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Abstract

Recently complex-valued neural networks have received increasing attention due
to successful applications in various tasks and the potential advantages of better
theoretical properties and richer representational capacity. However, the training
dynamics of complex networks compared to real networks remains an open prob-
lem. In this paper, we investigate the dynamics of deep complex networks during
real-valued backpropagation in the infinite-width limit via neural tangent kernel
(NTK). We first extend the Tensor Program to the complex domain, to show that
the dynamics of any basic complex network architecture is governed by its NTK
under real-valued backpropagation. Then we propose a way to investigate the
comparison of training dynamics between complex and real networks by studying
their NTKs. As a result, we surprisingly prove that for most complex activation
functions, the commonly used real-valued backpropagation reduces the training
dynamics of complex networks to that of ordinary real networks as the widths tend
to infinity, thus eliminating the characteristics of complex-valued neural networks.
Finally, the experiments validate our theoretical findings numerically.

1 Introduction

Recently complex-valued neural networks have been successfully applied to various tasks, such
as time-series prediction [Wisdom et al., 2016], computer vision [Trabelsi et al., 2018], signal
processing [Yao et al., 2020]. Compared to real-valued neural networks, it is shown that complex
networks have the potential to provide richer representational capacity [Arjovsky et al., 2016], faster
learning [Danihelka et al., 2016], better motivation and generalization for signal-related tasks [Hirose
and Yoshida, 2012, Tygert et al., 2016]. Theoretically, there have been significant advances for
complex networks regarding the universal approximation property [Voigtlaender, 2020], critical
points [Nitta, 2002], local minima [Nitta, 2013] and separation results [Zhang et al., 2022].

However, training deep complex networks has been challenging because of several non-intuitive
analytical properties of complex algebra. Firstly, in practice, we often deal with a real-valued cost
function, which is non-analytic with respect to complex-valued parameters. Secondly, Liouville’s
theorem asserts that every bounded and complex-differentiable function is a constant. Thus almost
all activation functions are non-analytic due to the preference for boundedness before the popularity
of ReLU [Scardapane et al., 2018]. Moreover, Voigtlaender [2020] has proved that the universal
approximation property holds only when using non-holomorphic activation functions.

Due to these reasons, different backpropagation algorithms in the complex domain were independently
proposed for non-holomorphic networks [Bassey et al., 2021], mostly by optimizing the real and
imaginary components separately. Recently, real-valued backpropagation [Nitta, 1997] is widely
used due to the convenience of utilizing the real-valued deep learning library [Arjovsky et al., 2016,
Trabelsi et al., 2018, Tan et al., 2020]. It optimized the complex network just like a real network by
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computing partial derivatives of the cost with respect to the real and imaginary parts separately and
achieved state-of-the-art performance.

As a result, a natural and fundamental problem in complex-valued neural networks arises: Do complex
networks have a different inductive bias from real networks during training? Do complex networks
trained by gradient descent tend to learn different hypotheses from real networks? However, to the
best of the authors’ knowledge, the training dynamics of backpropagation for complex networks
compared to real networks remains open.

In this paper, we investigate the training dynamics of deep complex networks under real-valued
backpropagation from neural tangent kernel (NTK) perspective [Jacot et al., 2018], which captures
the optimization behavior of neural networks in the infinite-width limit. Then we provide a way to
investigate the comparison of training dynamics between complex and real networks via their NTKs.
As a result, we obtain informative results which may guide the algorithm selection for complex
networks in practice if people want to take full advantage of complex networks.

Our contributions. Our main contributions can be summarized as follows:

• First, we extend the Tensor Program [Yang, 2020] to the complex domain and show that for
a complex-valued neural network of any basic architecture in the infinite-width limit, the
training dynamics of real-valued backpropagation is determined by kernel gradient descent
with a deterministic NTK at initialization.

• Second, we investigate the comparison of training dynamics between complex and real
networks based on their NTKs. We surprisingly prove that the commonly used real-valued
backpropagation reduces the training dynamics of complex-valued multi-layer perceptrons
(MLPs) to that of ordinary real MLPs as the widths tend to infinity, thus eliminating the
characteristics of complex-valued neural networks. This result holds for most commonly
used complex activation functions, including all split activation functions such as CReLU,
CSigmoid, Ctanh; and part of magnitude-based holomorphic activation functions.

• Finally, we study the results numerically, and the experiments verifies our findings. Specifi-
cally, in several settings with different depths and various activation functions, the NTKs of
complex networks converge to the NTKs of real networks as the widths grow.

Organization. We start with some preliminaries and notations about complex networks and neural
tangent kernels in Section 2. In Section 3, we investigate the NTK of complex-valued neural networks
of any architecture during real-valued backpropagation in the infinite-width limit. Section 4 firstly
presents the NTK of complex MLPs in any depth and then investigates the conditions that training
dynamics of complex-valued MLPs reduce to that of ordinary real MLPs. We verify our results
empirically in Section 5. Finally we discuss the related works and conclude the paper. Due to the
limited space, all proofs are placed in the appendices.

2 Preliminaries

2.1 Complex-Valued Neural Networks

Without loss of generality, we focus on complex-valued neural networks with real-valued output
fθ(z) ∈ Rdout with parameter set θ ∈ Cp, input z ∈ Cd and z = x+yi with x,y ∈ Rd, and trained
by real-valued backpropagation algorithm (also called complex-BP or generalized complex BP, see
Appendix A for more details), which is conventional in the literature [Arjovsky et al., 2016, Wisdom
et al., 2016, Trabelsi et al., 2018, Zhang and Zhou, 2021, Wu et al., 2021, Zhang et al., 2022]. Our
analysis can be naturally applied to complex-valued output by decomposing the real and imaginary
part of output into two functions, or applied to real-valued input by treating its imaginary part as zero.

For an L-hidden layer complex network, we denote the output of last hidden layer as hL ∈ Cn.
Without loss of generality, we consider that the output of a complex network with a linear readout
layer is achieved via

fθ(z) = ℜ{WL+1hL}
where WL+1 ∈ Cn×dout [Wisdom et al., 2016, Zhang et al., 2022]. Note that there are other two
common forms of linear readout layer to generate real-valued output, like fθ(z) = WL+1ℜ{hL}
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where the output weight WL+1 ∈ Rn×dout [Wu et al., 2021], and fθ(z) = WL+1

[
ℜ (hL)
ℑ (hL)

]
where WL+1 ∈ R2n×dout [Arjovsky et al., 2016]. They can be treated as special cases of our settings.

For a complex-valued neural network fθ(z), we can always decompose all the complex operations
into two-dimensional real-valued operations, denoted as f[θR,θI ]([x,y]) where θR, θI ∈ Rp are the
real and imaginary parts of all complex parameters respectively. However, it would be erroneous to
assume that a complex network is equivalent to an ordinary real-valued neural network, because the
operation of complex multiplication limits the degree of freedom [Hirose and Yoshida, 2012].

2.2 Neural Tangent Kernel

For a real-valued deep neural network fθr (x) ∈ Rdout with parameter set θr ∈ Rp and input x ∈ Rd,
its Neural Tangent Kernel (NTK) under gradient descent is defined as

Θ̂r (x,x
′) = ⟨∇θrfθr (x),∇θrfθr (x

′)⟩ (1)
which quantifies the functional gradient descent when taking an infinitely small gradient step on
a new observation. In case fθr corresponds to an infinite width MLP, Jacot et al. [2018] showed
that Θ̂r (x,x

′) converges to a limiting kernel Θ̊r (x,x
′) at initialization and remains frozen during

training, i.e.,

lim
n→∞

Θ̂t
r (x,x

′) = lim
n→∞

Θ̂0
r (x,x

′) = Θ̊r (x,x
′) ∀ training time t,

which could give an accurate description of training dynamics with kernel gradient descent trajectory.
Thus a infinitely wide neural network is governed by a linear model based on its first order Taylor
expansion in the parameter space [Lee et al., 2019].

Tensor Programs. After the original NTK was derived from multi-layer perceptrons, it is soon
extended to a variety of network structures including convolution neural networks (CNTK) [Arora
et al., 2019], recurrent neural networks (RNTK) [Yang, 2019a, Alemohammad et al., 2020], graph
neural networks (GNTK) [Du et al., 2019] and so on. Importantly, Yang [2020], Yang and Littwin
[2021] propose NETSOR⊤ program, a basic form in Tensor Programs series, and prove that for a real-
valued neural network of any architecture that can be represented by NETSOR⊤ program language,
its NTK converges to a deterministic limit and stays frozen during training in the infinite-width limit.

Neural Tangent Kernel of complex networks. For a complex-valued neural network fθ(z), also
denoted as f[θR,θI ]([x,y]), when it is trained by real-valued backpropagation, the empirical neural
tangent kernel is as follows due to that the real and imaginary parts are optimized separately

Θ̂ (z, z′) = ⟨∇θfθ(z),∇θfθ (z
′)⟩ = ⟨∇θRfθR(z),∇θRfθR (z′)⟩+ ⟨∇θIfθI (z),∇θIfθI (z

′)⟩ .
We can always rewrite the NTK as Θ([x,y], [x′,y′]). Note that at each layer of complex networks
in both feed-forward and backward procedure, complex matrix multiplication structure leads to
numerous interactions and weight sharing between the real and imaginary parts, which makes the
analysis of the complex NTK challenging.

3 Complex Tensor Program

In this section, we show that complex-valued neural networks of any basic architecture also have
NTK behavior in the infinite-width limit: the training dynamics of real-valued backpropagation is
determined by kernel gradient descent with its NTK at initialization. Specifically, we extend the
simplified NETSOR⊤ program [Yang, 2020] to the complex domain, and propose the basic Complex
Tensor Program (CTP). Note that the complex networks are mostly non-holomorphic, thus we do not
require the complex tensor program to represent the backward propagation of the complex networks.

Definition 1 (Complex Tensor Program) Given an initial set V of random Cn vectors and a set W
of random Cn×n complex matrices, a sequence of Cn vectors is called a complex tensor program if
they are recursively generated through one of the following ways:

ComNonlin Given ϕ : Ck → C and z1, . . . ,zk ∈ Cn, generate ϕ(z1, . . . ,zk) ∈ Cn;

ComMatMul Given W ∈ Cn×n and z ∈ Cn, generate Wz ∈ Cn.
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Obviously, the complex tensor program could represent the forward procedures of all basic complex
network architectures, such as the generic feed-forward full-connected complex networks [Nitta,
2004], the complex-valued recurrent neural networks [Wisdom et al., 2016] and complex-valued
convolutional neural networks [Trabelsi et al., 2018, Tan et al., 2020].

3.1 Complex network setup

This subsection introduces the settings and assumptions of complex networks considered. Firstly we
introduce the required assumption for activation functions of complex networks, which generalizes
the assumption in Yang [2020] to the complex domain.

Assumption 2 We assume that the complex activation function ϕ : Ck → C used in the complex
networks and its derivative are polynomially-bounded, i.e., ϕ(z) satisfies that |ϕ(z)| ≤ C∥z∥p + c
for some C, p, c > 0 and z ∈ Ck; so is its derivative.

