
Distilling Representations from GAN Generator
via Squeeze and Span: Appendix

A Implementation Details

Pre-trained GAN Table 1 presents the details of pre-trained GANs employed in our experiments.
The GAN checkpoints with the lowest FID are selected.

Dataset Resolution FID Source

CIFAR10 32× 32 2.92 Publicly available at cifar10u-cifar-ada-best-fid.pkl

CIFAR100 32× 32 4.13 Trained with StyleGAN2-ADA [4] by ourselves using configuration:
--cfg=cifar

STL10 128× 128 20.86
Trained with StyleGAN2-ADA [4] by ourselves using configuration:
kimg=25000, mb=64, mbstd=8, fmaps=0.5, lrate=0.0025,
gamma=0.25, map=8

ImageNet100 128× 128 23.7 Trained with Projected GAN [6] with StyleGAN2 architecture using
cfg=stylegan2, batch=128, mirror=1, kimg=25000

ImageNet 128× 128 49.8 StyleGAN2 publicly available at gan-transfer repo

Table 1: Pretrained GANs.

Default representation source Although Table 1 in the main text shows that good performance
can be obtained by distillation from both latent variable and generator feature, we choose generator
feature (Equ 4 in the main text) as default since generator feature shows better properties (Fig. 2 in
the main text) than others. Moreover, this choice can easily apply to other GAN architecture like
BigGAN [2].

Hyperparameters Table 2 presents the hyperparameters for distilling GAN for different dataset.

Aug Batch size Epochs base_lr Weight decay Scale λ µ ν α

CIFAR10 MoCo-v2 aug w/o blur 512 800 0.03 0.0005 32 25 25 1 0.5
CIFAR100 MoCo-v2 aug w/o blur 512 800 0.03 0.0005 32 10 10 1 0.5

STL10 MoCo-v2 aug 512 200 0.05 0.0001 64 25 25 1 0.5
ImageNet100 MoCo-v2 aug 256 100 0.05 0.0001 96 25 25 1 0.5

ImageNet MoCo-v2 aug 256 100 0.05 0.0001 96 25 25 1 0.5

Table 2: Hyperparameters for distilling GAN representations on CIFAR10, CIFAR100, STL10,
ImageNet100, and ImageNet.

Furthermore, Table 3 and Table 4 present the hyperparameters for training VICReg and SimSiam,
respectively.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/paper-fig11b-cifar10/cifar10u-cifar-ada-best-fid.pkl
https://github.com/NVlabs/stylegan2-ada-pytorch
https://github.com/NVlabs/stylegan2-ada-pytorch
https://github.com/autonomousvision/projected_gan
https://github.com/yandex-research/gan-transfer


Aug Batch size Epochs base_lr Weight decay Scale λ µ ν α

CIFAR10 MoCo-v2 aug w/o blur 512 800 0.03 0.0005 32 25 25 1 0.5
CIFAR100 MoCo-v2 aug w/o blur 512 800 0.03 0.0005 32 25 25 1 0.5

STL10 MoCo-v2 aug 512 200 0.05 0.0001 64 25 25 1 0.5
ImageNet100 MoCo-v2 aug 256 100 0.05 0.0001 96 25 25 1 0.5

ImageNet MoCo-v2 aug 256 100 0.05 0.0001 96 25 25 1 0.5

Table 3: Hyperparameters for training VICReg [1] on CIFAR10, CIFAR100, STL10, ImageNet100,
and ImageNet.

Aug Batch size Epochs base_lr Weight decay Scale α

CIFAR10 MoCo-v2 aug w/o blur 512 800 0.03 0.0005 32 0.5
CIFAR100 MoCo-v2 aug w/o blur 512 800 0.03 0.0005 32 0.5

STL10 MoCo-v2 aug 512 200 0.05 0.0001 64 0.5

Table 4: Hyperparameters for training SimSiam [3] on CIFAR10, CIFAR100, and STL10.

B Further Analysis

B.1 CIFAR and STL cross-dataset evaluation

We train the feature extractor on one of CIFAR10, CIFAR100, and STL10 datasets and run linear
classification on the rest two datasets. Results in Table 5 show that our method (Sq & Sp) generally
achieves better cross-dataset generalization compared to SimSiam and VICReg.

