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Abstract

In recent years, generative adversarial networks (GANs) have been an actively stud-
ied topic and shown to successfully produce high-quality realistic images in various
domains. The controllable synthesis ability of GAN generators suggests that they
maintain informative, disentangled, and explainable image representations, but
leveraging and transferring their representations to downstream tasks is largely
unexplored. In this paper, we propose to distill knowledge from GAN generators
by squeezing and spanning their representations. We squeeze the generator fea-
tures into representations that are invariant to semantic-preserving transformations
through a network before they are distilled into the student network. We span the
distilled representation of the synthetic domain to the real domain by also using
real training data to remedy the mode collapse of GANs and boost the student
network performance in a real domain. Experiments justify the efficacy of our
method and reveal its great significance in self-supervised representation learning.
Code is available at https://github.com/yangyu12/squeeze-and-span.

1 Introduction

Generative adversarial networks (GANs) [23] continue to achieve impressive image synthesis results
thanks to large datasets and recent advances in network architecture design [5, 36, 37, 34]. GANs
synthesize not only realistic images but also steerable ones towards specific content or styles [22, 52,
49, 33, 57, 53, 32]. These properties motivate a rich body of works to adopt powerful pretrained GANs
for various computer vision tasks, including part segmentation [68, 56, 61], 3D reconstruction [67],
image alignment [48, 45], showing the strengths of GANs in the few-label regime.

GANs typically produce fine-grained, disentangled, and explainable representations, which allow for
higher data efficiency and better generalization [42, 68, 56, 61, 67, 48]. Prior works on GAN-based
representation learning focus on learned features from either a discriminator network [50] or an
encoder network mapping images back into the latent space [19, 17, 18]. However, there is still
inadequate exploration about how to leverage or transfer the learned representations in generators.
Inspired by the recent success of [68, 56, 61], we hypothesize that representations produced in
generator networks are rich and informative for downstream discriminative tasks. Hence, this paper
proposes to distill representations from feature maps of a pretrained generator network into a student
network (see Fig. 1).

In particular, we present a novel “squeeze-and-span” technique to distill knowledge from a generator
into a representation network2 that is transferred to a downstream task. Unlike transferring discrimi-

∗Equal Contribution
2Throughout the paper, two terms“representation network” and “student network” are used interchangeably,

as are the “generator network” and “teacher network”.
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Figure 1: A comparison of representation transfer in GANs. (a) Transferring representations in
discriminator (D) which is tasked to distinguish real or fake images (e.g. [50]). (b) Transferring
representations in encoder (E) which projects an image into latent space (e.g. [19, 17, 18]). (c)
Transferring representations in student (S) which predicts the generator features (ours).

nator network, generator network is not directly transferable to downstream image recognition tasks,
as it cannot ingest image input but a latent vector. Hence, we distill generator network representa-
tions into a representation network that can be further transferred to the target task. When fed in a
synthesized image, the representation network is optimized to produce similar representations to the
generator network’s. However, the generator representations are very high-dimensional and not all
of them are informative for the downstream task. Thus, we propose a squeeze module that purifies
generator representations to be invariant to semantic-preserving transformations through an MLP
and an augmentation strategy. As the joint optimization of the squeeze module and representation
network can lead to a trivial solution (e.g. mapping representations to zero vector), we employ
variance-covariance regularization in [3] while maximizing the agreement between the two networks.
Finally, to address the potential domain gap between synthetic and real images, we span the learned
representation of synthetic images by training the representation network additionally on real images.

We evaluate our distilled representations on CIFAR10, CIFAR100 and STL10 with linear classification
tasks as commonly done in representation learning. Experimental results show that squeezing and
spanning generator representations outperforms methods that build on discriminator and encoding
images into latent space. Moreover, our method achieves better results than discriminative SSL
algorithms, including SimSiam [10] and VICReg [3] on CIFAR10 and CIFAR100, and competitive
results on STL10, showing significant potential for transferable representation learning.

Our contributions can be summarized as follows: We (1) provide a new taxonomy of representation
and transfer learning in generative adversarial networks based on the location of the representations,
(2) propose a novel “squeeze-and-span” framework to distill representations in the GAN generator
and transfer them for downstream tasks, (3) empirically show the promise of utilizing generator
features to benefit self-supervised representation learning.

