ ∈ (0, 1) is the rate of mixing. On the
other hand, since Pt

Sµ → µS weakly, νzt :=
(
Pz
µS

)t
ℓ(z, ·)♯µ → νS weakly on B(Iz). Intuitively,

we expect that rate of mixing of the latter, say λz ∈ (0, 1) correlates with ζ since∣∣⟨ℓz⟩S − Eξ∼ℓ(z,·)♯µt
[ξ]

∣∣ ≤ sup
f,∥f∥≤1

∥Ew∼µS
[f(w)]− Ew∈µt [f(w)]∥

= ∥µS − µt∥TV. (14)
Assuming that W is a Polish space, the above relationship (14) conveys that when a measure µt

converges to µS in the TV norm, expectations with respect to µt of all continuous functions, of which
{ℓ(z, ·)}z is a subset, also converge to expectations with respect to µS . Thus, intuitively we expect
that supz λ

z is a lower bound for ζ ((13)). In the main text, below Lemma 1, we state the uniform
ergodicity of Pz

µS
in terms of the Wasserstein norm. This holds from (14) since convergence in TV

distance implies convergence in Wasserstein. This concludes the proof of Lemma 1. Finally, note
that our setting is different from previous works ([Chekroun et al., 2014] and references therein)
in the dynamics literature that use observable-specific Markov operators, in that we do not assume
uniqueness of the ergodic, invariant measure on the full-dimensional (weight) space.

Effect of stochastic perturbations In section 4 of the main text, we use the perturbation theory of
mixing Markov operators to relate the SAS coefficient to the mixing rate of Pz

µS
. This perturbation

bound (from [Rudolf and Schweizer, 2018]) is given in terms of the perturbation δPz
µS

to the operator
Pz
µS

when a stochastic perturbation S → S′ is applied to the training set. Here we discuss the size of
δPz

µS
, completing the proof of Theorem 2 in the main text. First note that ∥δP z

µS
∥ ≤ ∥PS −PS′∥,

and hence it suffices to obtain an upper bound for ∥PS −PS′∥. The perturbation to Markov kernel in
the weight space due to a stochastic perturbation is given by

KS(w,A)−KS′(w,A) =
∑
Ξ∈∆

(
P(ϕS(w) ∈ A|Ξ)− P(ϕS′(w) ∈ A|Ξ)

)
, (15)

where ∆ is the set of m indices from [n] that contain k, the index at which S and S′ differ. When Ξ
is a uniform random variable as we have assumed, the cardinality ∆ is

(
n−1
m−1

)
/
(
n
m

)
= m/n. This

leads to the following upper bound on the perturbation size in the Wasserstein norm,
∥PSµ− PS′µ∥W := sup

f,∥f∥Lip≤1

|Ew∼PSµf − Ew∼PS′µf |

= sup
f,∥f∥Lip≤1

|EΞEw∼µf ◦ ϕS − EΞEw∼µf ◦ ϕS′ | ≤ m

n
sup
w∈W

∥ϕS(w)− ϕS′(w)∥

≤ η
m

n
sup
w∈W

∥∇LS(w)−∇LS′(w)∥ ≤ mη

n2
sup
w

∥∇ℓ(zk, w)−∇ℓ(zk′ , w)∥

≤ c m LDη/n
2. (16)
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In order to apply this bound, we use a result from the perturbation theory of Markov chains from
[Rudolf and Schweizer, 2018] (Corollary 3.2 in the asymptotic limit) as explained in the proof sketch
of Theorem 2 in section 4. Thus, we obtain an upper bound for β = O(LD/(1− λ)n) for GD (with
m = n) as claimed in Theorem 2.

Remark 2. In this section as well as section ??, we use inequalities between different norms on the
space of finite signed measures. This is a Banach space with the total variation norm, isomorphic to
L1(Λ) for some background measure Λ. The inequalities (for instance, (??)) follow from the dual
characterization of the norms.