Pretrain Data Methods
CIFAR10 CIFAR100 STL10

CIFAR100 STL10 CIFAR10 STL10 CIFAR10 CIFAR100

Real & Syn
SimSiam [3] 41.32 68.70 75.90 60.41 59.34 32.88
VICReg [1] 54.19 80.56 79.11 74.73 58.15 31.25
Sq & Sp (Ours) 58.93 82.22 80.68 73.85 64.76 37.48

Table 5: Cross-dataset linear classification performance. The first and second rows show the source
and target dataset respectively.

B.2 Generator Feature Choices

To shed light on the property of generator features, experiments over different generator feature
choices are conducted. In particular, we consider feature maps from generator blocks at different
resolution, e.g. “b16” represents the synthesis block at 16×16 resolution. Feature maps are grouped
into three levels of scale: b4-b8 (small), b16-b32 (middle), and b64-b128 (large). Results of an
ablation study with respect to generator features on “squeeze” method across CIFAR10, CIFAR100,
and STL10 are presented in Table 6. It shows that using lower-resolution (e.g. b4 – b8) feature
maps leads to slightly better performance than higher-resolution (e.g. b16 – 32 or b64 – b128). This
conclusion is in accordance with common understanding of network features that low-resolution
feature is more abstract than high-resolution feature and benificial for high-level discriminative tasks
like classification. The strategy of using feature maps from all resolutions yields superior performance
on CIFAR10 and STL10 and comparable performance with b4-b8 on CIFAR100.

Furthermore, we provide an in-depth analysis of the cross-layer generator feature similarity. The
globally average pooled features from different convolution layers in the geneartor are computed
the pairwise CKA [5] similarity, shown as the confusion matrix in Fig. 1, where we also present
results of ResNet18 of CIFAR variant learned by SimSiam for comparison. It is interesting to see that
in generator most similarity is lower than 0.8, showing unique and complementary features across
different layers. On the contrary, in ResNet18 many pairs of features have similarity greater than
0.85, suggesting duplicate features. These results support our motivation to distill generator features
and choose all block feature maps.

2



Pretrain Data Methods Generator Block CIFAR10 CIFAR100 STL10

Syn Squeeze

b4–b8 87.05 57.51 74.05
b16–b32 87.08 55.43 73.43
b64–b128 – – 73.08
All 87.67 57.35 76.83

Table 6: Ablation with respect to generator blocks.

0 1 2 3 4 5 6

0
1

2
3

4
5

6

1 0.67 0.51 0.4 0.33 0.31 0.29

0.67 1 0.76 0.58 0.45 0.39 0.33

0.51 0.76 1 0.77 0.61 0.54 0.42

0.4 0.58 0.77 1 0.78 0.65 0.45

0.33 0.45 0.61 0.78 1 0.86 0.69

0.31 0.39 0.54 0.65 0.86 1 0.73

0.29 0.33 0.42 0.45 0.69 0.73 1

0.0

0.2

0.4

0.6

0.8

1.0

(a) Generator features on CIFAR10 (32×32)

0 1 2 3 4 5 6
0

1
2

3
4

5
6

1 0.63 0.43 0.35 0.28 0.23 0.17

0.63 1 0.7 0.56 0.41 0.33 0.24

0.43 0.7 1 0.78 0.63 0.47 0.33

0.35 0.56 0.78 1 0.78 0.61 0.4

0.28 0.41 0.63 0.78 1 0.79 0.51

0.23 0.33 0.47 0.61 0.79 1 0.63

0.17 0.24 0.33 0.4 0.51 0.63 1

0.0

0.2

0.4

0.6

0.8

1.0

(b) Generator features on CIFAR100 (32×32)

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

1 0.77 0.77 0.73 0.67 0.58 0.44 0.26

0.77 1 0.74 0.73 0.59 0.54 0.41 0.25

0.77 0.74 1 0.94 0.86 0.77 0.62 0.36

0.73 0.73 0.94 1 0.89 0.83 0.65 0.38

0.67 0.59 0.86 0.89 1 0.94 0.8 0.49

0.58 0.54 0.77 0.83 0.94 1 0.88 0.6

0.44 0.41 0.62 0.65 0.8 0.88 1 0.8

0.26 0.25 0.36 0.38 0.49 0.6 0.8 1

0.0

0.2

0.4

0.6

0.8

1.0

(c) ResNet18 features on CIFAR10 (32×32)