2 Related Work

GANs for Representation Learning. Significant progress has been made on the interpretability,
manipulability, and versatility of the latent space and representation of GANs [36, 37, 34, 35]. It
inspires a broad spectrum of GAN-based applications, such as semantic segmentation [68, 56, 61],
visual alignment [48, 45], and 3D reconstruction [67], where GAN representations are leveraged to
synthesize supervision signals efficiently. As GAN can be trained unsupervised, its representations
are transferred to downstream tasks. DCGAN [50] proposes a convolutional GAN and uses the
pre-trained discriminator for image classification. BiGAN [17] adopts an inverse mapping strategy
to transfer the real domain knowledge for representation learning. While ALI [19] improves this
idea with a stochastic network instead of a deterministic one, BigBiGAN [18] extends BiGAN with
BigGAN [5] for large scale representation learning. GHFeat [59] trains a post hoc encoder that maps
given images back into style codes of style-based GANs [36, 37, 35] for image representation. These
works leverage or transfer representations from either discriminators or encoders. In contrast, our
method reveals that the generator of a pre-trained GAN is typically more suitable for representation
transfer with a proper distillation strategy.
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Figure 2: Visualization of three types of GAN representations: (a) discriminator feature, (b) latent
variable, and (c) generator feature. An unconditional StyleGAN2-ADA model pre-trained on CI-
FAR10 is employed. Colors indicate different classes. Generator features are naturally clustered and
consistent with classes.

Knowledge Distillation (KD) aims at training a small student network, under the supervision of a
relatively large teacher network [31]. In terms of the knowledge source, it can be broadly divided into
logit-based KD and feature-based KD. Logit-based KD methods [41, 60, 12] optimize the divergence
loss between the predicted class distributions, usually called logits or soft labels, of the teacher and
student network. Feature-based KD methods [38, 2, 54] adopt the teacher model’s intermediate
layers as supervisory signals for the student. FitNet [51] introduces the output of hidden layers of the
teacher network as supervision. AT [63] proposes to match attention maps between the teacher and
student. FSP [62] calculates flow between layers as guidance for distillation. Likewise, our method
distills knowledge from intermediate layers from a pre-trained GAN generator.

Self-Supervised Representation Learning (SSL) pursues learning general transferable representa-
tions from unlabelled data. To produce informative self-supervision signals, the design of handcrafted
pretext tasks has flourished for a long time, including jigsaw puzzle completion [46], relative position
prediction [15, 16], rotation perception [21], inpainting [47], colorization [40, 65], masked image
modeling [27, 58], etc. Instead of performing intra-instance prediction, contrastive learning-based
SSL methods explore inter-instance relation. Applying the InfoNCE loss or its variants [26], they
typically partition informative positive/negative data subsets and attempt to attract positive pairs
while repelling negative ones. MoCo series [28, 8, 11] introduce an offline memory bank to store
large negative samples for contrast and a momentum encoder to make them consistent. SimCLR [7]
adopts an end-to-end manner to provide negatives in a mini-batch and introduce substantial data
augmentation and a projection head to improve the performance significantly. Surprisingly, without
negative pairs, BYOL [25] proposes a simple asymmetry SSL framework with the momentum branch
applying the stop gradient to avoid model collapse. It inspires a series of in-deep explorations, such
as SimSiam [9], Barlow Twins [64], VICReg [3], etc. In this paper, despite the same end goal of
obtaining transferable representations and the use of techniques from VICReg [3], we study the trans-
ferability of generator representations in pretrained GANs to discriminative tasks, use asymmetric
instead of siamese networks, and design effective distillation strategies.

3 Rethinking GAN Representations

Let G : W → X denote a generator network that maps a latent variable in W to an image in X .
An unconditional GAN trains G adversarially against a discriminator network D : X → [0, 1] that
estimates the realness of the given images,

max
G

min
D

E log(1−D(G(w))) + logD(x). (1)

The adversarial learning does not require any human supervision and therefore allows for learning
representations in an unsupervised way. In this paper, we show that the type of GAN representations
and how they are obtained has a large effect on their transferrability. To illustrate the impact on the
transferability, Fig. 2 plots the embedded 2D points of three different type of representations from an
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unconditional GAN, where color is assigned based on the class labels.3. Note that we describe each
representation in the following paragraphs.