Remark 3. Although the definition of the autocorrelation in section 4 appears to be a function of w0,
Cℓ(τ) does not depend on w0 due to Assumption ??. Note that the rate of convergence to equilibrium,
the coefficient λ in the definition of uniform ergodicity, also determines the correlation decay rate
when ℓ is initialized out of equilibrium (That is, ℓ(w0) does not sample νS).

Remark 4. One way to understand the non-Markovian loss process is through the Mori-Zwanzig
formalism [Zwanzig, 2001] that originated in statistical mechanics and has found extensive applica-
tions in deriving reduced-order models for complex physics (e.g. see [Lin and Lu, 2021, Kondrashov
et al., 2015]). In this formalism, we can consider the exact evolution of a finite set of observables,
Ψ(w) = [ψ1(w), · · · , ψp(w)] such that ℓ ∈ span{Ψ} (here, ℓ := ℓz for an arbitrary z). At time t,
Ψt := Ψ(wt) can be written as a sum of three terms: 1) a Markov term that depends on the values
Ψt−1, 2) a non-Markovian memory term that is a function of {Ψt−k : t ≥ k > 1}, and 3) a noise
term that is a function of w0. The first two terms depend on the dynamics ϕS and are hence different
for different values of S. The autocorrelation function Cℓ has contributions from both the Markovian
and non-Markovian terms.

4 Stability experiments on ResNets

We obtain similar results for SAS with the ResNet18 model as with the VGG16 model shown in
Figure 3 of the main text (see [Chandramoorthy and Loukas, 2023] for the code). In Figure 2, we plot
the difference in the cumulative average of the test loss at runs with the ResNet18 architecture. The
difference is taken between two SGD runs with the same parameters as in section 5 of the main text and
with training data that are stochastic perturbations of each other. We consider 45 pairs of stochastically
perturbed datasets (see section 2 of main text for definition of stochastic perturbation) each for each
value of p. The value of p = 0, 0.1, 0.17, 0.25, 50 indicates the probability of error injected into the
labels of the CIFAR10 dataset. The mean of the absolute difference in the cumulative test loss is
shown in dark colors while the standard error in mean in the corresponding lighter color. The time
averages are calculated over 1200 epochs after a run up time of 200 epochs. The results indicate that
greater the noise probability p, greater the estimate of SAS (less statistical stability). Hence, these
results indicate that statistical algorithmic stability (see section 2) correlates with the generalization
performance of the models at the difference label corruption (noise) levels. Furthermore, considering
together with the VGG16 results presented in the main paper, this relationship between SAS and
generalization holds across the different architectures we have employed in this paper.

The generalization gap plotted in Figure 3 (center) (of the main text) is the cumulative time average
(ergodic average) of the absolute difference between the test and training errors. This is approximately
equal to (strictly, an upper bound for) |RS − R̂S |. A loose upper bound for this quantity comes from
the theoretical generalization bound (in Theorem 1). In practice, this quantity is estimated to be small
relative to the test error with corrupt datasets. When the noise probability is 0% (original dataset), the
gap estimate is about 80% of the test error because the training error is small. But, when the noise
probability is 50%, the gap estimate is about 20% of the test error since the training error is also
large. We may not observe this reduction in the generalization gap if the errors (test and training)
were defined using pointwise values. That is, since, supw |Ez∼Dℓz(w) − (1/n)

∑n
i=1 ℓzi(w)| ≥

|RS − R̂S |, upon early stopping when training error is low, we may not observe this phenomenon.

Finally, we remark that our empirically estimated autocorrelation function serves as a proxy until
a more sophisticated method for the estimation of λ is developed. As mentioned in the main text
(section 4), this is a challenging problem that is beyond the scope of this work.
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5 Revisiting stability in the linear regime

Since its introduction by Jacot et al. [2018], training in the Neural Tangent Kernel (NTK) regime has
been analyzed thoroughly in numerous works, wherein its convergence to kernel ridge regression has
been formally proved in two-layer, infinitely wide networks [Montanari and Zhong, 2020, Bartlett
et al., 2021], infinitely wide fully connected networks [Arora et al., 2019a], convolutional networks
Arora et al. [2019b] and so on. Using its equivalence with kernel ridge regression, the generalization
properties under the NT regime have also been well-studied (see Bartlett et al. [2021] for a review).
Here, we revisit the NT regime with the purpose of demonstrating that the analysis in the present
paper also holds when ϕS achieves a fixed point.