It is worth mentioning that numerous activation functions have been proposed to deal with complex-
valued representations and basically they satisfy the assumption. For example, the most commonly
used complex sigmoid function CSigmoid [Nitta, 1997, 2004] and complex hyperbolic tangent
function Ctanh [Nitta, 2002], which apply sigmoid and hyperbolic tangent function respectively to
the real part and imaginary part separately; Moreover, the recently proposed ReLU-based complex
activation functions like CReLU [Trabelsi et al., 2018, Tan et al., 2020], zReLU [Guberman, 2016]
and modReLU [Arjovsky et al., 2016] also satisfy the assumption.

Complex NTK parametrization. For the complex weights, we initialize each W ∈ W with
W = A +Bi = σA√

n
A + σB√

n
Bi where Aαβ , Bαβ ∼ N (0, 1), which we refer to as complex NTK

parametrization. Without loss of generality, we set the variances of real and imaginary parts of
all layers as σA and σB respectively in the following paper. It naturally extends the real-valued
NTK parametrization [Jacot et al., 2018, Lee et al., 2019] to complex parameters. Note that this
parametrization is non-vacuous because many previous works [Nitta, 1997, 2004] choose to initialize
the real and imaginary parts separately.

Setup. Consider a complex-valued neural network fθ(z) with complex NTK parametrization, its
feed-forward procedure can be represented by a complex tensor program and complex activation
functions all satisfy Assumption 2. Suppose that there is a multivariate Gaussian NV defined on
R2|V| such that the real and imaginary variables of the initial set of vectors V are sampled like
{ℜ[q]α : q ∈ V} ∪ {ℑ[q]α : q ∈ V} ∼ NV i.i.d. for each coordinate α ∈ [n]. For the output readout
matrix WL+1, we also adopt complex NTK parametrization, and it is sampled independently from
all other parameters and is not used anywhere else in the interior of the network. Without loss of
generality, the network is trained by SGD with batch-size 1 and learning rate 1.

3.2 NTK for any complex network

Theorem 3 (Complex NTK at initialization) Consider a complex-valued neural network fθ(z)
with above setup, then as its widths go to infinity, its NTK Θ̂(z, z′) at initialization converges almost
surely to a deterministic limiting kernel Θ̊(z, z′) over any finite set of inputs.

Corollary 4 (Complex NTK during training) Consider training a complex-valued neural network
fθ(z) with above setup. At training time t, denote the input sample as zt and the loss function as
Lt : R → R. Suppose Lt is continuous for all t. Then as widths approach infinity, for any z ∈ Cd

and training time t, ft(z) converges almost surely to a random variable f̊t(z) and

f̊t+1(z)− f̊t(z) = −Θ̊ (z, zt)L′
t

(
f̊t (zt)

)
, (2)

where Θ̊ (z, zt) is the limiting NTK of the complex network at initialization.

The proofs of Theorem 3 and Corollary 4 are given in Appendix B. Theorem 3 and Corollary 4 show
that for a complex-valued neural network of any architecture trained by real-valued backpropagation,
its NTK at initialization converges to a deterministic limiting kernel in the infinite-width limit, and
the training dynamics is determined by kernel gradient descent with the NTK at initialization.
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4 Comparison of training dynamics between complex and real networks

In this section, we focus on the important problem: when will complex networks have different
inductive bias during training from real networks? The problem can not be solved unless the
training dynamics of complex networks could be captured. Based on the NTK theory obtained in
Section 3, we could provide a way to compare the training dynamics of complex and real networks
by comparing their NTKs. Specifically, we have derived the NTK formula of complex multi-layer
perceptrons (MLPs) and investigated the conditions under which complex MLPs trained by real-
valued backpropagation will reduce to ordinary real MLPs in the infinite-width limit.

4.1 Neural Tangent Kernel of complex multi-layer perceptrons

This subsection presents the NTK formula of the most generic complex network, i.e., the L-hidden
layer complex MLPs.

The network performs the following computation at layer l ∈ [1, L]

hl = sl + rli = ϕ(Wlhl−1) = ϕ ((Al +Bli)(sl−1 + rl−1i)) , (3)
where Wl = Al+Bli is the complex weight matrix and hl = sl+rli with hl ∈ Cn is the output of
l-th layer. For the first layer, we set s0 = x and r0 = y where z = x+ yi and z ∈ Cd. Besides, the
output of the complex network with a linear read-out layer is achieved via fθ(x) = Re{WL+1hL}
where WL+1 ∈ Cn×dout . Suppose all activation functions ϕ satisfy the Assumption 2. Complex
NTK parametrization is applied for all complex parameters W1 ∈ Cd×n,WL+1 ∈ Cn×dout and
Wl ∈ Cn×n for l ∈ [2, L].

We denote the real part of the l-th hidden layer pre-activation as αl(z) and the imaginary part as
βl(z). In the feed-forward procedure, we denote the covariance kernel functions between the real
and imaginary part of the pre-activations respectively as

Σl
α (z, z′) = E

θ∼N

[
αl(z)

⊤αl (z
′) /n

]
, Σl

α,β (z, z
′) = E

θ∼N

[
αl(z)

⊤βl (z
′) /n

]
, (4)

Σl
β (z, z

′) = E
θ∼N

[
βl(z)

⊤βl (z
′) /n

]
, Σl

β,α (z, z′) = E
θ∼N

[
βl(z)

⊤αl (z
′) /n

]
. (5)

In the backward procedure, we denote the gradient vector of the real part of the l-th hidden
layer pre-activation as δlα(z) :=

√
n
(
∇αl(z)fθ(z)

)
and that of the imaginary part as δlβ(z) :=√

n
(
∇βl(z)

fθ(z)
)
. Similarly, we denote the covariance kernel functions of the gradient vector

between the real and imaginary part of the pre-activations respectively as

Πl
α (z, z′) = E

θ∼N

[
δlα(z)

⊤δlα(z
′)/n

]
, Πl

α,β (z, z
′) = E

θ∼N

[
δlα(z)

⊤δlβ(z
′)/n

]
, (6)

Πl
β (z, z

′) = E
θ∼N

[
δlβ(z)

⊤δlβ(z
′)/n

]
, Πl

β,α (z, z′) = E
θ∼N

[
δlβ(z)

⊤δlα(z
′)/n

]
. (7)

Theorem 5 For a L-hidden layer complex MLP, with all activation functions satisfying Assumption 2,
in the limit as all widths n → ∞, the empirical NTK at initialization converges to the following
limiting kernel

lim
n→∞

Θ̂ (z, z′) = Θ̊ (z, z′) = Θ (z, z′)⊗ Idout
(8)

where

Θ(z, z′) =

L∑
l=1

(
Πl

α(z, z
′)Σl

α(z, z
′) + Πl

β(z, z
′)Σl

β(z, z
′) (9)

+Πl
α,β(z, z

′)Σl
α,β(z, z

′) + Πl
β,α(z, z

′)Σl
β,α(z, z

′)
)
+ΣL+1

α (z, z′) (10)

where the covariance functions Σl
α,Σ

l
β ,Π

l
α,Π

l
β are defined in Eq. 4-7.

The result is proved in the Appendix C, where the detailed recursions of intermediate kernels for the
NTK calculation are also presented.

Note that the NTK formula of a complex MLP looks very different from the NTK of a real MLP
given by Jacot et al. [2018] due to the existence of interaction between real and imaginary parts,
which is caused by joint weight sharing in complex matrix multiplication. However, if we go deeper,
does there exist situations that the NTK of a complex MLP will reduce to that of a real MLP?
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4.2 Asymptotic equivalence of training dynamics

In this subsection, we provide our main results. Surprisingly, we show that, for commonly used
complex activation functions, complex networks trained by real-valued backpropagation have the
same inductive bias as real networks during training in the infinite-width limit.

We first define asymptotic equivalence between neural networks, which represents a perspective to
investigate when will a complex network have different inductive bias from a real network during
training. It also helps if we change the network structure or backpropagation algorithms.

Definition 6 Two neural networks trained by gradient descent are asymptotic equivalent , if as all
widths go to infinity, their neural tangent kernels Θ̂ converge to the same deterministic limit Θ̊ at
initialization and have the same optimization trajectory during training.

The following theorem is our main result: if we train complex networks with real-valued back
propagation, under very common conditions, the complex MLPs are asymptotic equivalent with real
MLPs, thus they have the same training dynamics.

Theorem 7 Consider a complex MLP in Eq. (3) and an ordinary real MLP with L hidden layers
trained by real-valued backpropagation. Suppose σA = σB at initialization and the activation
functions satisfy Assumption 2. As the widths go to infinity, they are asymptotic equivalent if the
activation functions satisfy one of the following conditions

Condition 1 All split activation functions ϕ satisfying ϕ(α, β) = ϕR(α) + ϕR(β)i, where ϕR
is a real-valued activation function;

Condition 2 A subset of holomorphic activation functions ϕ satisfying ϕ2(α, β) = ϕ1(β,−α)
and ∂ϕ1(α,β)

∂β = ∂ϕ2(α,β)
∂α = 0,

where the general complex activation function is denoted as ϕ(α, β) = ϕ1(α, β) + ϕ2(α, β)i with
input pre-activations α+ βi.

In the Appendix D the result is proved and we also give the sufficient and necessary conditions.
For simplicity, here we only show the most informative conditions. The key idea of the proof is
transforming asymptotic equivalence into four complex conditions and find the common solutions
based on Rules.F.13 in Appendix F.

Discussion about the Condition 1. Note that most commonly used complex activation functions
satisfy the Condition 1:

ϕ(z) = ϕR(ℜ(z)) + ϕR(ℑ(z))i
like complex sigmoid function [Benvenuto and Piazza, 1992, Nitta, 1997], complex hyperbolic
tangent function [Hirose and Yoshida, 2012], etc. It is also worth mentioning that the recently
proposed ReLU-based complex activation function CReLU also satisfies the Condition 1, which has
achieved the best performance in feed-forward complex networks in image processing tasks [Trabelsi
et al., 2018, Tan et al., 2020] among all ReLU-based complex activation functions.

Remark 8 Because of Liouville’s theorem, the only complex-valued functions that are bounded and
analytic everywhere are constants. Thus in practice, one must choose between boundedness and
analyticity for a complex activation function. Before the popularity of ReLU, almost all activation
functions in the real case were bounded. Consequently, previous works about complex networks
always preferred non-analytic functions to preserve boundedness. Most commonly they applied split
activation functions separately to the real and imaginary parts, as investigated in Bassey et al. [2021]
and Scardapane et al. [2018]. So the condition contains most complex networks in practice.

As a result, the theorem demonstrates that for complex networks with all these common complex
activations, if they are trained by real-valued BP, then these complex networks reduce to real networks
as widths grow, despite the joint interaction weight sharing caused by complex matrix multiplication
structure. Consequently, real-valued backpropagation totally eliminates the characteristics of complex
networks at infinite width. This may guide the selection of training algorithm in practice if people
want to take full advantage of complex networks, and encourage people to explore learning algorithms
specially designed for complex networks.
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Figure 1: Convergence of complex NTKs to corresponding real NTKs at initialization. One input
z = 1− i is fixed and the other input z′ = cosα+ sinαi varies with α ∈ [0, 2π]. The black line is
the limiting NTKs of real MLPs Θ̊r(z, z

′) while the light blue and blue ones are empirical NTKs of
complex MLPs Θ̂(n)

0 (x, x′) with widths n = 100 and 1000. For each width, Θ̂(n)
0 (z, z′) is calculated

100 times randomly, corresponding to 100 lines in the figure.