Discriminator Feature The discriminator D, which is tasked to distinguish real and fake images,
can be transferred to various recognition tasks [50]. Formally, let D = d(L) ◦ d(L−1) ◦ · · · ◦ d(1)
denote the decomposition of a discriminator into L consecutive layers. As shown in Fig. 1(a), given
an image x, the discriminator representation can be extracted by concatenating the features after
average pooling from each discriminator block output,

hd = [µ(hd1), . . . , µ(hdL)], where hdi = d(i) ◦ · · · ◦ d(1)(x), (2)

where µ denotes the average pooling operator. However, Fig. 2(a) shows that the cluster of dis-
criminator features is not significantly correlated with class information indicating that real/fake
discrimination does not necessarily relate to class separation.

Latent Variable An alternative way of transferring GAN representation is through its latent variable
w [19, 17, 18]. In particular, one can invert the generator such that it can extract a latent variable
representation of the generated image through a learned encoder E. Then the representations of the
encoder can be transferred to a downstream task. While some works jointly trains the encoder with
the generator and discriminator [19, 17, 18], we consider training a post hoc encoder [6] given a fixed
pre-trained generator G, as this provides more consistent comparison with the other two strategies:

E∗ = arg min
E

Ew∼P (w),x=G(w)

[
‖G(E(x))− x‖1 + Lpercep(G(E(x)),x) + λ‖E(x)−w‖22

]
,

(3)
where Lpercep denotes the LPIPS loss [66] and λ = 1.0 is used to balance different loss terms.
The key assumption behind this strategy is that latent variables encode various characteristics of
generated images (e.g. [33, 57]) and hence extracting them from generated images result in learning
transferrable representations.

Fig. 2(b) visualizes the embedding of latent variables4. It shows that samples from the same classes
are not clustered together and distant from other ones. In other words, latent variables do not
disentangle the class information while encoding other information about image synthesis.

Generator Feature An overlooked practice is to utilize generator features. Typically, GAN genera-
tors transform a low-resolution (e.g. 4×4) feature map to a higher-resolution one (e.g. 256×256) and
further synthesize images from the final feature map [17, 36] or multi-scale feature maps [37]. The
image synthesis is performed hierarchically: feature map from low to high resolution encodes the
low-frequency to high-frequency component for composing an image signal [35]. This understanding
is also evidenced by image editing works [22, 52, 49, 53, 32] which show that interfering with
low-resolution feature maps leads to a structural and high-level change of an image, and altering
high-resolution feature maps only induces subtle appearance changes. Therefore, generator features
contain valuable hierarchical knowledge about an image. Formally, let G = g(L) ◦ g(L−1) ◦ · · · ◦ g(1)
denote the decomposition of a discriminator into L consecutive layers. Given a latent variable
w ∼ P (w) drawn from a prior distribution, we consider the concatenated features average pooled
from each generator block output,

hg = [µ(hg1), . . . , µ(hgL)], where hgi = g(i) ◦ · · · ◦ g(1)(w). (4)

As Fig. 2(c) shows, generator features within the same class are naturally clustered. This result
suggests that generators contain identifiable representations that can be transferred for downstream
tasks. However, as GANs do not initially provide a reverse model for the accurate recovery of
generator features, it is still inconvenient to extract generator features for any given image. This
limitation motivates us to distill the valuable features from GAN generators.

3The GAN is trained trained on CIFAR10. We use UMAP embeddings [44] for dimensionality reduction. As
the class labels of the generated images are unknown, they are inferred by a classifier that is trained on CIFAR10
training set and achieves around 95% top-1 accuracy on CIFAR10 validation set.

