
A Probabilistic models for classification with learnable soft labels

Including the labels of the pseudodata to the coreset parameters allows more efficient compression,
as our summarizing data now live in an expanded space spanning uncertain pseudolabels. In this case
we have to adapt our variational objective to capture the divergence between the distribution over
the labels corresponding to the soft labeling of the coreset and the predictive distribution under the
current variational posterior. This term can be upper bounded per coreset point indexed by m by
interpreting the soft labels as categorical probabilities and minimising the KL divergence between the
corresponding distribution and the predictive distribution under the approximate posterior as:

DKL

�
p(ym|zm)||Eq(✓) [p(ym|um,✓)]

�
= Ep(ym|zm)

⇥
log p(ym|zm)� logEq(✓) [p(ym|um,✓)]

⇤

 Ep(ym|zm)

⇥
log p(ym|zm)� Eq(✓) [log p(ym|um,✓)]

⇤

= Eq(✓)

⇥
Ep(ym|zm) [log p(ym|zm)� log p(ym|um,✓)]

⇤

= Eq(✓) [DKL (p(ym|zm)||p(ym|um,✓))] , (17)

where the inequality follows from Jensen’s inequality and � log being convex. In this context ym is
seen as a random variable and not a fixed label value. If the zm probabilities are all 1s, corresponding
to the fixed label case, this expression reduces to the expected negative log-likelihood of those labels
under the approximate posterior and we recover the negative log likelihood part of the classical
(negative) ELBO.

B Pseudocode for Sparse VI vs Black-box Sparse VI

For clarity we include an algorithmic description of the incremental version of our black-box scheme
for Sparse VI (Algorithm 3), to be contrasted with the earlier construction of [10] which relies
on estimates of the analytical gradient of the KL divergence between the coreset and the true
posterior (Algorithm 1). The batch version of the black-box Sparse VI construction is presented
in Algorithm 4, where the entire support of the coreset gets jointly optimized without a greedy
selection step. The corresponding pruning strategy, which is designed to shrink a given coreset size to
a coreset with larger sparsity, is described in Algorithm 5. We typically opt for parameterisations of
v that enforce non-negativity (e.g. via the softmax function), hence projection over gradient updates
is generally not required.

14

Algorithm 1 Sparse VI

v 0 2 RM , I ; . Initialise to the empty coreset
for k = 1, . . . ,K do

(✓)Ss=1
i.i.d.⇠ ⇡v . Take S samples from current coreset posterior

B ⇠ UnifSubset ([N], B) . Obtain a minibatch of B datapoints from the full dataset
. Compute likelihood vectors over the coreset and minibatch datapoints for each sample
gs

⇣
f(xm,✓s)� 1

S

PS
r=1 f(xm,✓r)

⌘

m2I
2 RM

g0s
⇣
f(xb,✓s)� 1

S

PS
r=1 f(xb,✓r)

⌘

b2B
2 RB

. Get empirical estimates of correlation over the coreset and minibatch datapoints

[Corr diag
h
1
S

PS
s=1 gsgs

T
i� 1

2
⇣

1
S

PS
s=1 gs

�
N
B 1T g0s � vT gs

�⌘
2 RM

[Corr
0
 diag

h
1
S

PS
s=1 g

0
sg

0
s
T
i� 1

2
⇣

1
S

PS
s=1 g

0
s

�
N
B 1T g0s � vT gs

�⌘
2 RB

. Select next point to be attached via max. correlation with the residual error vector
n? arg max

n2[m][[B]

⇣���[Corr
��� · [n 2 I] + [Corr

0
· [n /2 I]

⌘
, I I [{n?}

. Optimize the weights v via proj. gradient descent using estimates of the analytical gradient
for t = 1, . . . , T do

(✓)Ss=1
i.i.d.⇠ ⇡v

. Compute likelihood vectors over the coreset and minibatch datapoints for each sample
gs

⇣
f(xm,✓s)� 1

S

PS
r=1 f(xm,✓r)

⌘

m2I
2 RM

g0s
⇣
f(xb,✓s)� 1

S

PS
r=1 f(xb,✓r)