Discussion about the Condition 2. Condition 2 is also non-vacuous since it is a subset of Cauchy-
Riemann condition. It includes all the magnitude-based ReLU-type complex activation functions.
For example, we can easily obtain a modified modReLU [Arjovsky et al., 2016] and a modified
phase-based ReLU satisfying Condition 2 as follows

ϕ(z) =

{
z if |z| ≥ ρ,

0 otherwise.
ϕ(z) =

{
z if g(cos θz) ≤ γ,

0 otherwise.

where g(cos θz) can be any function of phase cos θz . Note that, these activation functions are
analytic almost everywhere, and according to previous theory, they enjoy better theoretical results
like separation results [Zhang et al., 2022] and local minima [Wu et al., 2021]. However, our results
indicate that real-valued backpropagation eliminates these advantages of complex networks in the
infinite-width limit, which further illustrates the inappropriateness of real-valued backpropagation.

5 Empirical study

In this section, we empirically verify the relationship between NTKs of the complex networks and
real networks, and investigate the network widths required for the establishment of our results.
We consider complex-valued MLPs with one or two hidden layers and we use CReLU, modified
modReLU, CSigmoid, Ctanh and zReLU as the activation functions. Note that all these activation
functions satisfy the conditions of our theorem except zReLU. Through the following experiments,
we want to check whether the empirical complex NTKs Θ̂(n)

t converge to the corresponding real
NTKs Θ̊r with different activation functions as the widths n grow.

For real networks, the input is the concatenated vector of the real and imaginary parts of the complex-
valued input. Corresponded to the complex-valued fully-connected layer, we use the commonly used
real-valued fully-connected layer without complex matrix multiplication structure. To implement
the corresponding activation functions, complex-valued activation functions are transformed to real-
valued ones in the following way: we divide the pre-activation vector into two half, treat the first
half as real parts and the second as imaginary parts, as the input of ϕ(α, β). Then we concatenate
the real and imaginary parts after activation. For split activation functions like CReLU, it can just
correspond to real ReLU activation. In NTK initialization, the standard deviations are set as 1 for
complex networks and scaled to

√
2 for real networks. All empirical NTKs of complex networks are

calculated based on the Neural Tangents library [Novak et al., 2019].
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Figure 2: Convergence of complex NTKs to corresponding real NTKs under various activation
functions with a larger range of widths. The Y-axis is the difference between empirical complex
NTKs and the corresponding real NTKs in terms of the relative Frobenius norm. At each point the
relative Frobenius norm is calculated 20 times and the mean value is shown. Left: three kinds of
split activation functions satisfying our conditions. Right: other complex-valued activation functions
where modified modReLU satisfies conditions and zReLU does not.

Verifying asymptotic equivalence at initialization. The first experiment shows the distribution
of empirical NTKs of complex MLPs Θ̂(n)

t (z, z′) and analytic NTKs of real MLPs Θ̊r(z, z
′) with

different z′ at initialization on a synthetic dataset. We define z = 1 − i and z′ = cosα + sinαi

for α ∈ [0, 2π]. Then we can view Θ̂
(n)
t (z, z′) and Θ̊r(z, z

′) as functions of α. For the complex
networks, we calculate empirical NTKs for hidden layer widths n = 100, 1000 at initialization and
hidden layer number l = 1, 2. In each case, we calculate Θ̂(n)

t (z, z′) 100 times with different random
NTK initialization. We compare these empirical complex NTKs with corresponding real NTKs. In
the case of CReLU, we calculate Θ̊r by the analytic form solution of NTK [Cho and Saul, 2009];
in the case of zReLU and modified modReLU, it’s hard to get the closed form solution, so we use
the average of a large mount of wide empirical NTKs to approximate Θ̊r. The results are shown
in Figure 1. In the figure we observe that for CReLU and modified modReLU, which satisfy our
conditions, their NTKs Θ̂(n)

0 concentrate to the NTKs of real MLPs Θ̊r perfectly, and when n = 1000,
the convergence is more concentrated and the complex NTKs almost equal to real NTKs; for zReLU
which does not satisfy the conditions, there’s a gap between complex and real NTKs. Therefore, the
results verify our theorem perfectly and demonstrate our results are non-vacuous.

Verifying asymptotic equivalence with more activation functions as widths grow much larger.
In the first experiment, although for zReLU there is a gap between complex and real networks, the ten-
dency is still similar. For the second experiment, we do the similar experiment on the same synthetic
dataset, to see what will happen when n becomes much larger, so that it can be more convincing to
verify whether it converges. Besides, we consider more different activation functions which satisfy
our conditions including CReLU, CSigmoid, Ctanh and modified modReLU with different hyper-
parameters ρ. We calculate relative Frobenius norm ∥Θ̂(n)

0 (X,X)− Θ̊r(X,X)∥F /∥Θ̊r(X,X)∥F on
set X with widths n ranging from 25 to 213, which measures the difference between complex NTKs
Θ̂

(n)
0 and real NTKs Θ̊r. Figure 2 shows the result. For all those split activation functions(CReLU,

CSigmoid and Ctanh), the tendency of convergence remains unchanged even when the width n goes
to quite a large number 213. The two curves of modified modReLU act similarly with that of split
activation functions; However, the curve of zReLU does not converge at all at initialization.

Verifying asymptotic equivalence during training. The third experiment investigates the conver-
gence of difference between complex NTKs Θ̂(n)

t and real NTKs Θ̊r during training as the widths go
to infinity on MNIST [LeCun et al., 1998]. We randomly choose a subset of MNIST as training set
D = (X,Y ) (|D| = 128), and treat the first half of features as real parts, the second half as imaginary
parts. Then we calculate relative Frobenius norm between empirical NTKs of complex networks at
time t and real NTKs at initialization with widths n ranging from 25 to 210 at initialization (t = 0)
and during training (t = 1000). Due to the memory limitations, we cannot try larger n. The learning
rate η is 0.5 for l = 1 and 0.2 for l = 2. The results are shown in Figure 3. We can see that in all
these cases, the relative Frobenius norm decreases as n goes up, regardless of the training steps and

8



25 26 27 28 29 210

n
2 5

2 4

2 3

2 2

2 1

20

21

(n
)

t
r

F
/

r
F

CReLU
t=0, L=1
t=1000, L=1
t=0, L=2
t=1000, L=2

25 26 27 28 29 210

n

2 4

2 3

2 2

2 1

20

21

(n
)

t
r

F
/

r
F

modified modReLU, = 0.5
t=0, L=1
t=1000, L=1
t=0, L=2
t=1000, L=2

Figure 3: Convergence of complex NTKs to corresponding real NTKs as widths grow during
training. The Y-axis is the difference between empirical complex NTKs and the corresponding real
NTKs in terms of the relative Frobenius norm. At each point the relative Frobenius norm is calculated
20 times and the mean value is shown. The solid line indicates one hidden layer (L = 1) while the
dashdot line indicates two hidden layers (L = 2). The square marker indicates t = 0 (at initialization)
while the circle marker indicates t = 1000 (during training).

hidden layer numbers. Therefore, our theoretical results hold during training. More experiments
verifying asymptotic equivalence can be found in Appendix E.

Empirical results. Overall, in the case of complex activation functions satisfying our theorems,
such as CReLU and modified modReLU, complex NTKs Θ̂(n)

t converges to real NTKs Θ̊r quite
well even the widths are about 1000; in the case of complex activation function that does satisfy our
theorems like zReLU, the convergence from the complex NTK Θ̂

(n)
0 to the real NTK Θ̊r does not

occur. This validates our theory perfectly and demonstrates that our conditions are non-vacuous.

6 Related work

Long before the popularity of deep learning, there have been many investigations on complex-
valued neural networks [Hirose, 1992, Benvenuto and Piazza, 1992, Nitta, 1997]. However, It
is always challenging to train complex networks due to some non-intuitive analytical properties,
of which the most notable reason is that almost all cost functions are real-valued and thus non-
holomorphic. In order to perform backpropagation for complex networks, the conventional approach
to overcome the limitation is to use separate derivatives with respect to the real-imaginary parts
of a non-analytic function [Nitta, 2004], or split amplitude-phase parts [Hirose, 1992]. Hirose and
Yoshida [2012] has shown that split backpropagation for amplitude-phase parts could achieve better
generalization than real networks on signal processing tasks. Recently Wirtinger calculus [Wirtinger,
1927] has received increasing attention [Adali et al., 2011, Bassey et al., 2021], which presents
an elegant formulation to derive complex-valued gradient, Jacobian, and Hessian. The real-valued
backpropagation [Nitta, 1997] is most widely used, and it becomes essential for training deep complex
networks due to the convenience of utilizing the real-valued deep learning library [Arjovsky et al.,
2016, Trabelsi et al., 2018, Tan et al., 2020] and achieves state-of-the-art performance. Theoretically,
there have been important advances for complex networks regarding the universal approximation
property [Voigtlaender, 2020], local minima [Nitta, 2013, Wu et al., 2021], separation results [Zhang
et al., 2022]. However, to our best knowledge, there is still no theoretical analysis of the training
dynamics of complex networks and the equivalence after training between complex and real networks.

7 Conclusion

In this paper, we propose a way to compare the training dynamics between complex and real networks
based on their neural tangent kernels (NTKs). Surprisingly, we find that the commonly used real-
valued backpropagation reduces the training dynamics of complex-valued MLPs to that of ordinary
real MLPs as the widths tend to infinity, thus eliminating the characteristics of complex-valued neural
networks. Empirical study verifies that our results are practical for commonly used complex activation
functions. The results encourage the design of new training algorithms for complex networks in
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the future. Besides, the proposed asymptotic equivalence of training dynamics between networks
provides a new perspective for theoretical analysis of neural networks, which may offer a possibility
to divide various neural network architectures into equivalence classes.

Acknowledgment

This research was supported by NSFC (62176117, 61921006) and Collaborative Innovation Center of
Novel Software Technology and Industrialization, and the Program B for Outstanding PhD candidate
of Nanjing University. The authors would like to thank Jin-Hui Wu and Peng Zhao for helpful
discussions. We are also grateful for the anonymous reviewers for their valuable comments.

References
Tülay Adali, Peter J Schreier, and Louis L Scharf. Complex-valued signal processing: The proper

way to deal with impropriety. IEEE Transactions on Signal Processing, 59(11):5101–5125, 2011.

Sina Alemohammad, Zichao Wang, Randall Balestriero, and Richard Baraniuk. The recurrent neural
tangent kernel. In International Conference on Learning Representations, 2020.

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In
International Conference on Machine Learning, pages 1120–1128, 2016.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. In Advances in Neural Information Processing
Systems, pages 8139–8148, 2019.

Joshua Bassey, Lijun Qian, and Xianfang Li. A survey of complex-valued neural networks. arXiv
preprint arXiv:2101.12249, 2021.

Nevio Benvenuto and Francesco Piazza. On the complex backpropagation algorithm. IEEE Transac-
tions on Signal Processing, 40(4):967–969, 1992.

Youngmin Cho and Lawrence Saul. Kernel methods for deep learning. In Advances in Neural
Information Processing Systems, pages 342–350, 2009.