4In the family of StyleGAN, to achieve more disentangled latent variables, the prior latent variable that
observes standard normal distribution is mapped into a learnable latent space via an MLP before fed into the
generator. In our work, we refer to latent variables as the transformed ones, which are also known as latent
variables in W+ space in other works [1]
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Figure 3: Squeeze and span representation from the GAN generator. Left: pretrained generator G
and squeeze module Tφ constitute teacher network to produce squeezed representations which are
further distilled into a student network Sθ (Squeeze part). The student network is also trained on real
data (Span part). Right: the generator structure and our squeeze module. We average pool (denoted
as µ) the feature maps from each synthesis block and transform them with a linear layer plus an MLP,
termed squeeze module.

4 Squeeze-and-Span Representations from GAN Generator

This section introduces the “Squeeze-and-Span” technique to distill representation from GANs into a
student network, which can then be readily transferred for downstream tasks, e.g. image classification.
Let Sθ : X → H denote a student network that maps a given image into representation space. A
naive way of representation learning can be achieved by tasking the student network to predict the
teacher representation, which can be formulated as the following optimization problem:

min
θ

Ew∼P (w) ‖Sθ(G(w))− hg(w)‖22, (5)

where we use mean squared error to measure the prediction loss and hg(w) to denote the dependence
of hg on w. However, this formulation has two problems. First, representations extracted through
multiple layers of the generator are likely to contain significantly redundant information for down-
stream tasks but necessary for image synthesis. Second, as the student network is only optimized
on synthetic images, it is likely to perform poorly in extracting features from real images in the
downstream task due to the potential domain gap between real and synthetic images. To mitigate
these issues, we propose the “Squeeze and Span” technique as illustrated in Fig. 3.

4.1 Squeezing Informative Representations

To alleviate the first issue that generator representation may contain a big portion of irrelevant
information for downstream tasks, we introduce a squeeze (or bottleneck) module Tφ (Fig. 3) that
squeezes informative representations out of the generator representation. In addition, we transform the
generated image via a semantic-preserving image transformation a (e.g. color jittering and cropping)
before feeding it to the student work. Equ. 5 can be rewritten as

min
θ,φ
LRD = Ew∼P (w),a∼A ‖Sθ(a[G(w)])− Tφ(hg(w))‖22, (6)

where image transformation a is randomly sampled from A. In words, we seek to distill compact
representations from the generator among the ones that are invariant to data augmentationA, inspired
from the success of recent self-supervised methods [7, 10]. An informal intepretation is that, similar
to Chen & He [10], considering one of the alternate subproblems that fix θ and solve φ, the optimal
solution would result in the effect of Tφ∗(hg(w)) ≈ Ea∼A Sθ(a[G(w)]), which implies Equ 6
encourages Tφ to squeeze out transformation-invariant representation. However, similar to the
siamese network in SSL [10], there exists a trivial solution to Equ. 6: both the squeeze module and
the student network degenerate to output constant for any input.

Therefore, we consult the techniques from SSL methods and add regularization terms to the distillation
loss. In particular, we employ variance-covariance [3] to explicitly regularize representations to be
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significantly uncorrelated and varied in each dimension. Formally, in a mini-batch of N samples, we
denote the squeezed generator representations and student representations with

Zg = [Tφ(hg(w1)), Tφ(hg(w2)), . . . , Tφ(hg(wN ))] ∈ RM×N , (7)

Zs = [Sθ(a1[G(w1)]), Sθ(a2[G(w2)]), . . . , Sθ(aN [G(wN )])] ∈ RM×N , (8)
where wi ∼ P (w) and ai ∼ A denote random sample of latent variable and data augmentation
operator. The variance loss is introduced to encourage the standard deviation of each representation
dimension to be greater than 1,

Lvar(Z) =
1

M

M∑
j=1

max(0, 1−
√

Var(zj) + ε), (9)

where zj represents the j-th dimension in representation z. The covariance loss is introduced to
encourage the correlation of any pair of dimensions to be uncorrelated,

Lcov(Z) = 1
M

∑
i 6=j [C(Z)]2ij ,

where C(Z) = 1
N−1

∑N
i=1(zi − z̄)(zi − z̄)>, z̄ = 1

N

∑N
i=1 zi.