⌘

b2B
2 RB

r̂v � 1
S

PS
s=1 gs

�
N
B 1T g0s � vT gs

�
. Compute MC gradients for variational parameters

v max(v � �tr̂v, 0) . Take a projected stochastic gradient step
end for

return v
end for

At test time use (✓)Ss=1
i.i.d.⇠ ⇡v to compute the predictive posterior

Algorithm 2 Correction for sampling under coreset
. Forward inducing and true data through the model using S samples from the coreset variational
approximation ✓ ⇠ r(✓;) and compute p(y|x,✓) 2 RN⇥S , p(z|v,u,✓) 2 RM⇥S

. Compute importance weights for the coreset samples

ws =
MX

i

[log p(zi|ui,vi,✓s)]�DKL (r(✓s;)||p(✓s)) , w̃s =
wsP
s0 ws0

for s = 1, . . . , S.

return Importance weights w̃ and correct marginals using

p̂(y|x) = p(y|x,✓)w̃

15

Algorithm 3 Black-Box Sparse VI [Incremental] (Ours)

v 0 2 RM , g 0 2 RS⇥M , g0 0 2 RS⇥B , I ; . Initialise to the empty coreset
and pick initial for q
for k = 1, . . . ,K do

B ⇠ UnifSubset ([N], B) . Obtain a minibatch of B datapoints from the full dataset
. Optimize wrt on active coreset weighted datapoints with fixed data locations using the
classical ELBO
(✓)Ss=1 ⇠ r(✓;), gs 2 RM , g0s 2 RB . Forward each datapoint through the statistical
model correcting via importance weighting w̃ to obtain the centered likelihood vectors using a
batch S of samples from r (Algorithm 2)
. Get empirical estimates of correlation over the coreset and minibatch datapoints

[Corr diag
h
1
S

PS
s=1 gsgs

T
i� 1

2
⇣

1
S

PS
s=1 gs

�
N
B 1T g0s � vT gs

�⌘
2 RM

[Corr
0
 diag

h
1
S

PS
s=1 g

0
sg

0
s
T
i� 1

2
⇣

1
S

PS
s=1 g

0
s

�
N
B 1T g0s � vT gs

�⌘
2 RB

. Select next point to be attached via max. correlation with the residual error vector
n? arg max

n2[m][[B]

⇣���[Corr
��� · [n 2 I] + [Corr

0
· [n /2 I]

⌘
, I I [{n?}

. Optimize the weights vector v via projected gradient descent
for t = 1, . . . , T do

B ⇠ UnifSubset ([N], B)
(✓)Si=1 ⇠ r(✓;) . Resample and compute importance weights using Algorithm 2
. Compute the outer gradient wrt v using the gradient information of the inner optimization wrt

r̂v autodiff
⇣
�
P
✓i⇠r

h
w̃i log

p(y|x,✓i)
p(y|v,x,✓i) +

1
S log p(y|v,x,✓i)p(✓i)

r(✓i; ?)

i⌘

s.t. ? = argmax

1
S

P
✓i⇠r log

p(|v,x,✓i)p(✓i)
r(✓i;)

v max(v � �tr̂v, 0) . Take a projected stochastic gradient step
end for

return v, ?

end for

At test time predict using r(✓; ?) and correcting via the importance weights w̃.

Algorithm 4 Black-Box Sparse VI [Batch] (Ours)
 0 . Initialize the variational parameters of the model
I ⇠ UnifSubset ([N],M) . Get a minibatch of M random indices of datapoints from the data
v N

M 1I . Assign uniform weights and rescale likelihoods for invariance
for t = 1, . . . , T do

B ⇠ UnifSubset ([N], B)
. Use Algorithm 2 to obtain ✓ ⇠ r(✓;) and the corresponding importance weights w̃
. Compute the outer gradient wrt v using the gradient information of the inner optimization wrt

r̂v autodiff
⇣
�
P
✓i⇠r

h
w̃i log

p(y|x,✓i)
p(y|v,x,✓i) +

1
S log p(y|v,x,✓i)p(✓i)

r(✓i; ?)

i⌘

s.t. ? = argmax

1
S

P
✓i⇠r log

p(|v,x,✓i)p(✓i)
r(✓i;)

v max(v � �tr̂v, 0) . Take a projected stochastic gradient step
end for

return v, ?

At test time predict use r(✓; ?) and correct via the importance weights w̃.