The Neural Tangent Kernel (NTK) model is an approximation of a neural network whose pa-
rameters remain close to initialization during training. Given that training in the NT regime is
well-approximated by the dynamics of linear regression (see Theorem 3.1 and 3.2 of Arora et al.
[2019b]), in order to apply our dynamics-based generalization analyses to the NTK regime, we need
only consider linear regression dynamics. That is, let w̃t be an orbit of a perturbed dynamics (the
linear regression dynamics, see Lemma 1 of [Arora et al., 2019b]) close to an orbit wt = ϕS(wt−1)
for all time, so that, for some small ϵ > 0,

lim
t→∞

∥wt − w̃t∥ = ∥w∗ − w̃∗∥ ≤ ϵ. (17)

As mentioned in the main text (section 3), SAS reduces to the standard notion of algorithmic stability
(see e.g., [Mohri et al., 2018] chapter 14 for a survey) when the dynamics converges to a fixed point.
Now suppose that the fixed point w̃∗ is algorithmically stable. That is, for all stochastic perturbations
S′ of S, and for all z,

|ℓ(w̃∗
S , z)− ℓ(w̃∗

S′ , z)| ≤ β.

Assuming Lipschitz loss with Lipschitz constant Cz
Lip and denoting by CLip = supz C

z
Lip

|ℓ(w∗
S , z)− ℓ(w∗

S′ , z)| ≤ |ℓ(w̃∗
S , z)− ℓ(w̃∗

S′ , z)|+ |ℓ(w∗
S , z)− ℓ(w̃∗

S , z)|
+ |ℓ(w∗

S′ , z)− ℓ(w̃∗
S′ , z)| (18)

≤ β + 2CLipϵ. (19)

That is, the NTK orbit is stable with the stability coefficient β + 2CLipϵ. Thus, in order to prove the
algorithmic stability of the NTK orbit, it is enough to consider the stability of the linear regression
orbit, which is a linear dynamical system as we describe below.

The second main idea that we develop is the prediction of the stability coefficient by the rate of decay
of correlations. In this case, we show that the speed of convergence to the fixed point determines the
generalization properties via algorithmic stability. We derive stability-based generalization bounds, an
alternative to Rademacher complexity-based bounds in Arora et al. [2019a]. Comparing with existing
generalization results in the well-understood NTK regime is an ideal test bed for the alternative
dynamical perspective of this present work.

Linear dynamics Let wr ∈ W be the parameter at which a NN hNN(·, wr) is the zero function from
Rd to R, i.e., hNN(x,wr) = 0, for all x. Now consider training the weights w ∈ W of the NN, with
the initialization w0 = wr. With GD on the squared loss LS(w) = (1/2)

∑n
i=1(yi − hNN(xi, w))

2,
and learning rate η > 0, the dynamics of the weights are as follows,

ϕS(w) = w + η ∇hNN(X,w)
T (Y − hNN(X,w)). (20)

Here, X = [x1, · · · , xn]T ∈ Rd×n and the notation hNN(X,w) ∈ Rn represents
[hNN(x1, w), · · · , hNN(xn, w)]

T . Note that the above dynamics ϕS(w) is a nonlinear function of w.
Now we consider the NTK setting described in Bartlett et al. [2021] so that we replace hNN with its
linearization about wr,∇hNN(x,wr)(w−wr). With this linearization about wr, the above dynamics
ϕS becomes linear in w,