(10)

To this end, the loss function of squeezing representations from the generator into the student network
can be summarized as

Lsqueeze = λLRD + µ [Lvar(Zf ) + Lvar(Zg)] + ν [Lcov(Zf ) + Lcov(Zg)] . (11)

Discussion Our work differs from multi-view representation learning methods [3, 10] in the follow-
ing aspects. (1) Our work studies the transfer of the generative model that does not originally favor
representation extraction, whereas most multi-view representation learning learns representation
with discriminative pretext tasks. (2) Unlike typical Siamese networks in multi-view representation
learning, the two networks in our work are asymmetric: one takes in noise and outputs an image and
the other works in the reverse fashion. (3) While most multi-view representation learning methods
learn representation networks from scratch, our work distills representations from a pre-trained model.
In specific, most SSL methods create multiview representations by transforming input images in
multiple ways, we instead pursue different representation views from a well-trained data generator.

4.2 Spanning Representations from Synthetic to Real Domain

Here we address the second problem, the domain between synthetic and real domains, due to two
factors. First, the synthesized images may be of low quality. This aspect has been improved a lot
with recent GAN modelling [37, 35] and is out of our concern. Second, more importantly, GAN is
notorious for the mode collapse issue, suggesting the synthetic data can only cover partial modes of
real data distribution. In other words, the synthetic dataset appears to be a subset of the real dataset.

To undermine the harm of mode collapse, we include the real data in the training data of the student
network. In particular, in each training step, synthetic data and real data consist of a mini-batch of
training data. For synthetic data, the aforementioned squeeze loss is employed. For real data, we
employ the original VICReg to compute loss. Specifically, given a mini-batch of real data {xri }Ni=1,
each image xri is transformed twice with random data augmentation to obtain two views ai(xri ) and
a′i(x

r
i ), where ai, a′i ∼ A. The corresponding representations Zr and Z ′r are obtained by feeding the

transformed images into Sθ similarly to Equ. 8. Then the loss on real data is computed as
Lspan = λL′RD + µ [Lvar(Zr) + Lvar(Z

′
r)] + ν [Lcov(Zr) + Lcov(Z ′r)] , (12)

where L′RD denotes a self-distillation by measuring the distance of two-view representations on real
images. The overall loss is computed by simply combine the generated data loss and real data loss
as Ltotal = αLsqueeze + (1 − α)Lspan, where α = 0.5 denotes the proportion of synthetic data in a
mini-batch of training samples.

From a technical perspective, spanning representation seems to be a combination of representation
distillation and SSL using VICReg [3]. We interpret this combination as spanning representation from
the synthetic domain to the real domain. The representation is dominantly learned in the synthetic
domain and generalized to the real domain. The student network learns to fuse representation spaces
of two domains into a consistent one in the spanning process. Our experimental evaluation shows that
“squeeze and span” can outperform VICReg on real data, suggesting that the squeezed representations
do have a nontrivial contribution to the learned representation.
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5 Experiments

5.1 Setup

Dataset and pre-trained GAN Our methods are mainly evaluated on CIFAR10, CIFAR100, and
STL10, ImageNet100, and ImageNet. CIFAR10 and CIFAR100 [39] are two image datasets
containing small images at 32×32 resolution with 10 and 100 classes, respectively, and both split
into 50,000 images for training and 10,000 for validation. STL-10 [13], which is derived from the
ImageNet [14], includes images at 96×96 resolution over 10 classes. STL-10 contains 500 labeled
images per class (i.e. 5K in total) with an additional 100K unlabeled images for training and 800
labeled images for testing. ImageNet100 [55] contains images of 100 classes, among which 126,689
images are regarded as the train split and 5,000 images are taken as the validation split. ImageNet [14]
is a popular large-scale image dataset of 1000 classes, which is split into 1,281,167 images as training
set and 50,000 images as validation set. We adopt StyleGAN2-ADA5 for representation distillation
since it has good stability and high performance. GANs are all pre-trained on training split. More
details can be referred in the supplementary material.