16

Algorithm 5 Black-Box Sparse VI [Batch] Pruning (Ours)

C := {C1, C2, . . .} . Set of coreset sizes in decreasing order for pruning rounds
I1 ⇠ UnifSubset ([N], C1) . Get a minibatch of M random indices of datapoints from the data
v N

C1
1I . Initialize to uniform weights and rescale for full-data evidence

for Ci 2 C do

I ⇠ Multi(v, Ci) . Initialize the pruned coreset points via Ci samples from current coreset
v N

Ci
1I . Reinitialize to uniform weights and rescale

 0 . (Re)initialize the variational parameters of the model
for t = 1, . . . , Ti do

B ⇠ UnifSubset ([N], B)
. Compute the outer gradient wrt v using the gradient information of the inner optimization wrt

r̂v autodiff
⇣
�
P
✓i⇠r

h
w̃i log

p(y|x,✓i)
p(y|v,x,✓i) +

1
S log p(y|v,x,✓i)p(✓i)

r(✓i; ?)

i⌘

s.t. ? = argmax

1
S

P
✓i⇠r log

p(|v,x,✓i)p(✓i)
r(✓i;)

v max(v � �tr̂v, 0) . Take a projected stochastic gradient step
end for

return v, ?

end for

At test time predict using r(✓; ?) and correcting via the importance weights w̃.

17

Table 4: Dataset statistics and hyperparameters for batch coresets used throughout experimental
results of Section 4.

initial learning rate
Dataset D Ntr Nte u v ↵ z � 0 Inner iters Batch size

webspam 128 100, 948 25, 237 10�3 10�4 10�3 10�3 - 10�6 100 256
phishing 11 8, 844 2, 210 10�3 10�3 10�3 10�3 - 10�6 100 256
adult 11 24, 130 6, 032 10�3 10�4 10�3 10�3 - 10�6 100 256
half-moon 2 800 200 10�4 10�2 10�1 10�3 - 10�4 50 128
four-class 2 800 200 10�4 10�2 10�1 10�3 - 10�3 50 128
MNIST (1, 28, 28) 60, 000 10, 000 10�3 10�2 10�2 10�3 10�2 10�10 20 256

Table 5: Hyperparameters for incremental coresets used throughout experimental results of Section 4.
initial learning rate

Dataset Laplace vSparse VI vBB Sparse VI � 0 Inner iters Outer iters Batch size MC samples

webspam 10�3 10�1 10�1 10�1 10�3 200 400 512 64
phishing 10�1 10�1 10�2 10�2 10�6 50 200 256 64
adult 10�1 10�1 10�2 10�2 10�6 50 200 256 32

C Experiments details

In this section we provide additional details for our experimental setup, and further evaluation
including experimentation over extended coreset size ranges, time plots and preliminary results with
hypergradients as an alternative to iterative differentiation for bilevel optimization.

Note that to compute expectations for the posterior predictive of the model f(✓) on the test data
under the variational family given by the intractable true coreset posterior q(✓|u, z), we utilize the
variational program q(✓|u, z;) which involves sampling from r and correcting using the importance
sampling scheme from Algorithm 2:

E
q(✓|u,z)

[f(✓)] ⇡
X

i

w̃if(✓i), with ✓i ⇠ r(✓;). (18)

C.1 Hyperparameters

For the experiments on batch coresets and baselines within the family of mean-field variational
approximations presented in Section 4, we report the optimal mean predictive accuracy achieved,
over independent runs of inference trials, with learning rates for model and coreset parameters taking
values from 10�4 to 10�1 over logarithmic scale. We summarize dataset statistics, corresponding
learning rates, along with the remaining selected hyperparameters (namely initialization of variance
of our variational approximation, length of inner optimization loop and mini-batch size) for batch
constructions of this set of experiments in Table 4. At our estimators we used 10 Monte Carlo samples
from the coreset posteriors.