Ivo Danihelka, Greg Wayne, Benigno Uria, Nal Kalchbrenner, and Alex Graves. Associative long
short-term memory. In International Conference on Machine Learning, pages 1986–1994, 2016.

Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and Keyulu
Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels. In Advances
in Neural Information Processing Systems, pages 5724–5734, 2019.

Nitzan Guberman. On complex valued convolutional neural networks. arXiv preprint
arXiv:1602.09046, 2016.

Akira Hirose. Continuous complex-valued back-propagation learning. Electronics Letters, 28(20):
1854–1855, 1992.

Akira Hirose and Shotaro Yoshida. Generalization characteristics of complex-valued feedforward
neural networks in relation to signal coherence. IEEE Transactions on Neural Networks and
Learning Systems, 23(4):541–551, 2012.

Arthur Jacot, Clément Hongler, and Franck Gabriel. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in Neural Information Processing Systems, pages
8580–8589, 2018.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha
Sohl-Dickstein. Deep neural networks as gaussian processes. In International Conference on
Learning Representations, 2018.

10



Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. In Advances in Neural Information Processing Systems, pages 8572–8583,
2019.

Tohru Nitta. An extension of the back-propagation algorithm to complex numbers. Neural Networks,
10(8):1391–1415, 1997.

Tohru Nitta. On the critical points of the complex-valued neural network. In Proceedings of the 9th
International Conference on Neural Information Processing, pages 1099–1103, 2002.

Tohru Nitta. Orthogonality of decision boundaries in complex-valued neural networks. Neural
Computation, 16(1):73–97, 2004.

Tohru Nitta. Local minima in hierarchical structures of complex-valued neural networks. Neural
Networks, 43:1–7, 2013.

Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A Alemi, Jascha Sohl-Dickstein,
and Samuel S Schoenholz. Neural tangents: Fast and easy infinite neural networks in python. In
International Conference on Learning Representations, 2019.

Simone Scardapane, Steven Van Vaerenbergh, Amir Hussain, and Aurelio Uncini. Complex-valued
neural networks with nonparametric activation functions. IEEE Transactions on Emerging Topics
in Computational Intelligence, 4(2):140–150, 2018.

Xiaofeng Tan, Ming Li, Peng Zhang, Yan Wu, and Wanying Song. Complex-valued 3-d convolutional
neural network for polsar image classification. IEEE Geoscience and Remote Sensing Letters, 17
(6):1022–1026, 2020.

Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy Serdyuk, Sandeep Subramanian, Joao Felipe
Santos, Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio, and Christopher J Pal. Deep complex
networks. In International Conference on Learning Representations, 2018.

Mark Tygert, Joan Bruna, Soumith Chintala, Yann LeCun, Serkan Piantino, and Arthur Szlam. A
mathematical motivation for complex-valued convolutional networks. Neural Computation, 28(5):
815–825, 2016.

Felix Voigtlaender. The universal approximation theorem for complex-valued neural networks. arXiv
preprint arXiv:2012.03351, 2020.

Wilhelm Wirtinger. Zur formalen theorie der funktionen von mehr komplexen veränderlichen.
Mathematische Annalen, 97(1):357–375, 1927.

Scott Wisdom, Thomas Powers, John Hershey, Jonathan Le Roux, and Les Atlas. Full-capacity
unitary recurrent neural networks. In Advances in Neural Information Processing Systems, pages
4880–4888, 2016.

Jin-Hui Wu, Shao-Qun Zhang, Yuan Jiang, and Zhi-Hua Zhou. Towards theoretical under-
standing of flexible transmitter networks via approximation and local minima. arXiv preprint
arXiv:2111.06027, 2021.

Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior,
gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760,
2019a.

Greg Yang. Tensor programs i: Wide feedforward or recurrent neural networks of any architecture
are gaussian processes. In Advances in Neural Information Processing Systems, pages 9947–9960,
2019b.

Greg Yang. Tensor programs ii: Neural tangent kernel for any architecture. arXiv preprint
arXiv:2006.14548, 2020.

Greg Yang and Etai Littwin. Tensor programs iib: Architectural universality of neural tangent kernel
training dynamics. In International Conference on Machine Learning, pages 11762–11772, 2021.

11



Xin Yao, Xiaoran Shi, and Feng Zhou. Human activities classification based on complex-value
convolutional neural network. IEEE Sensors Journal, 20(13):7169–7180, 2020.

Shao-Qun Zhang and Zhi-Hua Zhou. Flexible transmitter network. Neural Computation, 33(11):
2951–2970, 2021.

Shao-Qun Zhang, Wei Gao, and Zhi-Hua Zhou. Towards understanding theoretical advantages of
complex-reaction networks. Neural Networks, 151:80–93, 2022.

12



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 3 for assumptions.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3
for assumptions.

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [No]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [N/A] The numerical experiments only aim to verify the
theoretical results.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A] The numerical experiments only
aim to verify the theoretical results.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] MNIST.
(b) Did you mention the license of the assets? [N/A] MNIST. GNU General Public

License v3.0
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13



A Complex Backpropagation

A.1 Holomorphic Functions

Consider first a complex-valued function f(z) = u(x, y) + v(x, y)i where z = x+ yi. The classical
definition of complex differentiability requires that the derivatives defined as the limit

f ′ (z0) = lim
∆z→0

f (z0 +∆z)− f (z0)

∆z

are independent of the direction in which ∆z approaches 0 in the complex plane. In order to be
complex differentiable, f(z) should satisfy

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

They are called the Cauchy-Riemann equations, which give a necessary condition for complex
differentiability. If the partial derivatives of u(x, y) and v(x, y) are continuous, then the Cauchy-
Riemann equations become a sufficient condition as well. A function that is complex differentiable
on its entire domain is called holomorphic or analytic.

A.2 Real-valued backpropagation for deep complex networks

Obviously, for complex neural networks with real-valued output, the network function fθ(z) is not
analytic because vθ(x, y) ≡ 0 and thus the Cauchy-Riemann conditions do not hold. Even for
complex neural networks with complex-valued output, in general the Cauchy-Riemann conditions
do not hold either because the loss function is real-valued. In order to perform backpropagation
in a complex neural network, the conventional approach to overcome this limitation is to use the
separate derivatives with respect to the real and imaginary parts of a non-analytic function [Nitta,
1997, Arjovsky et al., 2016, Trabelsi et al., 2018, Zhang and Zhou, 2021]. Thus we only require that
the output functions of each layer have continuous partial derivatives with respect to the real and
imaginary parts. Such functions are called real-differentiable. For this purpose, it is needed that all
the activation functions in the complex networks are real-differentiable.

If fθ(z) is a complex network function and v is a complex weight with v = v1+v2iwhere v1, v2 ∈ R,
then

∇vf(z) =
∂f

∂v
=

∂f

∂v1
+
∂f

∂v2
i = ℜ(∇vf(z)) + ℑ(∇vf(z))i.

If we have another complex weight w = w1 + w2i where w1, w2 ∈ R and v could be expressed in
terms of w, then we have the generalized complex chain rule as follows

∇wf(z) =
∂f

∂w
=

∂f

∂w1
+

∂f

∂w2
i =

∂f

∂v

∂v

∂w1
+
∂f

∂v

∂v

∂w2
i

=
∂f

∂v1

∂v1
∂w1

+
∂f

∂v2

∂v2
∂w1

+

(
∂f

∂v1

∂v1
∂w2

+
∂f

∂v2

∂v2
∂w2

)
i

=
∂f

∂v1

(
∂v1
∂w1

+
∂v1
∂w2

i

)
+
∂f

∂v2

(
∂v2
∂w1

+
∂v2
∂w2

i

)
= ℜ(∇wf(z))

(
∂v1
∂w1

+
∂v1
∂w2

i

)
+ ℑ(∇wf(z))

(
∂v2
∂w1

+
∂v2
∂w2

i

)

B Proof of the Theorem 3 and the Corollary 4: Complex Tensor Program

For real-valued neural networks that can be expressed by tensor program NETSOR⊤ (See Appendix F
for details), we have the following theorem from Yang [2020], Corollary 7.3:

Theorem B.9 Let fθR be a real-valued (possibly recurrent) neural network with scalar output, which
can be expressed by NETSOR⊤ and satisfies Condition F.12. If its nonlinearities have polynomially
bounded weak derivatives, then its empirical NTK Θ̂ at initialization converges almost surely, over
any finite set of inputs, to a deterministic kernel Θ as its widths go to infinity and each elements of its
factored weights W are randomly initialized as zero-mean Gaussian variables.
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The key idea of the proof is to reduce the complex tensor operations and backward propagation to
real-valued tensor program NETSOR⊤. First we can easily show that for complex activation functions
under Assumption 2 , the corresponding real-valued functions are also polynomially-bounded.

Proposition B.10 Consider a complex activation function ϕ : Ck → C with the input complex vector
z = [z1, . . . , zk] where zj = xj + yji for ∀j ∈ [k] and xj , yj ∈ R. When ϕ(z) are polynomially-
bounded in the complex domain, if we treat the complex activation function ϕ(z) as ϕ = ϕ1 + ϕ2i
where ϕ1, ϕ2 are two real-valued functions with real-valued input [x,y] ∈ R2k, then the real-valued
functions ϕ1(x,y), ϕ2(x,y) are both polynomially-bounded.

Proof The proposition can be easily proved if we treat all complex numbers using real values in
terms of their real and imaginary parts. According to that ϕ(z) satisfies |ϕ(z)| ≤ C∥z∥p + c for
some C, p, c > 0 and z ∈ Ck, let e = [x,y] be the real-valued concatenating vector, we have

|ϕ(z)| = |ϕ1(e) + ϕ2(e)i| =
√
ϕ1(e)2 + ϕ2(e)2 ≤ C∥z∥p + c = C∥e∥p + c

Thus obviously we have |ϕ1(e)|, |ϕ2(e)| ≤
√
ϕ1(e)2 + ϕ2(e)2 = C∥e∥p + c.

Initial set of random vectors. Without loss of generality, considering the feed-forward and backward
procedure of a complex network, we have initial set of vectors {α1 = A1x − B1y} ∪ {β1 =
A1y + B1x} ∪ {δLs (z)} ∪ {δLr (z)} where the gradient vectors δLs (z) and δLr (z) are defined as
δLs (z) =

√
n∇sL

f(z) and δLr (z) =
√
n∇rL

f(z) respectively like gradient vectors δlα(z) and
δlβ(z). Since complex NTK parametrization is applied for the weight matrices, it is easy to show that
Zα1 and Zβ1 are distributed as multivariate gaussian over any input instances as follows{

Zα1 , Zα′
1

}
=

{
ZA1x−B1y, ZA1x

′−B1y
′
}

∼ N
(
0,
σ2
A

d

(
x⊤x x⊤x′

x⊤x′ x′⊤x′

)
+
σ2
B

d

(
y⊤y y⊤y′

y⊤y′ y′⊤y′

))
.{

Zβ1 , Zβ′
1

}
=

{
ZA1y+B1x, ZA1y

′+B1x
′
}

∼ N
(
0,
σ2
B

d

(
x⊤x x⊤x′

x⊤x′ x′⊤x′

)
+
σ2
A

d

(
y⊤y y⊤y′

y⊤y′ y′⊤y′

))
.

where Zα1 and Zβ1 are random variables corresponding to the iid coordinate of α1 and β1. (See
details in Rules F.13). In addition, each coordinate of the backward initial vectors δLs (z) =√
n∇sL

f(z) = σAAL+1 and δLr (z) =
√
n∇rL

f(z) = −σBBL+1 are also both gaussian dis-
tributed. Therefore the assumptions of Theorem F.14 are satisfied.