Implementation details The squeeze module uses linear layers to transform the generator features
into vectors with 2048 dimensions, which are then summed up and fed into a three-layer MLP to
get a 2048-d teacher representation. On CIFAR10 and CIFAR100, we use ResNet18 [30] of the
CIFAR variant as the backbone. On STL10, we use ResNet18 as the backbone. On ImageNet100 and
ImageNet, we use ResNet50 as the backbone. On top of the backbone network, a five-layer MLP
is added for producing representation. We use SGD optimizer with cosine learning rate decay [43]
scheduler to optimize our models. The actual learning rate is linearly scaled according to the ratio
of batch size to 256, i.e. base_lr × batch_size/256 [24]. We follow the common practice in
SSL [7, 55, 29] to evaluate the distilled representation with linear classification task. More details are
available in the supplementary material.

5.2 Transferring GAN Representation

Compared methods In this section, we justify the advantage of distilling generator representations
by comparing the performance of different ways of transferring GAN representation. In particular,
we consider the following competitors:

• Discriminator. As the discriminator network receives image as input and is ready for repre-
sentation extraction, we directly extract features, single penultimate features, or multiple
features (Equ 2), using a pre-trained discriminator and train a linear classifier on top of them.

• Encoding. We train a post hoc encoder with or without real images involved in the training
process as in Equ 3.

• Distilling latent variable. We employ the vanilla distillation or squeeze method on latent
variables with data augmentation engaged.

• Distilling generator feature. Our method as described in Section 4.

Results Table 1 presents the comparison results, from which we can draw the following conclusions.
(1) Representation distillation, whether from the latent variable or generator feature, significantly
outperforms discriminator and encoding. We think this is because image reconstruction and realness
discrimination are not suitable pretext tasks for representation learning. (2) Distillation from latent
variable achieve comparable performance to distillation from generator feature, despite that the
former one show entangled class information (Fig. 2). This result can be attributed to a projection
head in the student network. (3) Our method works significantly better than vanilla distillation which
does not employ a squeeze module. This result suggests that our method squeeze more informative
representation that can help to improve the student performance.

5.3 Comparison to SSL

Linear classification We further compare our methods to SSL algorithms such as SimSiam [10]
and VICReg [3] in different training data domains: real, synthetic, and a mixture of real and synthetic.

5https://github.com/NVlabs/stylegan2-ada-pytorch
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Knowledge Source Transfer Method Domain CIFAR10 CIFAR100

Discriminator
Direct use (single feature) Syn. & Real 63.81 30.11
Direct use (multi-feature) Syn. & Real 77.58 51.63

Latent variable

Encoding Syn. 57.15 32.19
Encoding Syn. & Real 50.27 28.43
Vanilla distillation (w/ aug) Syn. 84.84 53.26
Squeeze Syn. 86.99 58.56
Squeeze and span Syn. & Real 90.95 66.17

Generator feature
Vanilla distillation (w/ aug) Syn. 84.48 52.77
Squeeze Syn. 87.67 57.35
Squeeze and span Syn. & Real 92.54 67.87

Table 1: Reprensentation transfer from different teachers. Top-1 accuracy of linear classification
on CIFAR10 and CIFAR100 validation sets are reported and compared.

Pretrain Data Methods CIFAR10 CIFAR100 STL10 ImageNet100 ImageNet

Real
SimSiam [10] 90.94 62.44 71.30 – –
VICReg [3] 89.20 63.31 74.43 – –

Syn
SimSiam [10] 85.11 47.89 73.38 – –
VICReg [3] 84.68 52.84 70.80 – –
Squeeze (Ours) 87.67 57.35 73.35 – –

Real & Syn
SimSiam [10] 90.88 62.68 71.70 – –
VICReg [3] 90.46 65.22 75.05 46.42 47.32
Sq & Sp (Ours) 92.54 67.87 76.83 53.32 47.80

Table 2: Linear classification performance comparison to seminal SSL methods. Top-1 accuracy
on validation set is reported. The bigest number is bolded and the second biggest number is
underlined.