ϕ̃S(w) = w + ηΦT
S (YS − ΦS(w − wr)), (21)

where YS = [y1, · · · , yn]T ∈ Rn. Recalling that W ⊂ Rdw , ΦS is an n × dw matrix with the ith
row being ∇hNN(xi, wr). In the NTK regime, the dynamics ϕS is well-approximated by ϕ̃S (see
Theorem 5.1 of [Bartlett et al., 2021] for conditions under which the approximation holds). That is,
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the linear dynamics close to the NTK dynamics, referred to as the linear regression dynamics above,
is the following,

w̃t+1 = ASw̃t + bS , (22)

where KS := ΦT
SΦS , AS := (I − ηKS) ∈ Rdw×dw and bS := η

(
KSwr +ΦT

SYS
)
∈ Rdw . The

dynamics converges to a fixed point w̃∗
S = ASw̃

∗
S + bS , as long as ∥AS∥ < 1.

Evolution on function space Note that the invariant distribution of the above dynamics is singular:
the delta distribution centered at w̃∗

S . In order to repeat the analysis in section 4 for this special
case, we need to obtain the relationship between the rate of decay of correlations with respect to this
invariant measure and the stability of the fixed point. First isolating the rate of decay of correlations,
this rate is equal to the second largest eigenvalue of the associated Frobenius-Perron on L2(W) or
equivalently, the Koopman operator on L2(W) (since these two linear operators are adjoint to each
other, they share isolated spectra). Since the dynamical system is linear, it is easy to verify that
the eigenvalues of AS are also Koopman eigenvalues. We can also check that the eigenfunctions
corresponding to eigenvalue θi are of the form vTi w+1/(θi − 1)vTi bS , where vi are left eigenvectors
of AS .

Note that AS is a symmetric matrix whose largest absolute eigenvalue is equal to 1− ηθmin, where
θmin > 0 is the smallest eigenvalue of the NTK K̂S := ΦSΦ

T
S .

Stability of the fixed point In order to relate the rate of convergence, λ := 1−ηθmin with SAS in this
case, we now describe SAS in this regime. As we noted previously, SAS reduces to the algorithmic
stability of the fixed point for the dynamics (22). In order to deduce the stability of the fixed point to
stochastic perturbations in the input, we need to recognize that the fixed point is an exact interpolant.

We can check that ϕ̃S(w̃∗
S) = w̃∗

S iff YS = ϕ̃S(w̃
∗
S − wr). That is, the function ∇hNN(x,wr)(w̃

∗
S −

wr) exactly interpolates at the data points, among the class of linearized functions. In other words,
the fixed point is w̃∗

S = wr + aS , where aS is the minimum norm interpolation solution given by
aS = ΦT

S (ΦSΦ
T
S )

−1YS . Thus, having a closed form expression for w̃∗
S , we can obtain an upper

bound on the stability of the algorithm ϕS .

Since K̂S = ΦSΦ
T
S and its inverse are symmetric, ∥(K̂S)

−1∥ is also the maximum eigenvalue of
(K̂S)

−1. A stochastic perturbation S′ of S introduces a rank-one change denoted δK to (K̂S)
−1.

From Weyl’s inequality, ∥(K̂S)
−1 − (K̂S′)−1∥ ≤ ∥δK∥. In the case of Lipschitz loss, an upper

bound on β therefore depends on the maximum eigenvalue of K̂−1
S , which is equal to 1/θmin. Thus,

we see that a smaller θmin implies a smaller rate of convergence (slower convergence) as well as
a larger upper bound on β (lesser algorithmic stability). Hence, the linear regime also supports
the analysis in section 4, which discusses a more general scenario of convergence of weights in
distribution.
Remark 5. As an aside that applies to the entire paper, we clarify that by “statistics” we refer to
statistics over the parameter space W. The distribution over the weight space is specified in each
context. Recall that the randomness in the sense of randomness over the weights arises due to the
stochastic nature of SGD as well as the randomness over initial conditions.
Remark 6. While we have considered linearization about a point, we may repeat the above analysis
by considering another linear network via modifying the definition of the empirical matrix ΦSΦ

T
S to

KS = Ew∈Dw
∇hNN(X,w)∇hTNN(X,w). This is the well-studied limit of the empirical kernel as

the number of neurons tends to infinity.
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