For incremental coresets we tuned the learning rates of the coreset weights v to higher values: given
that coreset evidence is initialised to 0 in Algorithms 1 and 3, we found empirically that, via allowing
faster growth on the magnitude of the weight vector, the coreset construction can more easily escape
local minima in the small size regime. Moreover, we allowed larger numbers of Monte Carlo samples:
apart from being involved in the gradient estimation, in incremental coreset constructions this quantity
defines the dimension of the geometry used at the greedy next point selection step, hence affording
more samples can allow better selection of the coreset support. Larger learning rates on coreset
parameters imply reduced stability over training iterations and a higher difficulty in hyperparameter
tuning, hence demonstrate in practice the benefits attained by parameterisations that control the
coreset evidence (see Section 3.2). We detail the choices for presented results in Table 5. We denote
by Laplace the learning rate used for fitting Laplace approximation on the logistic regression model
(as done in the Sparse VI construction), as opposed to which is used when fitting a variational

18

Figure 5: Predictive metrics across longer trials for the logistic regression experiment.

model on the coreset data (as done in BB Sparse VI); we also differentiate by indexing the learning
rates for weights for the two Sparse VI constructions.

For the subset Laplace baseline we ran 500 gradient updates of a Laplace approximation with diagonal
covariance, and used the Adam optimizer with learning rate 10�2, minibatches of size 256 and 32
Monte Carlo samples.

For Batch BB Sparse VI pruning we reset optimizers, and reinitialise the model and coreset param-
eters upon application of each pruning step. For the BNN experiment on the synthetic dataset we
successively reduced in rounds from 250 initial datapoints to 100 and finally 20 datapoints, allowing
training for 200 outer gradient updates before applying each pruning step.

In our bilevel problem, both for the nested and for the outer optimization, we use the Adam optimizer
with the default hyperparameter setting of PyTorch implementation [40] and learning rates initialized
per Table 4. For iterative differentiation we used the higher library [21]. For HMC we use
the Pyro [5] implementation through TyXe [46]. Unless otherwise stated these hyperparameter
choices will be followed in the additional experiments of this part. In this section, the labels of the
pseudocoreset datapoints are always kept fixed.

C.2 Computational resources

The entire set of experiments was executed on internal CPU and GPU clusters. For the logistic
regression experiment, we used CPUs allocating two cores with a total of 20GB memory per
inference method, while for the Bayesian neural networks we assigned each coreset trial to a single
NVIDIA V100 32GB GPU.

C.3 Logistic regression

Predictive metrics In Fig. 5 we present the predictive metrics we obtained across our full trials
spanning coreset sizes from 4 to 200 on the 3 logistic regression datasets considered in Section 4.1.
We note that for the incremental coresets we do not have direct control on the exact range of
constructed coreset sizes over the experiment: At each trial we allocate a maximum number of
next point selection steps for these methods, which however acts only as an upper bound of the
attained largest coreset size (as an existing point might be reselected multiple times over the greedy
next point addition steps). Indeed, for the Sparse VI construction [10] the coresets did not grow
beyond 100 datapoints over the course of the experiment, and we did not include this method in the
evaluation of this section. Moreover, for ease of visualization we removed baselines resulting in high

19

Figure 6: Test accuracy vs CPU time requirements with coreset size 100 for variational inference
using a random coreset, PSVI, BB PSVI and BB Sparse VI Batch constructions at the logistic
regression experiment.

variance, including the random coreset and BB-PSVI w/o rescaling. We can notice that the black-box
constructions are capable to converge to the unconstrained mean-field posterior for sufficient coreset
size, while convergence of the original PSVI construction might be limited by the heuristics employed
over gradient computation (see webspam plot). Moreover, pseudocoreset methods achieve better
approximation quality for small coreset size in high dimensions compared to Sparse VI and other
true points selection methods.

Computation time requirements In Fig. 6 we contrast the CPU time requirements for the execu-
tion of BB PSVI, BB Sparse VI, PSVI and the random coreset with M = 100 on our experiment,
under usage of the same computational resources. Both pseudocoreset approaches solve a bilevel
optimization problem, employing though starkly different machinery: BB PSVI relies on nested
variational inference, while PSVI requires drawing samples from the true coreset posterior which are
then used in estimating the analytical expression for the objective gradient. Hence, in the general
case Monte Carlo sampling is required for asymptotically exact computation at every outer gradient
step for PSVI, which makes it more expensive compared to our black-box construction. In practice
a Laplace fit is used to approximate the coreset posterior; hence, making similar assumptions on
the expressiveness of the coreset posterior (mean-field variational family vs Laplace with diagonal
covariance), practical implementations of PSVI share the same order of time complexity with BB
PSVI. However, BB PSVI is able to reach a higher peak (coresponding to the full data approximation
of the selected variational family), as optimization is not hindered by amendments for intractability in
the gradient expression. Finally, the gradient computation for BB PSVI via iterative differentiation—
which was the optimizer of choice in this experiment—generally implies a higher memory footprint,
as tracing the gradient of the inner optimization is required; this requirement can be alleviated via
switching from a nested iterative differentiation optimizer to one that makes use of hypergradient
approximations (see also next subsection).