Forward and backward procedure of complex tensor programs. For a complex-valued neural
network fθ(z), we can always decompose all the complex operations into two-dimensional real-
valued operations, denoted as f[θR,θI ]([x,y]), where θR, θI ∈ Rp are the real and imaginary parts of
all complex parameters respectively. For the forward procedure of complex tensor programs, given
W = A+Bi and z = x+ yi, the complex tensor operation ComMatMul Wz = (Ax−By) +
(Ay +Bx) i can be decomposed into four real-valued tensor operations MatMul in NETSOR⊤ in
Definition F.11. And based on the Proposition B.10, a complex activation function can be seen as
two real-valued functions with input (x,y), thus ComNonLin also can be rewritten with real-valued
tensor operations NonLin in NETSOR⊤.

For the backward procedure, without loss of generality, we have the following for the backpropagation
of ComMatMul and ComNonLin

Nonlin:
δlα(z) = δls(z)⊙ ∂ϕ1(αl + βli)/∂α+ δlr(z)⊙ ∂ϕ2(αl + βli)/∂α;

δlβ(z) = δls(z)⊙ ∂ϕ1(αl + βli)/∂β + δlr(z)⊙ ∂ϕ2(αl + βli)/∂β;

MatMul:
δl−1
s (z) = A⊤

l δ
l
α(z) +B⊤

l δ
l
β(z);

δl−1
r (z) = −B⊤

l δ
l
α(z) +A⊤

l δ
l
β(z).
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Therefore, the backward procedure of complex neural networks can also be expressed by NETSOR⊤.

Denote the real function corresponding to the complex network as fθr (τ ) : R2d → Rdout where the
input τ = [ℜ{z},ℑ{z}] is a real-valued concatenating vector and all weights are decomposed to
real-valued matrices. According to the Theorem B.9, for this real-valued network whose forward and
backward procedure could be represented by NETSOR⊤, its empirical NTK Θ̂r : R2d×R2d → Rdout

defined as
Θ̂r (τ , τ

′) = ⟨∇θrfθr (τ ),∇θrfθr (τ
′)⟩

converges to a deterministic limiting kernel as widths go to infinity. Therefore, the equivalent complex
NTK with corresponding complex input Θ̂ : Cd×Cd → Rdout also converges as widths go to infinity.
And the limiting NTK could be calculated by Rules F.13. This concludes the proof of Theorem 3.

Based on the Theorem 3 and the main theorem of Yang and Littwin [2021], the proof of Corollary 4
is straight. Due to that complex networks can be decomposed into real operations and represented by
NETSOR⊤, based on the main theorem in NTKTRAIN under the assumptions in Setup D.1 in Yang
and Littwin [2021], it can be obtained that the corresponding real function fθr (τ ) : R2d → Rdout

satisfy Eq. (2)

f̊θr,t+1(τ )− f̊θr,t(τ ) = −Θ̊r (τ , τt)L′
t

(
f̊θr,t (τt)

)
, (11)

where Θr(τ , τ
′) : R2d ×R2d → Rdout is the infinite-width NTK (at initialization) of the correspond-

ing real neural network. Due to the original complex network and complex NTK have the same value
as real version, the Corollary 4 is proved.

C Proof of Theorem 5: NTK of complex MLPs

First, we consider the case that output dimension dout = 1. In this case, the output weight matrix can
be written as WL+1 = AL+1 +BL+1i =

σA√
n
AL+1 +

σB√
n
BL+1i =

σA√
n
a+ σB√

n
bi for a, b ∈ Rn×1

and fθ(z) = ℜ{WL+1hL} = σA√
n
a⊤sL − σB√

n
b⊤rL. Without loss of generality, here we set all the

variance of real part and imaginary part as σA and σB respectively. We will show that the results of
single-dimensional output can be easily extended to multi-dimensional output case.

Decomposing NTK: The Canonical Decomposition. Due to that the complex networks are op-
timized by the generalized BP algorithm, which decomposes the complex weight matrices into
real-valued matrices, like Yang [2020], we can first decompose the NTK into contributions from each
real-valued parameter’s gradient as

Θ̂ (z, z′) = ⟨∇θfθ(z),∇θfθ (z
′)⟩

=

L∑
l=1

⟨∇Al
f(z),∇Al

f (z′)⟩+
L∑

l=1

⟨∇Bl
f(z),∇Bl

f (z′)⟩

+
〈
∇AL+1

f(z),∇AL+1
f (z′)

〉
+

〈
∇BL+1

f(z),∇BL+1
f (z′)

〉
(12)

Considering that for l ∈ [1, L], we have

sl + rli = ϕ ((Al +Bli)(sl−1 + rl−1i)) = ϕ ((Alsl−1 −Blrl−1) + (Alrl−1 +Blsl−1i))
(13)

Based on gradient vectors δlα(z) and δlβ(z), when l ∈ [2, L], the first term of Eq. (12) can be written
as

⟨∇Al
f(z),∇Al

f (z′)⟩ = σ2
A

n
⟨∇Al

f(z),∇Al
f (z′)⟩

=
σ2
A

n2

〈
δlα(z)s

⊤
l−1 + δlβ(z)r

⊤
l−1, δ

l
α(z

′)s′l−1
⊤
+ δlβ(z

′)r′l−1
⊤
〉

= σ2
A

δlα(z)
⊤δlα(z

′)

n

s⊤l−1s
′
l−1

n
+ σ2

A

δlβ(z)
⊤δlβ(z

′)

n

r⊤l−1r
′
l−1

n

+ σ2
A

δlα(z)
⊤δlβ(z

′)

n

s⊤l−1r
′
l−1

n
+ σ2

A

δlβ(z)
⊤δlα(z

′)

n

r⊤l−1s
′
l−1

n
(14)

16



Note that for simplicity, here we abbreviate sl(z
′) and rl(z

′) as s′l and r′l respectively. Then for the
second term, when l ∈ [2, L], we have decomposition as follows

⟨∇Bl
f(z),∇Bl

f (z′)⟩ = σ2
B

n
⟨∇Bl

f(z),∇Bl
f (z′)⟩

=
σ2
B

n2

〈
−δlα(z)r

⊤
l−1 + δlβ(z)s

⊤
l−1,−δlα(z

′)r′l−1
⊤
+ δlβ(z

′)s′l−1
⊤
〉

= σ2
B

δlα(z)
⊤δlα(z

′)

n

r⊤l−1r
′
l−1

n
+ σ2

B

δlβ(z)
⊤δlβ(z

′)

n

s⊤l−1s
′
l−1

n

− σ2
B

δlα(z)
⊤δlβ(z

′)

n

r⊤l−1s
′
l−1

n
− σ2

B

δlβ(z)
⊤δlα(z

′)

n

s⊤l−1r
′
l−1

n
(15)

When l = 1, i.e., for the input layer, since the weight matrix is Cn×d, thus we have the following
decomposition for the first and second term in Eq. (12)

⟨∇A1
f(z),∇A1

f (z′)⟩ = σ2
A

δ1α(z)
⊤δ1α(z

′)

n

x⊤x′

d
+ σ2

A

δ1β(z)
⊤δ1β(z

′)

n

y⊤y′

d

+ σ2
A

δ1α(z)
⊤δ1β(z

′)

n

x⊤y′

d
+ σ2

A

δ1β(z)
⊤δ1α(z

′)

n

y⊤x′

d
(16)

⟨∇B1f(z),∇B1f (z
′)⟩ = σ2

B

δ1α(z)
⊤δ1α(z

′)

n

y⊤y′

d
+ σ2

B

δ1β(z)
⊤δ1β(z

′)

n

x⊤x′

d

− σ2
B

δ1α(z)
⊤δ1β(z

′)

n

y⊤x′

d
− σ2

B

δ1β(z)
⊤δ1α(z

′)

n

x⊤y′

d
(17)

Finally, for the term of output layer, we can obtain〈
∇AL+1

f(z),∇AL+1
f (z′)

〉
=
σ2
A

n

〈
∇AL+1

f(z),∇AL+1
f (z′)

〉
= σ2

A

s⊤Ls
′
L

n
(18)〈

∇BL+1
f(z),∇BL+1

f (z′)
〉
=
σ2
B

n

〈
∇BL+1

f(z),∇BL+1
f (z′)

〉
= σ2

B

r⊤Lr
′
L

n
(19)

Initial set of random vectors. Considering the feed-forward and backward procedure of complex
full-connected networks, we have initial set of vectors {α1 = A1x − B1y} ∪ {β1 = A1y +
B1x} ∪ {δLs (z)} ∪ {δLr (z)} where the gradient vectors δLs (z) and δLr (z) are defined as δLs (z) =√
n∇sL

f(z) and δLr (z) =
√
n∇rL

f(z) respectively like gradient vectors δlα(z) and δlβ(z). Since
complex NTK initialization is applied for the weight matrices, it is easy to show that Zα1 and Zβ1

are distributed as multivariate gaussian over any input instances as follows{
Zα1 , Zα′

1

}
=

{
ZA1x−B1y, ZA1x

′−B1y
′
}

∼ N
(
0,
σ2
A

d

(
x⊤x x⊤x′

x⊤x′ x′⊤x′

)
+
σ2
B

d

(
y⊤y y⊤y′

y⊤y′ y′⊤y′

))
.{

Zβ1 , Zβ′
1

}
=

{
ZA1y+B1x, ZA1y

′+B1x
′
}

∼ N
(
0,
σ2
B

d

(
x⊤x x⊤x′

x⊤x′ x′⊤x′

)
+
σ2
A

d

(
y⊤y y⊤y′

y⊤y′ y′⊤y′

))
.

where Zα1 and Zβ1 are random variables corresponding to the iid coordinate of α1 and β1. (See
details in Rules F.13). In addition, each coordinate of the backward initial vectors δLs (z) =√
n∇sL

f(z) = σAAL+1 and δLr (z) =
√
n∇rL

f(z) = −σBBL+1 are also both gaussian dis-
tributed. Therefore the assumptions of Theorem F.14 are satisfied.

Formulation of corresponding NETSOR⊤ program. As proved in the Theorem 3, a complex
network which can be represented by complex tensor program could also be expressed by the
NETSOR⊤. The complex full-connected network can be represented as the following NETSOR⊤

program, where we denote the corresponding real activation functions with real-valued input [αl,βl]

as ϕ̃1 and ϕ̃2.
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Nonlin:
sl = ϕ1(αl + βli) = ϕ1((α

l
A −αl

B) + (βl
A + βl

B))i) = ϕ̃1(αl,βl);

rl = ϕ2(αl + βli) = ϕ2((α
l
A −αl

B) + (βl
A + βl

B))i) = ϕ̃2(αl,βl);

MatMul:
αl

A = Alsl−1; αl
B = Blrl−1; βl

A = Alrl−1; βl
B = Blsl−1;

Nonlin:
δlα(z) = δls(z)⊙ ∂ϕ̃1(αl,βl)/∂αl + δlr(z)⊙ ∂ϕ̃2(αl,βl)/∂αl;

δlβ(z) = δls(z)⊙ ∂ϕ̃1(αl,βl)/∂βl + δlr(z)⊙ ∂ϕ̃2(αl,βl)/∂βl;

MatMul:
δl−1
s (z) = A⊤

l δ
l
α(z) +B⊤

l δ
l
β(z);

δl−1
r (z) = −B⊤

l δ
l
α(z) +A⊤

l δ
l
β(z).