Table 2 presents the linear classification results, from which we want to highlight the following
points. (1) Both SimSiam and VICReg perform worse when pre-trained on only synthetic data
than only real data, indicating the existence of a domain gap between synthetic data and real data.
(2) Our methods outperform SimSiam and VICReg in synthetic and mixture domains, suggesting
distillation of generator feature contributes extra improvement SSL. (3) Our "Squeeze and Span" is
the best among all the competitors on CIFAR10, CIFAR100, and STL10. (4) Our method outperforms
VICReg with a large margin (6.90% Top-1 Acc) on ImageNet100 and a clear increase (0.48% Top-1
Acc) on ImageNet.

Transfer learning As one goal of representation learning is its transferability to other datasets, we
further conduct a comprehensive transfer learning evaluation. We follow the protocol in [20] and use
its released source code6 to conduct a thorough transfer learning evaluation for our pre-trained models
on ImageNet100/ImageNet. In particular, the learned representations are mainly evaluated for (1)
linear classification on 11 datasets including Aircraft, Caltech101, Cars, CIFAR10, CIFAR100, DTD,
Flowers, Food, Pets, SUN397, and VOC2007; (2) finetuning on three downstream tasks and datasets,
including object detection on PASCAL VOC, surface normal estimation on NYUv2, and semantic
segmentation on ADEChallenge2016. Please refer to [20] for the details of evaluation protocol.

The results are presented in Table 3 and Table 4, where we have the following observation (1) As
depicted in Table 3, our method achieves better transferability than VICReg on the mixed data no
matter pre-trained on ImageNet100 or ImageNet. Our method beats VICReg on nearly all other
datasets and the improvement on average accuracy is 3.40 with models pre-trained on ImageNet100
and 1.00 with models pre-trained on ImageNet. (2) As depicted in Table 4, representations learned
with our method can be well transferred to various downstream tasks such as object detection,

6https://github.com/linusericsson/ssl-transfer
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Pre-training Data Method Aircraft Caltech101 Cars CIFAR10 CIFAR100 DTD Flowers Food Pets SUN397 VOC2007 Avg.

ImageNet100

(Syn.&Real)

VICReg 23.96 60.29 15.27 80.28 57.11 45.95 60.26 33.40 38.41 29.53 49.07 44.86

Sq&Sp (Ours) 23.88 63.59 15.30 84.37 61.28 49.36 63.41 37.80 43.28 33.04 55.64 48.26
ImageNet

(Syn.&Real)

VICReg 32.39 79.49 22.37 90.09 70.67 58.88 79.97 50.55 59.47 45.76 68.74 59.85

Sq&Sp (Ours) 33.85 80.65 25.71 90.14 70.81 61.75 80.09 50.84 61.01 46.34 68.30 60.86

Table 3: Linear classification performance on 11 downstream classification datasets.

Pre-training Data Method
VOC Detection NYUv2 Surface Normal Estimation ADE Semantic Segmentation

AP ↑ AP50 ↑ AP75 ↑ Mean ↓ Median ↓ 11.25° ↑ 22.5° ↑ 30° ↑ Mean IoU ↑ Accuracy ↑
ImageNet100

(Syn.&Real)

VICReg 33.75 61.73 31.77 34.62 29.70 20.90 39.77 50.40 0.3008 73.19

Sq&Sp (Ours) 41.10 69.07 42.54 33.09 27.47 22.90 42.71 53.47 0.2993 73.25
ImageNet

(Syn.&Real)

VICReg 46.69 75.78 49.07 33.86 28.42 22.08 41.35 52.15 0.3263 74.85

Sq&Sp (Ours) 48.98 77.50 52.85 33.39 28.30 22.27 41.65 52.26 0.3299 75.22

Table 4: Downstream task finetuning performance, including object detection on PASCAL VOC,
surface normal estimation on NYUv2, and semantic segmentation on ADEChallenge2016. ↑ denotes
higher is better while ↓ denotes lower is better.

surface normal estimation and semantic segmentation, and consistently show higher performance
than VICReg.

We believe these results suggest that generator features have strong transferability and great promise
to contribute to self-supervised representation learning.