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

1 0.98 0.96 0.91 0.8 0.77 0.55 0.4

0.98 1 0.97 0.93 0.81 0.8 0.55 0.4

0.96 0.97 1 0.98 0.9 0.87 0.63 0.44

0.91 0.93 0.98 1 0.95 0.94 0.65 0.44

0.8 0.81 0.9 0.95 1 0.98 0.78 0.51

0.77 0.8 0.87 0.94 0.98 1 0.73 0.48

0.55 0.55 0.63 0.65 0.78 0.73 1 0.73

0.4 0.4 0.44 0.44 0.51 0.48 0.73 1

0.0

0.2

0.4

0.6

0.8

1.0

(d) ResNet18 features on CIFAR100 (32×32)

Figure 1: CKA similarity of features across different network layers. Generator features and ResNet18
of CIFAR variant features learned by SimSiam on CIFAR10 and CIFAR100 are compared.

B.3 Different GAN Architectures

As different architecture may have different inductive bias, we further conduct a study on the impact
of architecture on the distillation performance. We train and evaluate our “squeeze” method with
the generator features that are obtained from different GAN architectures including AutoGAN,
StyleGAN-XL, and BigGAN on CIFAR10, and report the results in Table 7. We use the same feature
selection strategy across different architectures as before: the consecutive network layers are grouped
into a block according to its output resolution and the output feature maps of block at each resolution
are chosen.

Table 7 presents whether the GAN is pretrained in conditional or unconditional manner, the link
to publicly available pre-trained checkpoints, their FID, and the performance of “squeeze” method.
From these results, we would like to highlight the following points: (1) Our method yields good

3



performance with prevalent GAN architectures such as StyleGAN2, StyleGAN3, and BigGAN,
showing that our method is architecture-agnostic. (2) When the generators are conditioned on class
labels, they result in better distillation and hence classification performance than unconditional
ones, possibly due to its higher generation quality (conditional StyleGAN2-ADA achieves 0.5 FID
lower than unconditional one) and the embedded class information in conditional modeling. Since
training conditional GAN requires class labels which violates the goal of unsupervised learning, we
only report these results for sake of completeness. (3) Although StyleGAN-XL with StyleGAN3
architecture achieves the highest generation quality (1.85 FID), its distillation performance is 2.70
top-1 acc lower than StyleGAN2. This suggests that generation quality may not be the only factor
determining the representation transfer ability. We hope to further study this problem in the future.

GAN architectures Type Sources
Generation

FID
Squeeze

Top-1 Acc
StyleGAN2-ADA Unconditional GitHub repo, model 2.92 87.67
AutoGAN Unconditional GitHub repo, model 12.42 76.28
StyleGAN2-ADA Conditional GitHub repo, model 2.42 88.90
StyleGAN-XL (StyleGAN3) Conditional GitHub repo, model 1.85 84.97
BigGAN-DiffAugment-cr Conditional GitHub repo, model 8.49 86.41

Table 7: Ablation study with respect to GAN architecture. The best results are in bold and the second
best is underlined.

References
[1] Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regularization for

self-supervised learning. arXiv preprint arXiv:2105.04906, 2021. 2
[2] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural image

synthesis. In ICLR, 2018. 1
[3] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In CVPR, 2021. 2
[4] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training

generative adversarial networks with limited data. In NeurIPS, 2020. 1
[5] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural network

representations revisited. In ICML, 2019. 2
[6] Axel Sauer, Kashyap Chitta, Jens Müller, and Andreas Geiger. Projected gans converge faster. NeurIPS,

2021. 1

4

https://github.com/NVlabs/stylegan2-ada-pytorch
https://github.com/VITA-Group/AutoGAN
https://github.com/NVlabs/stylegan2-ada-pytorch
https://github.com/autonomousvision/stylegan_xl
https://github.com/mit-han-lab/data-efficient-gans/tree/master/DiffAugment-biggan-cifar

	Implementation Details
	Further Analysis
	CIFAR and STL cross-dataset evaluation
	Generator Feature Choices
	Different GAN Architectures