Convergence of intermediate kernels. Based on Proposition B.10, it is known that the activation
functions under Assumption 2 satisfies that the corresponding real activation functions ϕ1 and ϕ2 are
polynomially bounded. The corresponding NETSOR⊤ program satisfies the Simple GIA Check (See
details in Condition F.12), thus by recursively applying the Master Theorem F.14 we can obtain that
as the width n→ ∞, all the intermediate kernels Σl

α,Σ
l
β ,Π

l
α,Π

l
β ,Σ

l
α,β ,Σ

l
β,α,Π

l
α,β ,Π

l
β,α converge

to the limits defined in Rules F.13. Specifically, for ∀l ∈ [L], we have the following limits for the
intermediate kernels:

lim
n→∞

Σl
α (z, z′)

a.s.−→ EZαlZα′
l lim

n→∞
Σl

α,β (z, z
′)

a.s.−→ EZαlZβ′
l

lim
n→∞

Σl
β (z, z

′)
a.s.−→ EZβlZβ′

l lim
n→∞

Σl
β,α (z, z′)

a.s.−→ EZβlZα′
l

lim
n→∞

Πl
α (z, z′)

a.s.−→ EZδl
α(z)Zδl

α(z′) lim
n→∞

Πl
α,β (z, z

′)
a.s.−→ EZδl

α(z)Zδl
β(z

′)

lim
n→∞

Πl
β (z, z

′)
a.s.−→ EZδl

β(z)Zδl
β(z

′) lim
n→∞

Πl
β,α (z, z′)

a.s.−→ EZδl
β(z)Zδl

α(z′)

where Zαl , Zβl , Zδl
α(z) and Zδl

β(z) are random variables corresponding to the iid coordinate defined
in Rules F.13.

Intermediate kernels of forward procedure. The vectors sl, rl, αl and βl have roughly iid
coordinates distributed as Zsl , Zrl , Zαl and Zβl respectively. As all widths go to infinity, based on
the Rules F.13, we can make the following calculations for the forward iteration of kernels.

Σl
α(z, z

′) = EZαlZα′
l = σ2

AEZsl−1Zs′
l−1 + σ2

BEZrl−1Zr′
l−1 (20)

Σl
β(z, z

′) = EZβlZβ′
l = σ2

AEZrl−1Zr′
l−1 + σ2

BEZsl−1Zs′
l−1 (21)

Σl
α,β(z, z

′) = EZαlZβ′
l = σ2

AEZsl−1Zr′
l−1 − σ2

BEZrl−1Zs′
l−1 (22)

Σl
β,α(z, z

′) = EZβlZα′
l = σ2

AEZrl−1Zs′
l−1 − σ2

BEZsl−1Zr′
l−1 (23)

Then, for Zsl and Zrl , we can obtain

EZslZs′
l = EZϕ1(αl+βli)Zϕ1(α

′
l+β′

li) = EZϕ̃1(αl,βl)Zϕ̃1(α
′
l,β

′
l)

= Eϕ̃1(Zαl , Zβl)ϕ̃1(Z
α′

l , Zβ′
l) = Eϕ̃1(ξl, ζl)ϕ̃1(ξ′l, ζ ′l) (24)

EZrlZr′
l = EZϕ2(αl+βli)Zϕ2(α

′
l+β′

li) = EZϕ̃2(αl,βl)Zϕ̃2(α
′
l,β

′
l)

= Eϕ̃2(Zαl , Zβl)ϕ̃2(Z
α′

l , Zβ′
l) = Eϕ̃2(ξl, ζl)ϕ̃2(ξ′l, ζ ′l) (25)

Similarly, we have EZslZr′
l = Eϕ̃1(ξl, ζl)ϕ̃2(ξ′l, ζ ′l) and EZrlZs′

l = Eϕ̃2(ξl, ζl)ϕ̃1(ξ′l, ζ ′l) where
the random variables ξl, ζl, ξ′l, ζ

′
l satisfy

(ξl, ζl, ξ
′
l, ζ

′
l) ∼ N

0,


Σl

α(z, z) Σl
α,β(z, z) Σl

α(z, z
′) Σl

α,β(z, z
′)

Σl
β,α(z, z) Σl

β(z, z) Σl
β,α(z, z

′) Σl
β(z, z

′)

Σl
α(z

′, z) Σl
α,β(z

′, z) Σl
α(z

′, z′) Σl
α,β(z

′, z′)

Σl
β,α(z

′, z) Σl
β(z

′, z) Σl
β,α(z

′, z′) Σl
β(z

′, z′)


 (26)
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Thus the covariance matrix of each two variables among ξl, ζl, ξ′l, ζ
′
l can be directly obtained from

Eq.(26).

Intermediate kernels of backward procedure. Following the derivation of the feed-forward limiting
kernels, it is known that the vectors δls(z), δ

l
r(z), δ

l
α(z) and δlβ(z) have roughly iid coordinates

distributed as Zδl
s(z), Zδl

r(z), Zδl
α(z) and Zδl

β(z) respectively. As all widths go to infinity, based on
the Rules F.13, we can make the following calculations for the backward iteration of kernels.

EZδl−1
s (z)Zδl−1

s (z′) = σ2
AEZδl

α(z)Zδl
α(z′) + σ2

BEZδl
β(z)Zδl

β(z
′) (27)

EZδl−1
r (z)Zδl−1

r (z′) = σ2
AEZδl

β(z)Zδl
β(z

′) + σ2
BEZδl

α(z)Zδl
α(z′) (28)

EZδl−1
s (z)Zδl−1

r (z′) = σ2
AEZδl

α(z)Zδl
β(z

′) − σ2
BEZδl

β(z)Zδl
α(z′) (29)

EZδl−1
r (z)Zδl−1

s (z′) = σ2
AEZδl

β(z)Zδl
α(z′) − σ2

BEZδl
α(z)Zδl

β(z
′) (30)

Then, for Zδl
α(z) and Zδl

β(z), we can obtain

Πl
α(z, z

′) = EZδl
α(z)Zδl

α(z′)

= EZδl
s(z)⊙∂ϕ̃1(αl,βl)/∂αl+δl

r(z)⊙∂ϕ̃2(αl,βl)/∂αlZδl
s(z

′)⊙∂ϕ̃1(α
′
l,β

′
l)/∂α

′
l+δl

r(z
′)⊙∂ϕ̃2(α

′
l,β

′
l)/∂α

′
l

= EZδl
s(z)Zδl

s(z
′)EZ∂ϕ̃1(αl,βl)/∂αlZ∂ϕ̃1(α

′
l,β

′
l)/∂α

′
l

+ EZδl
r(z)Zδl

r(z
′)EZ∂ϕ̃2(αl,βl)/∂αlZ∂ϕ̃2(α

′
l,β

′
l)/∂α

′
l

+ EZδl
s(z)Zδl

r(z
′)EZ∂ϕ̃1(αl,βl)/∂αlZ∂ϕ̃2(α

′
l,β

′
l)/∂α

′
l

+ EZδl
r(z)Zδl

s(z
′)EZ∂ϕ̃2(αl,βl)/∂αlZ∂ϕ̃1(α

′
l,β

′
l)/∂α

′
l (31)

= EZδl
s(z)Zδl

s(z
′)E

∂ϕ̃1(ξl, ζl)

∂ξl

∂ϕ̃1(ξ
′
l, ζ

′
l)

∂ξ′l
+ EZδl

r(z)Zδl
r(z

′)E
∂ϕ̃2(ξl, ζl)

∂ξl

∂ϕ̃2(ξ
′
l, ζ

′
l)

∂ξ′l

+ EZδl
s(z)Zδl

r(z
′)E

∂ϕ̃1(ξl, ζl)

∂ξl

∂ϕ̃2(ξ
′
l, ζ

′
l)

∂ξ′l
+ EZδl

r(z)Zδl
s(z

′)E
∂ϕ̃2(ξl, ζl)

∂ξl

∂ϕ̃1(ξ
′
l, ζ

′
l)

∂ξ′l
(32)

Similarly, we have

Πl
β(z, z

′) = EZδl
β(z)Zδl

β(z
′)

= EZδl
s(z)⊙∂ϕ̃1(αl,βl)/∂βl+δl

r(z)⊙∂ϕ̃2(αl,βl)/∂βlZδl
s(z

′)⊙∂ϕ̃1(α
′
l,β

′
l)/∂β

′
l+δl

r(z
′)⊙∂ϕ̃2(α

′
l,β

′
l)/∂β

′
l

= EZδl
s(z)Zδl

s(z
′)E

∂ϕ̃1(ξl, ζl)

∂ζl

∂ϕ̃1(ξ
′
l, ζ

′
l)

∂ζ ′l
+ EZδl

r(z)Zδl
r(z

′)E
∂ϕ̃2(ξl, ζl)

∂ζl

∂ϕ̃2(ξ
′
l, ζ

′
l)

∂ζ ′l

+ EZδl
s(z)Zδl

r(z
′)E

∂ϕ̃1(ξl, ζl)

∂ζl

∂ϕ̃2(ξ
′
l, ζ

′
l)

∂ζ ′l
+ EZδl

r(z)Zδl
s(z

′)E
∂ϕ̃2(ξl, ζl)

∂ζl

∂ϕ̃1(ξ
′
l, ζ

′
l)

∂ζ ′l
(33)

We can calculate the recursive formulation of Πl
α,β(z, z

′) and Πl
β,α(z, z

′) in the same way, and the
random variables ξl, ζl, ξ′l, ζ

′
l satisfy Eq.(26).

Final NTK formulation of complex full-connected network. Based on the above intermediate
limiting kernels, we can calculate the final NTK of complex full-connected networks recursively
according to the NTK decomposition Eq. (12). As all widths go to infinity, we can rewrite the NTK
decomposition with intermediate kernels as follows.