5.4 Ablation Study

Effect of squeeze and span The effect of our method is studied by adding modules to the vanilla
version of representation distillation (a) one by one. (a)→ (b): After added data augmentation, sig-
nificant improvement can be observed, suggesting that invariant representation to data augmentation
is crucial for linear classification performance. This result inspires us to make teacher representation
more invariant. (b)→ (c): the learnable Tφ is introduced to squeeze out invariant representation as
teacher. However, trivial performance (10% top-1 accuracy, no better than random guess) is obtained,
implying models learn trivial solutions, probably constant output. (c)→ (d) & (e): regularization
terms are added, and the student network now achieves meaningful performance, which indicates
the trivial solution is prevented. Moreover, using both regularizations achieves the best performance,
which outperforms (b) without "squeeze". (e)→ (f): training data is supplemented with real data, i.e.
adding "span", the performance is further improved.

Domain gap issue We calculate the squared MMD [4] of representations of synthetic and real data
to measure their gap in representation space. Table 6 shows “Squeeze and Span” (Sq&Sp) reducesthe
MMD compared to “Squeeze” by an order of magnitude on CIFAR10 and CIFAR100 and a large
margin on STL10, clearly justifying the efficacy of “span” as reducing the domain gap.

87.5141.7120.7811.037.095.224.13
FID (log-scale)
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68
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Squeeze and span
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Figure 4: Representation performance (top-1 accu-
racy) versus generator quality (FID) on CIFAR100.
A better GAN has a lower FID.

Impact of generator We further compare
the performance of our method when we use
GAN checkpoints of different quality. Fig. 4
shows the top-1 accuracy with respect to FID,
which indicates the quality of GAN. It is not
surprising that GAN quality significantly im-
pacts our method. The higher the quality of
generator we utilize, the higher performance
of learned representation our method can at-
tain. It is noteworthy that a moderately trained
GAN (FID < 11.03) is already able to con-
tribute additional performance improvement
on CIFAR100 when compared to VICReg
trained on a mixture of synthetic and real data.
In the appendix, we further analyze the im-
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LRD A Tφ Lvar Lcov Span Top-1 Acc
a X 74.20
b X X 84.48
c X X X 10.00
d X X X X 79.10
e X X X X X 87.67
f X X X X X X 92.54

Table 5: Ablation study on CIFAR10. Tφ
and A denote whether to introduce the learn-
able squeeze module and data augmentation,
respectively. LRD, Lvar, and Lcov represent
whether to enable the correpsonding losses.

Methods Pretrain Data CIFAR10
(×10−5)

CIFAR10-
(×10−5)

STL10
(×10−3)

VICReg [3]
Syn 3.44 5.89 5.39

Real & Syn 3.74 16.8 11.4

Squeeze (Ours) Syn 4.79 1.24 9.82

Sq & Sp (Ours) Real & Syn 0.45 0.25 3.71

Table 6: Squared MMD between synthetic and real
data representation that measures the discrepancy
of representation across domains. Lower number
indicates smaller domain gap.

pact of generator feature choices and GAN
architectures on the distillation performance.

6 Conclusions

This paper proposes to "squeeze and span" representation from the GAN generator to extract transfer-
able representation for downstream tasks like image classification. The key techniques, "squeeze"
and "span", aim to mitigate issues that the GAN generator contains the information necessary for
image synthesis but unnecessary for downstream tasks and the domain gap between synthetic and
real data. Experimental results justify the effectiveness of our method and show its great promise in
self-supervised representation learning. We hope more attention can be drawn to studying GAN for
representation learning.

Limitation and future work The current form of our work still maintains several limitations that
need to be studied in the future. (1) Since we distill representation from GANs, the performance of
learned representation relies on the quality of pretrained GANs and thus is limited by the performance
of the GAN techniques. Therefore, whether a prematurely trained GAN can also contribute to
self-supervised representation learning and how to effectively distill them will be an interesting
problem. (2) In this paper, the squeeze module sets the widely-used transformation-invariance as
the learning objective of representation distillation. We leave other learning objectives tailored for
specific downstream tasks as future work. (3) More comprehensive empirical study with larger scale
is left as future work to further exhibit the potential of our method.
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the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
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(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Section 5.1
and supplementary for thorough implementation details and the source code.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See supplementary material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No]
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(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] See Section 5.1
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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