C.4 Bayesian Neural Networks

Dynamics over the course of inference In Figs. 7 and 8 we present more instances extracted
from the same experimental setting that was demonstrated at convergence (bottom rows) in Figure 3
of Section 4. We can discern the different dynamics in the optimization of pseudodata locations across
our proposed constructions and initializations: Initialized on random noise, BB PSVI dynamics at the
first stages separate the inducing points according to their categories; next, the inducing points are
placed along the decision boundary, and more weight is assigned on data lying on critical locations of
the empirical distributions corresponding to the different classes. Initialized on a random subset of
the true data, BB PSVI convergence gets accelerated as the first two phases of move are not required.
In the case of Batch BB Sparse VI, the locations of the coreset support are fixed, and gradually the
scheme adjusts the weights to the importance of the data, prunes away the ones contributing redundant
statistical information, and focuses on keeping data lying on the ends of the class distributions,
that jointly specify the decision boundaries. Figure 9 demonstrates the evolution of our black-box
variational objective for the coresets over a single trial. We notice that the objective presents more
variance in the first stages of inference for random initialisation, as the noisy datapoints have to move
significantly to discriminate the classes, however it can quickly reach the curve corresponding to the

20

Figure 7: The different dynamics of coreset data optimization at four equidistant instances across the
iterations of our inference trial for BB PSVI with 20 points sampled from a Gaussian, BB PSVI with
initialization on a random subset of size 20, and Batch BB Sparse VI inducing sparsity via stepwise
pruning M = 250! 100! 20 points. Mean-field VI on full-data is also plotted for reference.

subset initialisation. Regarding BB Sparse VI with pruning, we observe that, despite reinitializations
of the network and the coreset point weights, the selection of good summarizing datapoints allows an
overall increase of the variational objective, coping with the enforced shrinkage of the coreset size,
and eventually achieving similar bounds with the coresets that use variational data.

Justification of pruning strategy Considering the interpretation of weights on the coreset data-
points as probabilities of a multinomial distribution that is learned on the data throughout inference in
a way that preserves approximate Bayesian posterior computations (Section 3.2), allows us to justify
our pruning step, where a larger coreset gets replaced by K samples from this distribution. In this
sense, pruning can be thought of as a means to introduce sparsity while minimizing diverging from
the full-data posterior, as this operation corresponds to getting a small number of samples from the
learned multinomial on the data, and retraining the model constrained on this sample.

D Continual learning

In Fig. 10 we apply black-box PSVI in a more challenging learning setting defined on the four class
dataset, similarly to the synthetic data classification experiment presented in [24] for continually
learning inducing points for Gaussian processes—a closely related concept to coresets. Instead of
seeing training data from all 4 classes at once, we start with a 2-class classification problem, and,
over 2 learning stages, the 3rd and 4th class get sequentially revealed. Whenever we move to the next
classification problem, we:

• remove all Nk true training data seen so far, and instead use Nk samples only from the
coreset support according to a multinomial defined via the vector v of coreset point weights,

• augment the coreset support with a new set of learnable datapoints from the most recently
added class, initialising them at a total evidence proportional to the class size, and

21

Figure 8: Counterpart of Fig. 7 with four snapsots over training for the multi-class dataset.

Figure 9: Variational objective vs outer gradient updates for the considered constructions of PSVI
and Batch BB Sparse VI with pruning on the synthetic datasets. BB PSVI optimizes a batch of 20
pseudopoints since the beginning of training, while BB Sparse VI starts with a summary of 250
existing datapoints and gradually shrinks it to a batch of 20 informative datapoints after two rounds
of pruning and retraining.