⟨∇Al
f(z),∇Al

f (z′)⟩ = σ2
AΠ

l
α(z, z

′)Σl−1
s (z, z′) + σ2

AΠ
l
β(z, z

′)Σl−1
r (z, z′)

+ σ2
AΠ

l
α,β(z, z

′)Σl−1
s,r (z, z′) + σ2

AΠ
l
β,α(z, z

′)Σl−1
r,s (z, z′) (34)

⟨∇Bl
f(z),∇Bl

f (z′)⟩ = σ2
BΠ

l
α(z, z

′)Σl−1
r (z, z′) + σ2

BΠ
l
β(z, z

′)Σl−1
s (z, z′)

− σ2
BΠ

l
α,β(z, z

′)Σl−1
r,s (z, z′)− σ2

BΠ
l
β,α(z, z

′)Σl−1
s,r (z, z′) (35)〈

∇AL+1
f(z),∇AL+1

f (z′)
〉
+

〈
∇BL+1

f(z),∇BL+1
f (z′)

〉
= σ2

AΣ
L
s + σ2

BΣ
L
r (36)
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Thus the final NTK of complex full-connected networks can be represented as

Θ̂ (z, z′) =

L∑
l=1

⟨∇Al
f(z),∇Al

f (z′)⟩+
L∑

l=1

⟨∇Bl
f(z),∇Bl

f (z′)⟩

=

L∑
l=1

(
Πl

α(z, z
′)Σl

α(z, z
′) + Πl

β(z, z
′)Σl

β(z, z
′)

+Πl
α,β(z, z

′)Σl
α,β(z, z

′) + Πl
β,α(z, z

′)Σl
β,α(z, z

′)
)
+ΣL+1

α (z, z′) (37)

Multi-dimensional output. We denote the above limiting NTK corresponding to the single output
complex full-connected network as Θ(z, z′). For multi-dimensional output case, i.e., fθ(z) ∈ Rdout ,
the i-th output for i ∈ [dout] is obtained via

[fθ(z)]i = [ℜ{WL+1hL}]i =
σA√
n
a⊤
i sL − σB√

n
b⊤i rL, (38)

where ai, bi ∈ Rn is the i-th row of corresponding real output matrices A and B; and ai, bi are

independent of aj , bj for i ̸= j. As a result, for the multi-dimensional output NTK ̂̊
Θ(z, z′) ∈

Rdout×dout we have [̂̊
Θ(z, z′)

]
i,j

=
〈
∇θ

[
fθ(z)

]
i
,∇θ

[
fθ (z

′)
]
j

〉
. (39)

Thus for i = j, i.e., the diagonal elements of the kernel matrix, the value satisfies[
Θ̊(z, z′)

]
i,i

= lim
n→∞

[̂̊
Θ(z, z′)

]
i,i

= Θ(z, z′), for i = j; (40)

but for i ̸= j, since ai, bi are independent of aj , bj for i ̸= j and all the gradient vectors in
∇θ

[
fθ(x)

]
i

contains ai, bi due to the backpropagation, we have[
Θ̊(z, z′)

]
i,j

= lim
n→∞

〈
∇θ

[
fθ(z)

]
i
,∇θ

[
fθ (z

′)
]
j

〉
= 0, for i ̸= j. (41)

Therefore, we have the following limiting NTK for the multi-dimensional output complex full-
connected network

Θ̊(z, z′) = Θ(z, z′)⊗ Idout
. (42)

This concludes the proof of Theorem 5.

D Proof of Theorem 7: Asymptotic equivalence for deep complex networks

To prove Theorem 7, we need to analyze the conditions that the NTK of complex MLP reduces to
that of real MLP when σA = σB . Based on the expansion of final NTK form of complex MLPs
(Eq. (34)-(36)), we could conclude that the following four subconditions need to be satisfied at the
same time.

Subcondition 1 ∀l, the interaction terms in the NTK decomposition are eliminated.

Πl
α,β(z, z

′)Σl−1
s,r (z, z′) + Πl

β,α(z, z
′)Σl−1

r,s (z, z′)

−Πl
α,β(z, z

′)Σl−1
r,s (z, z′)−Πl

β,α(z, z
′)Σl−1

s,r (z, z′) = 0 (43)

Subcondition 2 ∀l, the interaction terms in Πl
α(z, z

′) and Πl
β(z, z

′) are eliminated.

Subcondition 3 ∀l, we have Πl
α(z, z

′) = Πl
β(z, z

′).

Subcondition 4 ∀l, we have Σl
s(z, z

′) = Σl
r(z, z

′).

For Subcondition 1, we can obtain the equivalent formulation as follows

Πl
α,β(z, z

′)−Πl
β,α(z, z

′) = EZδl
α(z)Zδl

β(z
′) − EZδl

β(z)Zδl
α(z′) = 0. (44)
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because Σl
α,β(z, z

′) = Σl−1
s,r (z, z′) − Σl−1

r,s (z, z′) = 0 and Σl
β,α(z, z

′) = 0 are unachievable.
Specifically, for l = 1, they hold only when the input [x,y] = c[x′,y′] for some c ∈ R. Then we
can transform the Subcondition 1 to the following:

EZδl
s(z)⊙∂ϕ̃1(αl,βl)/∂αl+δl

r(z)⊙∂ϕ̃2(αl,βl)/∂αlZδl
s(z

′)⊙∂ϕ̃1(α
′
l,β

′
l)/∂β

′
l+δl

r(z
′)⊙∂ϕ̃2(α

′
l,β

′
l)/∂β

′
l

− EZδl
s(z)⊙∂ϕ̃1(αl,βl)/∂βl+δl

r(z)⊙∂ϕ̃2(αl,βl)/∂βlZδl
s(z

′)⊙∂ϕ̃1(α
′
l,β

′
l)/∂α

′
l+δl

r(z
′)⊙∂ϕ̃2(α

′
l,β

′
l)/∂α

′
l = 0

(45)

Based on the Rules. F.13, we can obtain

EZδl
s(z)Zδl

s(z
′)E

∂ϕ̃1(ξl, ζl)

∂ξl

∂ϕ̃1(ξ
′
l, ζ

′
l)

∂ζ ′l
+ EZδl

r(z)Zδl
r(z

′)E
∂ϕ̃2(ξl, ζl)

∂ξl

∂ϕ̃2(ξ
′
l, ζ

′
l)

∂ζ ′l

+ EZδl
s(z)Zδl

r(z
′)E

∂ϕ̃1(ξl, ζl)

∂ξl

∂ϕ̃2(ξ
′
l, ζ

′
l)

∂ζ ′l
+ EZδl

r(z)Zδl
s(z

′)E
∂ϕ̃2(ξl, ζl)

∂ξl

∂ϕ̃1(ξ
′
l, ζ

′
l)

∂ζ ′l

− EZδl
s(z)Zδl

s(z
′)E

∂ϕ̃1(ξl, ζl)

∂ζl

∂ϕ̃1(ξ
′
l, ζ

′
l)

∂ξ′l
− EZδl

r(z)Zδl
r(z

′)E
∂ϕ̃2(ξl, ζl)

∂ζl

∂ϕ̃2(ξ
′
l, ζ

′
l)

∂ξ′l

− EZδl
s(z)Zδl

r(z
′)E

∂ϕ̃1(ξl, ζl)

∂ζl

∂ϕ̃2(ξ
′
l, ζ

′
l)

∂ξ′l
− EZδl

r(z)Zδl
s(z

′)E
∂ϕ̃2(ξl, ζl)

∂ζl

∂ϕ̃1(ξ
′
l, ζ

′
l)

∂ξ′l
= 0 (46)

For Subcondition 2, based on Eq. (32) and Eq. (33), we have the expansion as following

EZδl
s(z)Zδl

r(z
′)E

∂ϕ̃1(ξl, ζl)

∂ξl

∂ϕ̃2(ξ
′
l, ζ

′
l)

∂ξ′l
+ EZδl

r(z)Zδl
s(z

′)E
∂ϕ̃2(ξl, ζl)

∂ξl

∂ϕ̃1(ξ
′
l, ζ

′
l)

∂ξ′l

+ EZδl
s(z)Zδl

r(z
′)E

∂ϕ̃1(ξl, ζl)

∂ζl

∂ϕ̃2(ξ
′
l, ζ

′
l)

∂ζ ′l
+ EZδl

r(z)Zδl
s(z

′)E
∂ϕ̃2(ξl, ζl)

∂ζl

∂ϕ̃1(ξ
′
l, ζ

′
l)

∂ζ ′l
= 0

According to Eq. (29) and Eq. (30), considering σA = σB , thus Zδl
s(z)Zδl

r(z
′) = −Zδl

r(z)Zδl
s(z

′),
then we can obtain

E
∂ϕ̃1(ξl, ζl)

∂ξl

∂ϕ̃2(ξ
′
l, ζ

′
l)

∂ξ′l
+ E

∂ϕ̃1(ξl, ζl)

∂ζl

∂ϕ̃2(ξ
′
l, ζ

′
l)

∂ζ ′l

− E
∂ϕ̃2(ξl, ζl)

∂ξl

∂ϕ̃1(ξ
′
l, ζ

′
l)

∂ξ′l
− E

∂ϕ̃2(ξl, ζl)

∂ζl

∂ϕ̃1(ξ
′
l, ζ

′
l)

∂ζ ′l
= 0 (47)

For Subcondition 3, given the Subcondition 2 holds, we can obtain that

E
∂ϕ̃1(ξl, ζl)

∂ξl

∂ϕ̃1(ξ
′
l, ζ

′
l)

∂ξ′l
+ E

∂ϕ̃2(ξl, ζl)

∂ξl

∂ϕ̃2(ξ
′
l, ζ

′
l)

∂ξ′l

− E
∂ϕ̃1(ξl, ζl)

∂ζl

∂ϕ̃1(ξ
′
l, ζ

′
l)

∂ζ ′l
− E

∂ϕ̃2(ξl, ζl)

∂ζl

∂ϕ̃2(ξ
′
l, ζ

′
l)

∂ζ ′l
= 0 (48)

For Subcondition 4, we can obtain that

EZslZs′
l − EZrlZr′

l = Eϕ̃1(ξl, ζl)ϕ̃1(ξ′l, ζ ′l)− Eϕ̃2(ξl, ζl)ϕ̃2(ξ′l, ζ ′l) = 0 (49)

where the random variables ξl, ζl, ξ′l, ζ
′
l are distributed as Eq. (26).

It could be verified that there is no common solution for all these four subconditions if we assume
that ∂ϕ̃1(ξl, ζl)/∂ξl, ∂ϕ̃2(ξl, ζl)/∂ξl, ∂ϕ̃1(ξl, ζl)/∂ζl, ∂ϕ̃2(ξl, ζl)/∂ζl are all nonzero (this can be
verified by substituting all solutions of the Subcondition 1 into the other Subconditions). However,
when we allow ∂ϕ̃1(ξl, ζl)/∂ζl, ∂ϕ̃2(ξl, ζl)/∂ξl to be zero, which is common in popular activation
functions, we can find the solution that satisfies all the subconditions.

When ∂ϕ̃1(ξl, ζl)/∂ζl = ∂ϕ̃2(ξl, ζl)/∂ξl = 0 and ∂ϕ̃1(ξl, ζl)/∂ξl = ∂ϕ̃2(ξl, ζl)/∂ζl, the Subcondi-
tion 2 and Subcondition 3 naturally hold. For Subcondition 1, it is transformed to

EZδl
s(z)Zδl

r(z
′)E

∂ϕ̃1(ξl, ζl)

∂ξl

∂ϕ̃2(ξ
′
l, ζ

′
l)

∂ζ ′l
− EZδl

r(z)Zδl
s(z

′)E
∂ϕ̃2(ξl, ζl)

∂ζl

∂ϕ̃1(ξ
′
l, ζ

′
l)

∂ξ′l
= 0
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which needs EZδl
s(z)Zδl

r(z
′) − EZδl

r(z)Zδl
s(z

′) = 0, and this is only satisfied when Πl
α,β(z, z

′) =

Πl
β,α(z, z

′), thus this constructs a recursion: EZδl
s(z)Zδl

r(z
′) − EZδl

r(z)Zδl
s(z

′) = 0 only when

EZδl+1
s (z)Zδl+1

r (z′) − EZδl+1
r (z)Zδl+1

s (z′) = 0. Finally, due to that for the output layer, ZδL
s (z)

and ZδL
r (z′) are independent, i.e., EZδL

s (z)ZδL
r (z′) = EZδL

r (z)ZδL
s (z′) = 0, thus this concludes the

proof of satisfying Subcondition 1.

For Subcondition 4, when ϕ̃2(a, b) = ϕ̃1(b,−a), which could also induce that ∂ϕ̃1(ξl, ζl)/∂ξl =
∂ϕ̃2(ξl, ζl)/∂ζl, we can obtain

Eϕ̃2(ξl, ζl)ϕ̃2(ξ′l, ζ ′l) = Eϕ̃1(ζl,−ξl)ϕ̃1(ζ ′l ,−ξ′l) (50)

Notice that

(ζl,−ξl, ζ ′l ,−ξ′l) ∼ N

0,


Σl

α(z, z) −Σl
β,α(z, z) Σl

α(z, z
′) −Σl

β,α(z, z
′)

−Σl
α,β(z, z) Σl

β(z, z) −Σl
α,β(z, z

′) Σl
β(z, z

′)

Σl
α(z

′, z) −Σl
β,α(z

′, z) Σl
α(z

′, z′) −Σl
β,α(z

′, z′)

−Σl
α,β(z

′, z) Σl
β(z

′, z) −Σl
α,β(z

′, z′) Σl
β(z

′, z′)




(51)

due to that Σl
α,β(z

′, z) = −Σl
β,α(z, z

′), thus the distribution is the same as Eq.(26). Then we can
obtain that

Eϕ̃2(ξl, ζl)ϕ̃2(ξ′l, ζ ′l) = Eϕ̃1(ζl,−ξl)ϕ̃1(ζ ′l ,−ξ′l) = Eϕ̃1(ξl, ζl)ϕ̃1(ξ′l, ζ ′l) (52)

In summary, when ϕ̃2(a, b) = ϕ̃1(b,−a) and ∂ϕ̃1(ξl, ζl)/∂ζl = ∂ϕ̃2(ξl, ζl)/∂ξl = 0 the NTK of
complex MLP reduces to real MLP.

As for the necessary and sufficient conditions for the asymptotic equivalence, we consider all
solutions of Subcondition 4: ϕ̃2(a, b) = ϕ̃1(−b, a) and ϕ̃2(a, b) = ϕ̃1(b,−a), and verify them
with Subcondition 1-3. We can obtain that all solutions satisfying all the conditions as follows
ϕ̃2(a, b) = ϕ̃1(−b, a).

∂ϕ̃1(ξl, ζl)

∂ζl
=
∂ϕ̃2(ξl, ζl)

∂ξl
= 0,

∂ϕ̃1(ξl, ζl)

∂ξl
= ±∂ϕ̃2(ξl, ζl)

∂ζl
; (53)

∂ϕ̃1(ξl, ζl)

∂ξl
=
∂ϕ̃2(ξl, ζl)

∂ζl
= 0,

∂ϕ̃1(ξl, ζl)

∂ζl
= ±∂ϕ̃2(ξl, ζl)

∂ξl
. (54)

This concludes the proof of the Condition 2 in Theorem 7.

For split activation functions, i.e.,

ϕ(z) = ϕ1(z) + ϕ2(z)i = ϕR(ℜ(z)) + ϕR(ℑ(z))i

we naturally have ∂ϕ̃1(ξl, ζl)/∂ζl = ∂ϕ̃2(ξl, ζl)/∂ξl = 0 and ∂ϕ̃1(ξl, ζl)/∂ξl = ∂ϕ̃2(ξl, ζl)/∂ζl.
Thus Subcondition 1-3 hold as analyzed above. For Subcondition 4, we have EZslZs′

l =

Eϕ̃1(ξ)ϕ̃1(ξ′) and EZrlZr′
l = Eϕ̃2(ζ)ϕ̃2(ζ ′), where

(ξ, ξ′) ∼ N
(
0,

(
Σl

α(z, z) Σl
α(z, z

′)
Σl

α(z, z
′) Σl

α(z
′, z′)

))
, (55)

(ζ, ζ ′) ∼ N
(
0,

(
Σl

β(z, z) Σl
β(z, z

′)

Σl
β(z, z

′) Σl
β(z

′, z′)

))
. (56)

Note that Σl
α(z, z

′) = Σl
β(z, z

′) for ∀z, z′ ∈ Cd since σA = σB . This concludes the proof of the
Condition 1 in Theorem 7.

E Additional experiments for complex NTK during training

Verifying complex NTK during training. In this experiment, we investigate the difference of
complex NTK before and after training on MNIST, i.e., we compare the empirical complex NTKs

22



25 26 27 28 29 210

n
2 6
2 5
2 4
2 3
2 2
2 1
20
21
22
23

(n
)

t
(n

)
0

F
/

(n
)

t
F

CReLU
t=500, L=1
t=1000, L=1
t=500, L=2
t=1000, L=2

25 26 27 28 29 210

n
2 11
2 10
2 9
2 8
2 7
2 6
2 5
2 4
2 3
2 2

(n
)

t
(n

)
0

F
/

(n
)

t
F

CSigmoid
t=500, L=1
t=1000, L=1
t=500, L=2
t=1000, L=2

25 26 27 28 29 210

n

2 8
2 7
2 6
2 5
2 4
2 3
2 2
2 1

(n
)

t
(n

)
0

F
/

(n
)

t
F

Ctanh
t=500, L=1
t=1000, L=1
t=500, L=2
t=1000, L=2

25 26 27 28 29 210

n
2 6
2 5
2 4
2 3
2 2
2 1
20
21
22

(n
)

t
(n

)
0

F
/

(n
)

t
F

modified modReLU, = 0.5
t=500, L=1
t=1000, L=1
t=500, L=2
t=1000, L=2

25 26 27 28 29 210

n

2 4
2 3
2 2
2 1
20
21
22
23
24

(n
)

t
(n

)
0

F
/

(n
)

t
F

zReLU
t=500, L=1
t=1000, L=1
t=500, L=2
t=1000, L=2

Figure 4: Convergence of the difference of empirical complex-valued NTKs before and during
training as widths grow. Similar to Figure 3, but the Y-axis is the relative Frobenius norm of the
change of empirical NTKs during training.

during training Θ̂
(n)
t with empirical complex NTK at initialization Θ̂

(n)
0 . The results are shown in

Figure 4. We observe that the relative norm converges fast in all these cases, regardless of the training
steps, hidden layer number and activation functions. So the empirical complex NTK during training
Θ̂

(n)
t converges to the empirical complex NTK at initialization Θ̂

(n)
0 as the widths grows, which

means the complex NTK remains frozen during training. This experiment perfectly verifies our
Theorem 4, because all these activation functions satisfy the the Assumption 2 of complex tensor
program.

In conclusion, the first two experiments focus on the difference between complex NTK and real
NTK at initialization, which verify our theoretical results about real-valued backpropagation and
demonstrate that our conditions in Theorem 7 are non-vacuous. And this experiment focuses on the
change of NTKs during training, which verifies our Theorem 4; and on the other hand, it indicates
that in order to figure out the relationship between complex NTKs and real NTKs, we could just
focus on the NTKs at initialization.

F NETSOR⊤ Program

For self-containedness, in this section we will highlight some important theoretical tools used in our
proofs.

For MLPs and CNNs, it has been shown that the pre-activation of each layer tends to a Gaussian
process as width n → ∞ based on the Central Limit Theorem (CLT) [Lee et al., 2018] and the
neural tangent kernel (NTK) at initialization tends to a limiting kernel as width n→ ∞ [Jacot et al.,
2018, Arora et al., 2019]. However, the analysis can not be extended to the neural networks with
weight sharing, like recurrent neural networks (RNN), because the sequential limit is not possible
and conditioning on previous layers does not result in iid weights. To deal with it, Yang [2019b,
2020] presented a novel proof using Gaussian conditioning trick which allows the recurrent weights
in a network. Further, it has been demonstrated that any architecture that can be expressed as
NETSOR programs converges to Gaussian process as all widths go to infinity in the same rate and any
architecture whose feed-forward and backward procedure can be expressed as NETSOR⊤ programs
has a convergent NTK as all widths go to infinity in the same rate. Besides, to ensure readability,
we did not use the original Tensor Programs [Yang, 2019a], which has been superceded by the
NETSOR⊤, a more concise and readable version. We list the important theoretical tools used in our
proofs including definitions, theorems and conditions from [Yang, 2019b, 2020] as follows.

23



Definition F.11 (Simplified NETSOR⊤ Program) A NETSOR⊤ program is just a sequence of Rn

vectors inductively generated via one of the following ways from an initial set V of random Rn

vectors and a set W of random n× n matrices

Nonlin Given ϕ : Rk → R and x1, . . . ,xk ∈ Rn, we can generate ϕ(x1, . . . ,xk) ∈ Rn.

MatMul Given W ∈ Rn×n and x ∈ Rn, we can generate Wx ∈ Rn or W⊤x ∈ Rn.

Condition F.12 (Simple GIA Check) The output layer is sampled independently and with zero
mean from all other parameters and is not used anywhere else in the interior of the network.

Rules F.13 (Intuitions for Computing the Limits) When the width n≫ 1, every (pre-)actication
vector x ∈ Rn has roughly i.i.d. coordinates distributed as some random variable denoted Zx. Thus
for any vector x,y ∈ Rn, as n→ ∞,

x⊤y/n =
1

n

n∑
i=1

xiyi → EZxZy,

Then we can use the following rules to compute Zx of a NETSOR⊤ program recursively.

• Nonlin For any fixed k and ϕ: Rk → R, we have

Zϕ(x1,··· ,xk) = ϕ(Zx1 , · · · , Zxk)

• MatMul For any set of Rn vectors X and a matrix W ∈ Rn×n with Wij ∼ N (0, σ2
W /n),

the set of random variables {ZWx : x ∈ X} is jointly Gaussian with zero mean and
covariance

Cov(ZWx, ZWx) = σ2
WEZxZx, ∀x,x ∈ X .

If Y is any set of Rn vectors and W ̸= W, then {ZWx : x ∈ X} is independent from
{ZWy : y ∈ Y}.

Theorem F.14 (NETSOR⊤ Master Theorem) Consider a NETSOR⊤ program. Suppose:

• for each intial W ∈ W , Wij ∈ N (0, σ2
W /n) for an associate variance σ2

W ;

• there is a multivariate Gaussian ZV = {Zν : ν ∈ V ∈ R|V|} such that the initial set of
vectors V are sampled like {νi : ν ∈ V} ∼ ZV i.i.d. for each i ∈ [n].

if the program satisfies the simple GIA check and all ϕ used in Nonlin are polynomially bounded,
then

1

n

n∑
i=1

ψ
(
h1i , . . . , h

k
i

) a.s.→ Eψ
(
Zh1

, . . . , Zhk
)
, as n→ ∞

for any collection of vectors h1, . . . , hk in the program and any polynomially bounded ψ : Rk → R,
where Zhi

are defined in Rules F.13.
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