• reinitialise all variational parameters and adapt the last layer of our architecture to the
number of classes of the new learning stage.

We can notice that the BB PSVI construction is able to successfully represent the historical training
data, addressing the common issue of catastrophic forgetting, and provide representative posteriors
throughout the 3 stages of our continual learning setting. Even though designed to summarise statistics

22

Figure 10: Continual learning setting: A coreset is constructed so that a BNN is fitted incrementally
to the 3 classification tasks. We start with a coreset comprised of 10 points and over tasks 2 and 3 we
increase coreset size to 15 and 20 datapoints respectively.

of earlier tasks, the coreset point locations and weights can be readapted to each new learning task,
keeping the essential statistical information from the past.

E Monte Carlo inference on coresets

Extending on the introductory figure from the main text, in Fig. 11 we assess the results of running
MCMC inference on the extracted variational coresets for a feedforward BNN trained on the halfmoon
data. We visualise 100, 000 samples using Hamiltonian Monte Carlo after a warmup period of 20, 000
samples. We can notice that the variational coreset using BB PSVI is able to perform more intelligent
selection of inducing point locations and weights, e.g. via placing increased importance on the ends
of the halfmoon manifolds, hence being able to represent the original training dataset more compactly.
This is reflected in an approximate posterior that is closer to the corresponding posterior computed
on the full data; in contrast, random subsampling is prune to variance and often misses information
about critical regions of the decision boundary. Overall, accelerating MCMC inference without losing
much statistical information, as achieved via BB PSVI, can lead to better modeling of uncertainty on
large scale data, compared to applying a fully variational treatment.

F Joint optimization of coreset support and variational parameters

In Fig. 12 we visualize the effects of jointly learning optimized coreset points locations and weights,
along with variational parameters using the ELBOPSVI-IS-BB from Eq. (9). If we do not constrain
the learning of variational parameters to the coreset points, these are unable to distill the relevant
information from the true training data for our statistical model. As the joint optimization might be
primarily driven by the true data, the coreset support might end up in non-representative locations

23

Figure 11: Posterior inference results via variational inference and Hamiltonian Monte Carlo on
the full training dataset, a 16-points coreset learned via black-box PSVI, and a 16-points coreset
comprised of uniform weights and datapoints selected uniformly at random. All inference methods
use the halfmoon dataset and the same probabilistic model based on a feedforward BNN.

Figure 12: Effects of joint optimization on coreset posterior, using a feedforward BNN and a
coreset with 20 datapoints on the halfmoon dataset. Blue shades represent predictive uncertainty,
circles the original training data and crosses the coreset point locations with size proportional to the
corresponding inferred weight.

of the data space, potentially resulting in incorrect decision boundaries after removing the original
training datapoints as exhibited in this experiment. The design choices for HMC in this experiment
are identical to Fig. 11.

G Importance sampling vs data dimensionality

In Fig. 13 we visualise the normalized effective sample size (ESS) using 10 Monte Carlo samples
from our approximate posterior evaluated on the test data throughout PSVI inference. ESS takes
consistently non-trivial values (larger than 0.1) even for 200-dimensional data, with a visible de-
creasing trend as data—and hence model—parameters dimensionality increases. Similarly to [12],
the synthetic data for this experiment were generated using covariates xn 2 Rd sampled i.i.d. from
N (0, I), and binary labels generated from the logistic likelihood with parameter ✓ = 5 · 1d. We
generated a total of N = 1, 000 datapoints, with 20% of them used as test data, and constructed
coresets of size M = 20.

24

Figure 13: Normalized effective sample size (with standard errors) vs data dimensionality for
inference using PSVI with 10 Monte Carlo samples in the Bayesian logistic regression model.

H Visualization of MNIST summarizing data

In Fig. 14 we display the learned images and soft-labels for the coreset of size 30 constructed as part
of the MNIST compression experiment. We can notice that the basic features of the original images
are preserved in the pseudo-images, while the soft labels mainly assign larger score to the class of the
corresponding image, and capture the uncertainty between similarly looking classes (e.g. 6 vs 8).

25

Figure 14: Visualization of the images and corresponding soft-labels for 30 pseudodata learned via
black-box PSVI in the MNIST summarization experiment.

26

